summaryrefslogtreecommitdiff
path: root/include/llvm/CodeGen/MachineInstr.h
blob: de553a776e365e534c725846512dad49fdc964e2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
//===-- llvm/CodeGen/MachineInstr.h - MachineInstr class --------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the declaration of the MachineInstr class, which is the
// basic representation for all target dependent machine instructions used by
// the back end.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_CODEGEN_MACHINEINSTR_H
#define LLVM_CODEGEN_MACHINEINSTR_H

#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/ilist.h"
#include "llvm/ADT/ilist_node.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/InlineAsm.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/Support/DebugLoc.h"
#include "llvm/Target/TargetOpcodes.h"
#include <vector>

namespace llvm {

template <typename T> class SmallVectorImpl;
class AliasAnalysis;
class TargetInstrInfo;
class TargetRegisterClass;
class TargetRegisterInfo;
class MachineFunction;
class MachineMemOperand;

//===----------------------------------------------------------------------===//
/// MachineInstr - Representation of each machine instruction.
///
class MachineInstr : public ilist_node<MachineInstr> {
public:
  typedef MachineMemOperand **mmo_iterator;

  /// Flags to specify different kinds of comments to output in
  /// assembly code.  These flags carry semantic information not
  /// otherwise easily derivable from the IR text.
  ///
  enum CommentFlag {
    ReloadReuse = 0x1
  };

  enum MIFlag {
    NoFlags      = 0,
    FrameSetup   = 1 << 0,              // Instruction is used as a part of
                                        // function frame setup code.
    BundledPred  = 1 << 1,              // Instruction has bundled predecessors.
    BundledSucc  = 1 << 2               // Instruction has bundled successors.
  };
private:
  const MCInstrDesc *MCID;              // Instruction descriptor.

  uint8_t Flags;                        // Various bits of additional
                                        // information about machine
                                        // instruction.

  uint8_t AsmPrinterFlags;              // Various bits of information used by
                                        // the AsmPrinter to emit helpful
                                        // comments.  This is *not* semantic
                                        // information.  Do not use this for
                                        // anything other than to convey comment
                                        // information to AsmPrinter.

  uint16_t NumMemRefs;                  // information on memory references
  mmo_iterator MemRefs;

  std::vector<MachineOperand> Operands; // the operands
  MachineBasicBlock *Parent;            // Pointer to the owning basic block.
  DebugLoc debugLoc;                    // Source line information.

  MachineInstr(const MachineInstr&) LLVM_DELETED_FUNCTION;
  void operator=(const MachineInstr&) LLVM_DELETED_FUNCTION;

  // Intrusive list support
  friend struct ilist_traits<MachineInstr>;
  friend struct ilist_traits<MachineBasicBlock>;
  void setParent(MachineBasicBlock *P) { Parent = P; }

  /// MachineInstr ctor - This constructor creates a copy of the given
  /// MachineInstr in the given MachineFunction.
  MachineInstr(MachineFunction &, const MachineInstr &);

  /// MachineInstr ctor - This constructor create a MachineInstr and add the
  /// implicit operands.  It reserves space for number of operands specified by
  /// MCInstrDesc.  An explicit DebugLoc is supplied.
  MachineInstr(MachineFunction&, const MCInstrDesc &MCID,
               const DebugLoc dl, bool NoImp = false);

  ~MachineInstr();

  // MachineInstrs are pool-allocated and owned by MachineFunction.
  friend class MachineFunction;

public:
  const MachineBasicBlock* getParent() const { return Parent; }
  MachineBasicBlock* getParent() { return Parent; }

  /// getAsmPrinterFlags - Return the asm printer flags bitvector.
  ///
  uint8_t getAsmPrinterFlags() const { return AsmPrinterFlags; }

  /// clearAsmPrinterFlags - clear the AsmPrinter bitvector
  ///
  void clearAsmPrinterFlags() { AsmPrinterFlags = 0; }

