summaryrefslogtreecommitdiff
path: root/include/llvm/Analysis/ScalarEvolution.h
blob: dcefaa04e0400d5340b22d5a1e277b32486fed7e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
//===- llvm/Analysis/ScalarEvolution.h - Scalar Evolution -------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// The ScalarEvolution class is an LLVM pass which can be used to analyze and
// categorize scalar expressions in loops.  It specializes in recognizing
// general induction variables, representing them with the abstract and opaque
// SCEV class.  Given this analysis, trip counts of loops and other important
// properties can be obtained.
//
// This analysis is primarily useful for induction variable substitution and
// strength reduction.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_ANALYSIS_SCALAREVOLUTION_H
#define LLVM_ANALYSIS_SCALAREVOLUTION_H

#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/Function.h"
#include "llvm/Instructions.h"
#include "llvm/Operator.h"
#include "llvm/Pass.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/ConstantRange.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/Support/ValueHandle.h"
#include <map>

namespace llvm {
  class APInt;
  class Constant;
  class ConstantInt;
  class DominatorTree;
  class Type;
  class ScalarEvolution;
  class DataLayout;
  class TargetLibraryInfo;
  class LLVMContext;
  class Loop;
  class LoopInfo;
  class Operator;
  class SCEVUnknown;
  class SCEV;
  template<> struct FoldingSetTrait<SCEV>;

  /// SCEV - This class represents an analyzed expression in the program.  These
  /// are opaque objects that the client is not allowed to do much with
  /// directly.
  ///
  class SCEV : public FoldingSetNode {
    friend struct FoldingSetTrait<SCEV>;

    /// FastID - A reference to an Interned FoldingSetNodeID for this node.
    /// The ScalarEvolution's BumpPtrAllocator holds the data.
    FoldingSetNodeIDRef FastID;

    // The SCEV baseclass this node corresponds to
    const unsigned short SCEVType;

  protected:
    /// SubclassData - This field is initialized to zero and may be used in
    /// subclasses to store miscellaneous information.
    unsigned short SubclassData;

  private:
    SCEV(const SCEV &) LLVM_DELETED_FUNCTION;
    void operator=(const SCEV &) LLVM_DELETED_FUNCTION;

  public:
    /// NoWrapFlags are bitfield indices into SubclassData.
    ///
    /// Add and Mul expressions may have no-unsigned-wrap <NUW> or
    /// no-signed-wrap <NSW> properties, which are derived from the IR
    /// operator. NSW is a misnomer that we use to mean no signed overflow or
    /// underflow.
    ///
    /// AddRec expression may have a no-self-wraparound <NW> property if the
    /// result can never reach the start value. This property is independent of
    /// the actual start value and step direction. Self-wraparound is defined
    /// purely in terms of the recurrence's loop, step size, and
    /// bitwidth. Formally, a recurrence with no self-wraparound satisfies:
    /// abs(step) * max-iteration(loop) <= unsigned-max(bitwidth).
    ///
    /// Note that NUW and NSW are also valid properties of a recurrence, and
    /// either implies NW. For convenience, NW will be set for a recurrence
    /// whenever either NUW or NSW are set.
    enum NoWrapFlags { FlagAnyWrap = 0,          // No guarantee.
                       FlagNW      = (1 << 0),   // No self-wrap.
                       FlagNUW     = (1 << 1),   // No unsigned wrap.
                       FlagNSW     = (1 << 2),   // No signed wrap.
                       NoWrapMask  = (1 << 3) -1 };

    explicit SCEV(const FoldingSetNodeIDRef ID, unsigned SCEVTy) :
      FastID(ID), SCEVType(SCEVTy), SubclassData(0) {}

    unsigned getSCEVType() const { return SCEVType; }

    /// getType - Return the LLVM type of this SCEV expression.
    ///
    Type *getType() const;

    /// isZero - Return true if the expression is a constant zero.
    ///
    bool isZero() const;

    /// isOne - Return true if the expression is a constant one.
    ///
    bool isOne() const;

    /// isAllOnesValue - Return true if the expression is a constant
    /// all-ones value.
    ///
    bool isAllOnesValue() const;

    /// isNonConstantNegative - Return true if the specified scev is negated,
    /// but not a constant.
    bool isNonConstantNegative() const;

    /// print - Print out the internal representation of this scalar to the
    /// specified stream.  This should really only be used for debugging
    /// purposes.
    void print(raw_ostream &OS) const;

    /// dump - This method is used for debugging.
    ///
    void dump() const;
  };

  // Specialize FoldingSetTrait for SCEV to avoid needing to compute
  // temporary FoldingSetNodeID values.
  template<> struct FoldingSetTrait<SCEV> : DefaultFoldingSetTrait<SCEV> {
    static void Profile(const SCEV &X, FoldingSetNodeID& ID) {
      ID = X.FastID;
    }
    static bool Equals(const SCEV &X, const FoldingSetNodeID &ID,
                       unsigned IDHash, FoldingSetNodeID &TempID) {
      return ID == X.FastID;
    }
    static unsigned ComputeHash(const SCEV &X, FoldingSetNodeID &TempID) {
      return X.FastID.ComputeHash();
    }
  };

  inline raw_ostream &operator<<(raw_ostream &OS, const SCEV &S) {
    S.print(OS);
    return OS;
  }

  /// SCEVCouldNotCompute - An object of this class is returned by queries that
  /// could not be answered.  For example, if you ask for the number of
  /// iterations of a linked-list traversal loop, you will get one of these.
  /// None of the standard SCEV operations are valid on this class, it is just a
  /// marker.
  struct SCEVCouldNotCompute : public SCEV {
    SCEVCouldNotCompute();

    /// Methods for support type inquiry through isa, cast, and dyn_cast:
    static bool classof(const SCEV *S);
  };

  /// ScalarEvolution - This class is the main scalar evolution driver.  Because
  /// client code (intentionally) can't do much with the SCEV objects directly,
  /// they must ask this class for services.
  ///
  class ScalarEvolution : public FunctionPass {
  public:
    /// LoopDisposition - An enum describing the relationship between a
    /// SCEV and a loop.
    enum LoopDisposition {
      LoopVariant,    ///< The SCEV is loop-variant (unknown).
      LoopInvariant,  ///< The SCEV is loop-invariant.
      LoopComputable  ///< The SCEV varies predictably with the loop.
    };

    /// BlockDisposition - An enum describing the relationship between a
    /// SCEV and a basic block.
    enum BlockDisposition {
      DoesNotDominateBlock,  ///< The SCEV does not dominate the block.
      DominatesBlock,        ///< The SCEV dominates the block.
      ProperlyDominatesBlock ///< The SCEV properly dominates the block.
    };

    /// Convenient NoWrapFlags manipulation that hides enum casts and is
    /// visible in the ScalarEvolution name space.
    static SCEV::NoWrapFlags maskFlags(SCEV::NoWrapFlags Flags, int Mask) {
      return (SCEV::NoWrapFlags)(Flags & Mask);
    }
    static SCEV::NoWrapFlags setFlags(SCEV::NoWrapFlags Flags,
                                      SCEV::NoWrapFlags OnFlags) {
      return (SCEV::NoWrapFlags)(Flags | OnFlags);
    }
    static SCEV::NoWrapFlags clearFlags(SCEV::NoWrapFlags Flags,
                                        SCEV::NoWrapFlags OffFlags) {
      return (SCEV::NoWrapFlags)(Flags & ~OffFlags);
    }

  private:
    /// SCEVCallbackVH - A CallbackVH to arrange for ScalarEvolution to be
    /// notified whenever a Value is deleted.
    class SCEVCallbackVH : public CallbackVH {
      ScalarEvolution *SE;
      virtual void deleted();
      virtual void allUsesReplacedWith(Value *New);
    public:
      SCEVCallbackVH(Value *V, ScalarEvolution *SE = 0);
    };

    friend class SCEVCallbackVH;
    friend class SCEVExpander;
    friend class SCEVUnknown;

    /// F - The function we are analyzing.
    ///
    Function *F;

    /// LI - The loop information for the function we are currently analyzing.
    ///
    LoopInfo *LI;

    /// TD - The target data information for the target we are targeting.
    ///
    DataLayout *TD;

    /// TLI - The target library information for the target we are targeting.
    ///
    TargetLibraryInfo *TLI;

    /// DT - The dominator tree.
    ///
    DominatorTree *DT;

    /// CouldNotCompute - This SCEV is used to represent unknown trip
    /// counts and things.
    SCEVCouldNotCompute CouldNotCompute;

    /// ValueExprMapType - The typedef for ValueExprMap.
    ///
    typedef DenseMap<SCEVCallbackVH, const SCEV *, DenseMapInfo<Value *> >
      ValueExprMapType;

    /// ValueExprMap - This is a cache of the values we have analyzed so far.
    ///
    ValueExprMapType ValueExprMap;

    /// Mark predicate values currently being processed by isImpliedCond.
    DenseSet<Value*> PendingLoopPredicates;