  /// getAsmPrinterFlag - Return whether an AsmPrinter flag is set.
  ///
  bool getAsmPrinterFlag(CommentFlag Flag) const {
    return AsmPrinterFlags & Flag;
  }

  /// setAsmPrinterFlag - Set a flag for the AsmPrinter.
  ///
  void setAsmPrinterFlag(CommentFlag Flag) {
    AsmPrinterFlags |= (uint8_t)Flag;
  }

  /// clearAsmPrinterFlag - clear specific AsmPrinter flags
  ///
  void clearAsmPrinterFlag(CommentFlag Flag) {
    AsmPrinterFlags &= ~Flag;
  }

  /// getFlags - Return the MI flags bitvector.
  uint8_t getFlags() const {
    return Flags;
  }

  /// getFlag - Return whether an MI flag is set.
  bool getFlag(MIFlag Flag) const {
    return Flags & Flag;
  }

  /// setFlag - Set a MI flag.
  void setFlag(MIFlag Flag) {
    Flags |= (uint8_t)Flag;
  }

  void setFlags(unsigned flags) {
    // Filter out the automatically maintained flags.
    unsigned Mask = BundledPred | BundledSucc;
    Flags = (Flags & Mask) | (flags & ~Mask);
  }

  /// clearFlag - Clear a MI flag.
  void clearFlag(MIFlag Flag) {
    Flags &= ~((uint8_t)Flag);
  }

  /// isInsideBundle - Return true if MI is in a bundle (but not the first MI
  /// in a bundle).
  ///
  /// A bundle looks like this before it's finalized:
  ///   ----------------
  ///   |      MI      |
  ///   ----------------
  ///          |
  ///   ----------------
  ///   |      MI    * |
  ///   ----------------
  ///          |
  ///   ----------------
  ///   |      MI    * |
  ///   ----------------
  /// In this case, the first MI starts a bundle but is not inside a bundle, the
  /// next 2 MIs are considered "inside" the bundle.
  ///
  /// After a bundle is finalized, it looks like this:
  ///   ----------------
  ///   |    Bundle    |
  ///   ----------------
  ///          |
  ///   ----------------
  ///   |      MI    * |
  ///   ----------------
  ///          |
  ///   ----------------
  ///   |      MI    * |
  ///   ----------------
  ///          |
  ///   ----------------
  ///   |      MI    * |
  ///   ----------------
  /// The first instruction has the special opcode "BUNDLE". It's not "inside"
  /// a bundle, but the next three MIs are.
  bool isInsideBundle() const {
    return getFlag(BundledPred);
  }

  /// isBundled - Return true if this instruction part of a bundle. This is true
  /// if either itself or its following instruction is marked "InsideBundle".
  bool isBundled() const {
    return isBundledWithPred() || isBundledWithSucc();
  }

  /// Return true if this instruction is part of a bundle, and it is not the
  /// first instruction in the bundle.
  bool isBundledWithPred() const { return getFlag(BundledPred); }

  /// Return true if this instruction is part of a bundle, and it is not the
  /// last instruction in the bundle.
  bool isBundledWithSucc() const { return getFlag(BundledSucc); }

  /// Bundle this instruction with its predecessor. This can be an unbundled
  /// instruction, or it can be the first instruction in a bundle.
  void bundleWithPred();

  /// Bundle this instruction with its successor. This can be an unbundled
  /// instruction, or it can be the last instruction in a bundle.
  void bundleWithSucc();

  /// Break bundle above this instruction.
  void unbundleFromPred();

  /// Break bundle below this instruction.
  void unbundleFromSucc();

  /// getDebugLoc - Returns the debug location id of this MachineInstr.
  ///
  DebugLoc getDebugLoc() const { return debugLoc; }

  /// emitError - Emit an error referring to the source location of this
  /// instruction. This should only be used for inline assembly that is somehow
  /// impossible to compile. Other errors should have been handled much
  /// earlier.
  ///
  /// If this method returns, the caller should try to recover from the error.
  ///
  void emitError(StringRef Msg) const;