    /// ExitLimit - Information about the number of loop iterations for
    /// which a loop exit's branch condition evaluates to the not-taken path.
    /// This is a temporary pair of exact and max expressions that are
    /// eventually summarized in ExitNotTakenInfo and BackedgeTakenInfo.
    struct ExitLimit {
      const SCEV *Exact;
      const SCEV *Max;

      /*implicit*/ ExitLimit(const SCEV *E) : Exact(E), Max(E) {}

      ExitLimit(const SCEV *E, const SCEV *M) : Exact(E), Max(M) {}

      /// hasAnyInfo - Test whether this ExitLimit contains any computed
      /// information, or whether it's all SCEVCouldNotCompute values.
      bool hasAnyInfo() const {
        return !isa<SCEVCouldNotCompute>(Exact) ||
          !isa<SCEVCouldNotCompute>(Max);
      }
    };

    /// ExitNotTakenInfo - Information about the number of times a particular
    /// loop exit may be reached before exiting the loop.
    struct ExitNotTakenInfo {
      AssertingVH<BasicBlock> ExitingBlock;
      const SCEV *ExactNotTaken;
      PointerIntPair<ExitNotTakenInfo*, 1> NextExit;

      ExitNotTakenInfo() : ExitingBlock(0), ExactNotTaken(0) {}

      /// isCompleteList - Return true if all loop exits are computable.
      bool isCompleteList() const {
        return NextExit.getInt() == 0;
      }

      void setIncomplete() { NextExit.setInt(1); }

      /// getNextExit - Return a pointer to the next exit's not-taken info.
      ExitNotTakenInfo *getNextExit() const {
        return NextExit.getPointer();
      }

      void setNextExit(ExitNotTakenInfo *ENT) { NextExit.setPointer(ENT); }
    };

    /// BackedgeTakenInfo - Information about the backedge-taken count
    /// of a loop. This currently includes an exact count and a maximum count.
    ///
    class BackedgeTakenInfo {
      /// ExitNotTaken - A list of computable exits and their not-taken counts.
      /// Loops almost never have more than one computable exit.
      ExitNotTakenInfo ExitNotTaken;

      /// Max - An expression indicating the least maximum backedge-taken
      /// count of the loop that is known, or a SCEVCouldNotCompute.
      const SCEV *Max;

    public:
      BackedgeTakenInfo() : Max(0) {}

      /// Initialize BackedgeTakenInfo from a list of exact exit counts.
      BackedgeTakenInfo(
        SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
        bool Complete, const SCEV *MaxCount);

      /// hasAnyInfo - Test whether this BackedgeTakenInfo contains any
      /// computed information, or whether it's all SCEVCouldNotCompute
      /// values.
      bool hasAnyInfo() const {
        return ExitNotTaken.ExitingBlock || !isa<SCEVCouldNotCompute>(Max);
      }

      /// getExact - Return an expression indicating the exact backedge-taken
      /// count of the loop if it is known, or SCEVCouldNotCompute
      /// otherwise. This is the number of times the loop header can be
      /// guaranteed to execute, minus one.
      const SCEV *getExact(ScalarEvolution *SE) const;

      /// getExact - Return the number of times this loop exit may fall through
      /// to the back edge, or SCEVCouldNotCompute. The loop is guaranteed not
      /// to exit via this block before this number of iterations, but may exit
      /// via another block.
      const SCEV *getExact(BasicBlock *ExitingBlock, ScalarEvolution *SE) const;

      /// getMax - Get the max backedge taken count for the loop.
      const SCEV *getMax(ScalarEvolution *SE) const;

      /// clear - Invalidate this result and free associated memory.
      void clear();
    };

    /// BackedgeTakenCounts - Cache the backedge-taken count of the loops for
    /// this function as they are computed.
    DenseMap<const Loop*, BackedgeTakenInfo> BackedgeTakenCounts;

    /// ConstantEvolutionLoopExitValue - This map contains entries for all of
    /// the PHI instructions that we attempt to compute constant evolutions for.
    /// This allows us to avoid potentially expensive recomputation of these
    /// properties.  An instruction maps to null if we are unable to compute its
    /// exit value.
    DenseMap<PHINode*, Constant*> ConstantEvolutionLoopExitValue;

    /// ValuesAtScopes - This map contains entries for all the expressions
    /// that we attempt to compute getSCEVAtScope information for, which can
    /// be expensive in extreme cases.
    DenseMap<const SCEV *,
             std::map<const Loop *, const SCEV *> > ValuesAtScopes;