  /// getDesc - Returns the target instruction descriptor of this
  /// MachineInstr.
  const MCInstrDesc &getDesc() const { return *MCID; }

  /// getOpcode - Returns the opcode of this MachineInstr.
  ///
  int getOpcode() const { return MCID->Opcode; }

  /// Access to explicit operands of the instruction.
  ///
  unsigned getNumOperands() const { return (unsigned)Operands.size(); }

  const MachineOperand& getOperand(unsigned i) const {
    assert(i < getNumOperands() && "getOperand() out of range!");
    return Operands[i];
  }
  MachineOperand& getOperand(unsigned i) {
    assert(i < getNumOperands() && "getOperand() out of range!");
    return Operands[i];
  }

  /// getNumExplicitOperands - Returns the number of non-implicit operands.
  ///
  unsigned getNumExplicitOperands() const;

  /// iterator/begin/end - Iterate over all operands of a machine instruction.
  typedef std::vector<MachineOperand>::iterator mop_iterator;
  typedef std::vector<MachineOperand>::const_iterator const_mop_iterator;

  mop_iterator operands_begin() { return Operands.begin(); }
  mop_iterator operands_end() { return Operands.end(); }

  const_mop_iterator operands_begin() const { return Operands.begin(); }
  const_mop_iterator operands_end() const { return Operands.end(); }

  /// Access to memory operands of the instruction
  mmo_iterator memoperands_begin() const { return MemRefs; }
  mmo_iterator memoperands_end() const { return MemRefs + NumMemRefs; }
  bool memoperands_empty() const { return NumMemRefs == 0; }

  /// hasOneMemOperand - Return true if this instruction has exactly one
  /// MachineMemOperand.
  bool hasOneMemOperand() const {
    return NumMemRefs == 1;
  }

  /// API for querying MachineInstr properties. They are the same as MCInstrDesc
  /// queries but they are bundle aware.

  enum QueryType {
    IgnoreBundle,    // Ignore bundles
    AnyInBundle,     // Return true if any instruction in bundle has property
    AllInBundle      // Return true if all instructions in bundle have property
  };

  /// hasProperty - Return true if the instruction (or in the case of a bundle,
  /// the instructions inside the bundle) has the specified property.
  /// The first argument is the property being queried.
  /// The second argument indicates whether the query should look inside
  /// instruction bundles.
  bool hasProperty(unsigned MCFlag, QueryType Type = AnyInBundle) const {
    // Inline the fast path.
    if (Type == IgnoreBundle || !isBundle())
      return getDesc().getFlags() & (1 << MCFlag);

    // If we have a bundle, take the slow path.
    return hasPropertyInBundle(1 << MCFlag, Type);
  }

  /// isVariadic - Return true if this instruction can have a variable number of
  /// operands.  In this case, the variable operands will be after the normal
  /// operands but before the implicit definitions and uses (if any are
  /// present).
  bool isVariadic(QueryType Type = IgnoreBundle) const {
    return hasProperty(MCID::Variadic, Type);
  }

  /// hasOptionalDef - Set if this instruction has an optional definition, e.g.
  /// ARM instructions which can set condition code if 's' bit is set.
  bool hasOptionalDef(QueryType Type = IgnoreBundle) const {
    return hasProperty(MCID::HasOptionalDef, Type);
  }

  /// isPseudo - Return true if this is a pseudo instruction that doesn't
  /// correspond to a real machine instruction.
  ///
  bool isPseudo(QueryType Type = IgnoreBundle) const {
    return hasProperty(MCID::Pseudo, Type);
  }

  bool isReturn(QueryType Type = AnyInBundle) const {
    return hasProperty(MCID::Return, Type);
  }

  bool isCall(QueryType Type = AnyInBundle) const {
    return hasProperty(MCID::Call, Type);
  }