    /// LoopDispositions - Memoized computeLoopDisposition results.
    DenseMap<const SCEV *,
             std::map<const Loop *, LoopDisposition> > LoopDispositions;

    /// computeLoopDisposition - Compute a LoopDisposition value.
    LoopDisposition computeLoopDisposition(const SCEV *S, const Loop *L);

    /// BlockDispositions - Memoized computeBlockDisposition results.
    DenseMap<const SCEV *,
             std::map<const BasicBlock *, BlockDisposition> > BlockDispositions;

    /// computeBlockDisposition - Compute a BlockDisposition value.
    BlockDisposition computeBlockDisposition(const SCEV *S, const BasicBlock *BB);

    /// UnsignedRanges - Memoized results from getUnsignedRange
    DenseMap<const SCEV *, ConstantRange> UnsignedRanges;

    /// SignedRanges - Memoized results from getSignedRange
    DenseMap<const SCEV *, ConstantRange> SignedRanges;

    /// setUnsignedRange - Set the memoized unsigned range for the given SCEV.
    const ConstantRange &setUnsignedRange(const SCEV *S,
                                          const ConstantRange &CR) {
      std::pair<DenseMap<const SCEV *, ConstantRange>::iterator, bool> Pair =
        UnsignedRanges.insert(std::make_pair(S, CR));
      if (!Pair.second)
        Pair.first->second = CR;
      return Pair.first->second;
    }

    /// setUnsignedRange - Set the memoized signed range for the given SCEV.
    const ConstantRange &setSignedRange(const SCEV *S,
                                        const ConstantRange &CR) {
      std::pair<DenseMap<const SCEV *, ConstantRange>::iterator, bool> Pair =
        SignedRanges.insert(std::make_pair(S, CR));
      if (!Pair.second)
        Pair.first->second = CR;
      return Pair.first->second;
    }

    /// createSCEV - We know that there is no SCEV for the specified value.
    /// Analyze the expression.
    const SCEV *createSCEV(Value *V);

    /// createNodeForPHI - Provide the special handling we need to analyze PHI
    /// SCEVs.
    const SCEV *createNodeForPHI(PHINode *PN);

    /// createNodeForGEP - Provide the special handling we need to analyze GEP
    /// SCEVs.
    const SCEV *createNodeForGEP(GEPOperator *GEP);

    /// computeSCEVAtScope - Implementation code for getSCEVAtScope; called
    /// at most once for each SCEV+Loop pair.
    ///
    const SCEV *computeSCEVAtScope(const SCEV *S, const Loop *L);

    /// ForgetSymbolicValue - This looks up computed SCEV values for all
    /// instructions that depend on the given instruction and removes them from
    /// the ValueExprMap map if they reference SymName. This is used during PHI
    /// resolution.
    void ForgetSymbolicName(Instruction *I, const SCEV *SymName);

    /// getBECount - Subtract the end and start values and divide by the step,
    /// rounding up, to get the number of times the backedge is executed. Return
    /// CouldNotCompute if an intermediate computation overflows.
    const SCEV *getBECount(const SCEV *Start,
                           const SCEV *End,
                           const SCEV *Step,
                           bool NoWrap);

    /// getBackedgeTakenInfo - Return the BackedgeTakenInfo for the given
    /// loop, lazily computing new values if the loop hasn't been analyzed
    /// yet.
    const BackedgeTakenInfo &getBackedgeTakenInfo(const Loop *L);

    /// ComputeBackedgeTakenCount - Compute the number of times the specified
    /// loop will iterate.
    BackedgeTakenInfo ComputeBackedgeTakenCount(const Loop *L);

    /// ComputeExitLimit - Compute the number of times the backedge of the
    /// specified loop will execute if it exits via the specified block.
    ExitLimit ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock);

    /// ComputeExitLimitFromCond - Compute the number of times the backedge of
    /// the specified loop will execute if its exit condition were a conditional
    /// branch of ExitCond, TBB, and FBB.
    ExitLimit ComputeExitLimitFromCond(const Loop *L,
                                       Value *ExitCond,
                                       BasicBlock *TBB,
                                       BasicBlock *FBB);

    /// ComputeExitLimitFromICmp - Compute the number of times the backedge of
    /// the specified loop will execute if its exit condition were a conditional
    /// branch of the ICmpInst ExitCond, TBB, and FBB.
    ExitLimit ComputeExitLimitFromICmp(const Loop *L,
                                       ICmpInst *ExitCond,
                                       BasicBlock *TBB,
                                       BasicBlock *FBB);

    /// ComputeLoadConstantCompareExitLimit - Given an exit condition
    /// of 'icmp op load X, cst', try to see if we can compute the
    /// backedge-taken count.
    ExitLimit ComputeLoadConstantCompareExitLimit(LoadInst *LI,
                                                  Constant *RHS,
                                                  const Loop *L,
                                                  ICmpInst::Predicate p);

    /// ComputeExitCountExhaustively - If the loop is known to execute a
    /// constant number of times (the condition evolves only from constants),
    /// try to evaluate a few iterations of the loop until we get the exit
    /// condition gets a value of ExitWhen (true or false).  If we cannot
    /// evaluate the exit count of the loop, return CouldNotCompute.
    const SCEV *ComputeExitCountExhaustively(const Loop *L,
                                             Value *Cond,
                                             bool ExitWhen);

    /// HowFarToZero - Return the number of times an exit condition comparing
    /// the specified value to zero will execute.  If not computable, return
    /// CouldNotCompute.
    ExitLimit HowFarToZero(const SCEV *V, const Loop *L);

    /// HowFarToNonZero - Return the number of times an exit condition checking
    /// the specified value for nonzero will execute.  If not computable, return
    /// CouldNotCompute.
    ExitLimit HowFarToNonZero(const SCEV *V, const Loop *L);

    /// HowManyLessThans - Return the number of times an exit condition
    /// containing the specified less-than comparison will execute.  If not
    /// computable, return CouldNotCompute. isSigned specifies whether the
    /// less-than is signed.
    ExitLimit HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
                               const Loop *L, bool isSigned);

    /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
    /// (which may not be an immediate predecessor) which has exactly one
    /// successor from which BB is reachable, or null if no such block is
    /// found.
    std::pair<BasicBlock *, BasicBlock *>
    getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB);

    /// isImpliedCond - Test whether the condition described by Pred, LHS, and
    /// RHS is true whenever the given FoundCondValue value evaluates to true.
    bool isImpliedCond(ICmpInst::Predicate Pred,
                       const SCEV *LHS, const SCEV *RHS,
                       Value *FoundCondValue,
                       bool Inverse);

    /// isImpliedCondOperands - Test whether the condition described by Pred,
    /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
    /// and FoundRHS is true.
    bool isImpliedCondOperands(ICmpInst::Predicate Pred,
                               const SCEV *LHS, const SCEV *RHS,
                               const SCEV *FoundLHS, const SCEV *FoundRHS);

    /// isImpliedCondOperandsHelper - Test whether the condition described by
    /// Pred, LHS, and RHS is true whenever the condition described by Pred,
    /// FoundLHS, and FoundRHS is true.
    bool isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
                                     const SCEV *LHS, const SCEV *RHS,
                                     const SCEV *FoundLHS,
                                     const SCEV *FoundRHS);

    /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
    /// in the header of its containing loop, we know the loop executes a
    /// constant number of times, and the PHI node is just a recurrence
    /// involving constants, fold it.
    Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs,
                                                const Loop *L);

    /// isKnownPredicateWithRanges - Test if the given expression is known to
    /// satisfy the condition described by Pred and the known constant ranges
    /// of LHS and RHS.
    ///
    bool isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
                                    const SCEV *LHS, const SCEV *RHS);

    /// forgetMemoizedResults - Drop memoized information computed for S.
    void forgetMemoizedResults(const SCEV *S);

  public:
    static char ID; // Pass identification, replacement for typeid
    ScalarEvolution();

    LLVMContext &getContext() const { return F->getContext(); }

    /// isSCEVable - Test if values of the given type are analyzable within
    /// the SCEV framework. This primarily includes integer types, and it
    /// can optionally include pointer types if the ScalarEvolution class
    /// has access to target-specific information.
    bool isSCEVable(Type *Ty) const;

    /// getTypeSizeInBits - Return the size in bits of the specified type,
    /// for which isSCEVable must return true.
    uint64_t getTypeSizeInBits(Type *Ty) const;

    /// getEffectiveSCEVType - Return a type with the same bitwidth as
    /// the given type and which represents how SCEV will treat the given
    /// type, for which isSCEVable must return true. For pointer types,
    /// this is the pointer-sized integer type.
    Type *getEffectiveSCEVType(Type *Ty) const;