  /// isBarrier - Returns true if the specified instruction stops control flow
  /// from executing the instruction immediately following it.  Examples include
  /// unconditional branches and return instructions.
  bool isBarrier(QueryType Type = AnyInBundle) const {
    return hasProperty(MCID::Barrier, Type);
  }

  /// isTerminator - Returns true if this instruction part of the terminator for
  /// a basic block.  Typically this is things like return and branch
  /// instructions.
  ///
  /// Various passes use this to insert code into the bottom of a basic block,
  /// but before control flow occurs.
  bool isTerminator(QueryType Type = AnyInBundle) const {
    return hasProperty(MCID::Terminator, Type);
  }

  /// isBranch - Returns true if this is a conditional, unconditional, or
  /// indirect branch.  Predicates below can be used to discriminate between
  /// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to
  /// get more information.
  bool isBranch(QueryType Type = AnyInBundle) const {
    return hasProperty(MCID::Branch, Type);
  }

  /// isIndirectBranch - Return true if this is an indirect branch, such as a
  /// branch through a register.
  bool isIndirectBranch(QueryType Type = AnyInBundle) const {
    return hasProperty(MCID::IndirectBranch, Type);
  }

  /// isConditionalBranch - Return true if this is a branch which may fall
  /// through to the next instruction or may transfer control flow to some other
  /// block.  The TargetInstrInfo::AnalyzeBranch method can be used to get more
  /// information about this branch.
  bool isConditionalBranch(QueryType Type = AnyInBundle) const {
    return isBranch(Type) & !isBarrier(Type) & !isIndirectBranch(Type);
  }

  /// isUnconditionalBranch - Return true if this is a branch which always
  /// transfers control flow to some other block.  The
  /// TargetInstrInfo::AnalyzeBranch method can be used to get more information
  /// about this branch.
  bool isUnconditionalBranch(QueryType Type = AnyInBundle) const {
    return isBranch(Type) & isBarrier(Type) & !isIndirectBranch(Type);
  }

  // isPredicable - Return true if this instruction has a predicate operand that
  // controls execution.  It may be set to 'always', or may be set to other
  /// values.   There are various methods in TargetInstrInfo that can be used to
  /// control and modify the predicate in this instruction.
  bool isPredicable(QueryType Type = AllInBundle) const {
    // If it's a bundle than all bundled instructions must be predicable for this
    // to return true.
    return hasProperty(MCID::Predicable, Type);
  }

  /// isCompare - Return true if this instruction is a comparison.
  bool isCompare(QueryType Type = IgnoreBundle) const {
    return hasProperty(MCID::Compare, Type);
  }

  /// isMoveImmediate - Return true if this instruction is a move immediate
  /// (including conditional moves) instruction.
  bool isMoveImmediate(QueryType Type = IgnoreBundle) const {
    return hasProperty(MCID::MoveImm, Type);
  }

  /// isBitcast - Return true if this instruction is a bitcast instruction.
  ///
  bool isBitcast(QueryType Type = IgnoreBundle) const {
    return hasProperty(MCID::Bitcast, Type);
  }

  /// isSelect - Return true if this instruction is a select instruction.
  ///
  bool isSelect(QueryType Type = IgnoreBundle) const {
    return hasProperty(MCID::Select, Type);
  }

  /// isNotDuplicable - Return true if this instruction cannot be safely
  /// duplicated.  For example, if the instruction has a unique labels attached
  /// to it, duplicating it would cause multiple definition errors.
  bool isNotDuplicable(QueryType Type = AnyInBundle) const {
    return hasProperty(MCID::NotDuplicable, Type);
  }

  /// hasDelaySlot - Returns true if the specified instruction has a delay slot
  /// which must be filled by the code generator.
  bool hasDelaySlot(QueryType Type = AnyInBundle) const {
    return hasProperty(MCID::DelaySlot, Type);
  }