    /// getSCEV - Return a SCEV expression for the full generality of the
    /// specified expression.
    const SCEV *getSCEV(Value *V);

    const SCEV *getConstant(ConstantInt *V);
    const SCEV *getConstant(const APInt& Val);
    const SCEV *getConstant(Type *Ty, uint64_t V, bool isSigned = false);
    const SCEV *getTruncateExpr(const SCEV *Op, Type *Ty);
    const SCEV *getZeroExtendExpr(const SCEV *Op, Type *Ty);
    const SCEV *getSignExtendExpr(const SCEV *Op, Type *Ty);
    const SCEV *getAnyExtendExpr(const SCEV *Op, Type *Ty);
    const SCEV *getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
                           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
    const SCEV *getAddExpr(const SCEV *LHS, const SCEV *RHS,
                           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
      SmallVector<const SCEV *, 2> Ops;
      Ops.push_back(LHS);
      Ops.push_back(RHS);
      return getAddExpr(Ops, Flags);
    }
    const SCEV *getAddExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
                           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
      SmallVector<const SCEV *, 3> Ops;
      Ops.push_back(Op0);
      Ops.push_back(Op1);
      Ops.push_back(Op2);
      return getAddExpr(Ops, Flags);
    }
    const SCEV *getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
                           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
    const SCEV *getMulExpr(const SCEV *LHS, const SCEV *RHS,
                           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap)
    {
      SmallVector<const SCEV *, 2> Ops;
      Ops.push_back(LHS);
      Ops.push_back(RHS);
      return getMulExpr(Ops, Flags);
    }
    const SCEV *getMulExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
                           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
      SmallVector<const SCEV *, 3> Ops;
      Ops.push_back(Op0);
      Ops.push_back(Op1);
      Ops.push_back(Op2);
      return getMulExpr(Ops, Flags);
    }
    const SCEV *getUDivExpr(const SCEV *LHS, const SCEV *RHS);
    const SCEV *getAddRecExpr(const SCEV *Start, const SCEV *Step,
                              const Loop *L, SCEV::NoWrapFlags Flags);
    const SCEV *getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
                              const Loop *L, SCEV::NoWrapFlags Flags);
    const SCEV *getAddRecExpr(const SmallVectorImpl<const SCEV *> &Operands,
                              const Loop *L, SCEV::NoWrapFlags Flags) {
      SmallVector<const SCEV *, 4> NewOp(Operands.begin(), Operands.end());
      return getAddRecExpr(NewOp, L, Flags);
    }
    const SCEV *getSMaxExpr(const SCEV *LHS, const SCEV *RHS);
    const SCEV *getSMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
    const SCEV *getUMaxExpr(const SCEV *LHS, const SCEV *RHS);
    const SCEV *getUMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
    const SCEV *getSMinExpr(const SCEV *LHS, const SCEV *RHS);
    const SCEV *getUMinExpr(const SCEV *LHS, const SCEV *RHS);
    const SCEV *getUnknown(Value *V);
    const SCEV *getCouldNotCompute();

    /// getSizeOfExpr - Return an expression for sizeof on the given type.
    ///
    const SCEV *getSizeOfExpr(Type *AllocTy);

    /// getAlignOfExpr - Return an expression for alignof on the given type.
    ///
    const SCEV *getAlignOfExpr(Type *AllocTy);

    /// getOffsetOfExpr - Return an expression for offsetof on the given field.
    ///
    const SCEV *getOffsetOfExpr(StructType *STy, unsigned FieldNo);

    /// getOffsetOfExpr - Return an expression for offsetof on the given field.
    ///
    const SCEV *getOffsetOfExpr(Type *CTy, Constant *FieldNo);

    /// getNegativeSCEV - Return the SCEV object corresponding to -V.
    ///
    const SCEV *getNegativeSCEV(const SCEV *V);

    /// getNotSCEV - Return the SCEV object corresponding to ~V.
    ///
    const SCEV *getNotSCEV(const SCEV *V);

    /// getMinusSCEV - Return LHS-RHS.  Minus is represented in SCEV as A+B*-1.
    const SCEV *getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
                             SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);

    /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion
    /// of the input value to the specified type.  If the type must be
    /// extended, it is zero extended.
    const SCEV *getTruncateOrZeroExtend(const SCEV *V, Type *Ty);

    /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion
    /// of the input value to the specified type.  If the type must be
    /// extended, it is sign extended.
    const SCEV *getTruncateOrSignExtend(const SCEV *V, Type *Ty);

    /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of
    /// the input value to the specified type.  If the type must be extended,
    /// it is zero extended.  The conversion must not be narrowing.
    const SCEV *getNoopOrZeroExtend(const SCEV *V, Type *Ty);

    /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of
    /// the input value to the specified type.  If the type must be extended,
    /// it is sign extended.  The conversion must not be narrowing.
    const SCEV *getNoopOrSignExtend(const SCEV *V, Type *Ty);

    /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
    /// the input value to the specified type. If the type must be extended,
    /// it is extended with unspecified bits. The conversion must not be
    /// narrowing.
    const SCEV *getNoopOrAnyExtend(const SCEV *V, Type *Ty);

    /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
    /// input value to the specified type.  The conversion must not be
    /// widening.
    const SCEV *getTruncateOrNoop(const SCEV *V, Type *Ty);

    /// getUMaxFromMismatchedTypes - Promote the operands to the wider of
    /// the types using zero-extension, and then perform a umax operation
    /// with them.
    const SCEV *getUMaxFromMismatchedTypes(const SCEV *LHS,
                                           const SCEV *RHS);

    /// getUMinFromMismatchedTypes - Promote the operands to the wider of
    /// the types using zero-extension, and then perform a umin operation
    /// with them.
    const SCEV *getUMinFromMismatchedTypes(const SCEV *LHS,
                                           const SCEV *RHS);

    /// getPointerBase - Transitively follow the chain of pointer-type operands
    /// until reaching a SCEV that does not have a single pointer operand. This
    /// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
    /// but corner cases do exist.
    const SCEV *getPointerBase(const SCEV *V);

    /// getSCEVAtScope - Return a SCEV expression for the specified value
    /// at the specified scope in the program.  The L value specifies a loop
    /// nest to evaluate the expression at, where null is the top-level or a
    /// specified loop is immediately inside of the loop.
    ///
    /// This method can be used to compute the exit value for a variable defined
    /// in a loop by querying what the value will hold in the parent loop.
    ///
    /// In the case that a relevant loop exit value cannot be computed, the
    /// original value V is returned.
    const SCEV *getSCEVAtScope(const SCEV *S, const Loop *L);

    /// getSCEVAtScope - This is a convenience function which does
    /// getSCEVAtScope(getSCEV(V), L).
    const SCEV *getSCEVAtScope(Value *V, const Loop *L);

    /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
    /// by a conditional between LHS and RHS.  This is used to help avoid max
    /// expressions in loop trip counts, and to eliminate casts.
    bool isLoopEntryGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
                                  const SCEV *LHS, const SCEV *RHS);

    /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
    /// protected by a conditional between LHS and RHS.  This is used to
    /// to eliminate casts.
    bool isLoopBackedgeGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
                                     const SCEV *LHS, const SCEV *RHS);

    /// getSmallConstantTripCount - Returns the maximum trip count of this loop
    /// as a normal unsigned value. Returns 0 if the trip count is unknown or
    /// not constant. This "trip count" assumes that control exits via
    /// ExitingBlock. More precisely, it is the number of times that control may
    /// reach ExitingBlock before taking the branch. For loops with multiple
    /// exits, it may not be the number times that the loop header executes if
    /// the loop exits prematurely via another branch.
    unsigned getSmallConstantTripCount(Loop *L, BasicBlock *ExitingBlock);

    /// getSmallConstantTripMultiple - Returns the largest constant divisor of
    /// the trip count of this loop as a normal unsigned value, if
    /// possible. This means that the actual trip count is always a multiple of
    /// the returned value (don't forget the trip count could very well be zero
    /// as well!). As explained in the comments for getSmallConstantTripCount,
    /// this assumes that control exits the loop via ExitingBlock.
    unsigned getSmallConstantTripMultiple(Loop *L, BasicBlock *ExitingBlock);

    // getExitCount - Get the expression for the number of loop iterations for
    // which this loop is guaranteed not to exit via ExitingBlock. Otherwise
    // return SCEVCouldNotCompute.
    const SCEV *getExitCount(Loop *L, BasicBlock *ExitingBlock);

    /// getBackedgeTakenCount - If the specified loop has a predictable
    /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
    /// object. The backedge-taken count is the number of times the loop header
    /// will be branched to from within the loop. This is one less than the
    /// trip count of the loop, since it doesn't count the first iteration,
    /// when the header is branched to from outside the loop.
    ///
    /// Note that it is not valid to call this method on a loop without a
    /// loop-invariant backedge-taken count (see
    /// hasLoopInvariantBackedgeTakenCount).
    ///
    const SCEV *getBackedgeTakenCount(const Loop *L);

    /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
    /// return the least SCEV value that is known never to be less than the
    /// actual backedge taken count.
    const SCEV *getMaxBackedgeTakenCount(const Loop *L);

    /// hasLoopInvariantBackedgeTakenCount - Return true if the specified loop
    /// has an analyzable loop-invariant backedge-taken count.
    bool hasLoopInvariantBackedgeTakenCount(const Loop *L);

    /// forgetLoop - This method should be called by the client when it has
    /// changed a loop in a way that may effect ScalarEvolution's ability to
    /// compute a trip count, or if the loop is deleted.
    void forgetLoop(const Loop *L);

    /// forgetValue - This method should be called by the client when it has
    /// changed a value in a way that may effect its value, or which may
    /// disconnect it from a def-use chain linking it to a loop.
    void forgetValue(Value *V);

    /// GetMinTrailingZeros - Determine the minimum number of zero bits that S
    /// is guaranteed to end in (at every loop iteration).  It is, at the same
    /// time, the minimum number of times S is divisible by 2.  For example,
    /// given {4,+,8} it returns 2.  If S is guaranteed to be 0, it returns the
    /// bitwidth of S.
    uint32_t GetMinTrailingZeros(const SCEV *S);

    /// getUnsignedRange - Determine the unsigned range for a particular SCEV.
    ///
    ConstantRange getUnsignedRange(const SCEV *S);

    /// getSignedRange - Determine the signed range for a particular SCEV.
    ///
    ConstantRange getSignedRange(const SCEV *S);

    /// isKnownNegative - Test if the given expression is known to be negative.
    ///
    bool isKnownNegative(const SCEV *S);

    /// isKnownPositive - Test if the given expression is known to be positive.
    ///
    bool isKnownPositive(const SCEV *S);

    /// isKnownNonNegative - Test if the given expression is known to be
    /// non-negative.
    ///
    bool isKnownNonNegative(const SCEV *S);

    /// isKnownNonPositive - Test if the given expression is known to be
    /// non-positive.
    ///
    bool isKnownNonPositive(const SCEV *S);

    /// isKnownNonZero - Test if the given expression is known to be
    /// non-zero.
    ///
    bool isKnownNonZero(const SCEV *S);

    /// isKnownPredicate - Test if the given expression is known to satisfy
    /// the condition described by Pred, LHS, and RHS.
    ///
    bool isKnownPredicate(ICmpInst::Predicate Pred,
                          const SCEV *LHS, const SCEV *RHS);

    /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
    /// predicate Pred. Return true iff any changes were made. If the
    /// operands are provably equal or inequal, LHS and RHS are set to
    /// the same value and Pred is set to either ICMP_EQ or ICMP_NE.
    ///
    bool SimplifyICmpOperands(ICmpInst::Predicate &Pred,
                              const SCEV *&LHS,
                              const SCEV *&RHS,
                              unsigned Depth = 0);

    /// getLoopDisposition - Return the "disposition" of the given SCEV with
    /// respect to the given loop.
    LoopDisposition getLoopDisposition(const SCEV *S, const Loop *L);

    /// isLoopInvariant - Return true if the value of the given SCEV is
    /// unchanging in the specified loop.
    bool isLoopInvariant(const SCEV *S, const Loop *L);

    /// hasComputableLoopEvolution - Return true if the given SCEV changes value
    /// in a known way in the specified loop.  This property being true implies
    /// that the value is variant in the loop AND that we can emit an expression
    /// to compute the value of the expression at any particular loop iteration.
    bool hasComputableLoopEvolution(const SCEV *S, const Loop *L);

    /// getLoopDisposition - Return the "disposition" of the given SCEV with
    /// respect to the given block.
    BlockDisposition getBlockDisposition(const SCEV *S, const BasicBlock *BB);

    /// dominates - Return true if elements that makes up the given SCEV
    /// dominate the specified basic block.
    bool dominates(const SCEV *S, const BasicBlock *BB);

    /// properlyDominates - Return true if elements that makes up the given SCEV
    /// properly dominate the specified basic block.
    bool properlyDominates(const SCEV *S, const BasicBlock *BB);

    /// hasOperand - Test whether the given SCEV has Op as a direct or
    /// indirect operand.
    bool hasOperand(const SCEV *S, const SCEV *Op) const;

    virtual bool runOnFunction(Function &F);
    virtual void releaseMemory();
    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
    virtual void print(raw_ostream &OS, const Module* = 0) const;
    virtual void verifyAnalysis() const;

  private:
    FoldingSet<SCEV> UniqueSCEVs;
    BumpPtrAllocator SCEVAllocator;

    /// FirstUnknown - The head of a linked list of all SCEVUnknown
    /// values that have been allocated. This is used by releaseMemory
    /// to locate them all and call their destructors.
    SCEVUnknown *FirstUnknown;
  };
}

#endif