  /// canFoldAsLoad - Return true for instructions that can be folded as
  /// memory operands in other instructions. The most common use for this
  /// is instructions that are simple loads from memory that don't modify
  /// the loaded value in any way, but it can also be used for instructions
  /// that can be expressed as constant-pool loads, such as V_SETALLONES
  /// on x86, to allow them to be folded when it is beneficial.
  /// This should only be set on instructions that return a value in their
  /// only virtual register definition.
  bool canFoldAsLoad(QueryType Type = IgnoreBundle) const {
    return hasProperty(MCID::FoldableAsLoad, Type);
  }

  //===--------------------------------------------------------------------===//
  // Side Effect Analysis
  //===--------------------------------------------------------------------===//

  /// mayLoad - Return true if this instruction could possibly read memory.
  /// Instructions with this flag set are not necessarily simple load
  /// instructions, they may load a value and modify it, for example.
  bool mayLoad(QueryType Type = AnyInBundle) const {
    if (isInlineAsm()) {
      unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
      if (ExtraInfo & InlineAsm::Extra_MayLoad)
        return true;
    }
    return hasProperty(MCID::MayLoad, Type);
  }


  /// mayStore - Return true if this instruction could possibly modify memory.
  /// Instructions with this flag set are not necessarily simple store
  /// instructions, they may store a modified value based on their operands, or
  /// may not actually modify anything, for example.
  bool mayStore(QueryType Type = AnyInBundle) const {
    if (isInlineAsm()) {
      unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
      if (ExtraInfo & InlineAsm::Extra_MayStore)
        return true;
    }
    return hasProperty(MCID::MayStore, Type);
  }

  //===--------------------------------------------------------------------===//
  // Flags that indicate whether an instruction can be modified by a method.
  //===--------------------------------------------------------------------===//

  /// isCommutable - Return true if this may be a 2- or 3-address
  /// instruction (of the form "X = op Y, Z, ..."), which produces the same
  /// result if Y and Z are exchanged.  If this flag is set, then the
  /// TargetInstrInfo::commuteInstruction method may be used to hack on the
  /// instruction.
  ///
  /// Note that this flag may be set on instructions that are only commutable
  /// sometimes.  In these cases, the call to commuteInstruction will fail.
  /// Also note that some instructions require non-trivial modification to
  /// commute them.
  bool isCommutable(QueryType Type = IgnoreBundle) const {
    return hasProperty(MCID::Commutable, Type);
  }

  /// isConvertibleTo3Addr - Return true if this is a 2-address instruction
  /// which can be changed into a 3-address instruction if needed.  Doing this
  /// transformation can be profitable in the register allocator, because it
  /// means that the instruction can use a 2-address form if possible, but
  /// degrade into a less efficient form if the source and dest register cannot
  /// be assigned to the same register.  For example, this allows the x86
  /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which
  /// is the same speed as the shift but has bigger code size.
  ///
  /// If this returns true, then the target must implement the
  /// TargetInstrInfo::convertToThreeAddress method for this instruction, which
  /// is allowed to fail if the transformation isn't valid for this specific
  /// instruction (e.g. shl reg, 4 on x86).
  ///
  bool isConvertibleTo3Addr(QueryType Type = IgnoreBundle) const {
    return hasProperty(MCID::ConvertibleTo3Addr, Type);
  }

  /// usesCustomInsertionHook - Return true if this instruction requires
  /// custom insertion support when the DAG scheduler is inserting it into a
  /// machine basic block.  If this is true for the instruction, it basically
  /// means that it is a pseudo instruction used at SelectionDAG time that is
  /// expanded out into magic code by the target when MachineInstrs are formed.
  ///
  /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
  /// is used to insert this into the MachineBasicBlock.
  bool usesCustomInsertionHook(QueryType Type = IgnoreBundle) const {
    return hasProperty(MCID::UsesCustomInserter, Type);
  }

  /// hasPostISelHook - Return true if this instruction requires *adjustment*
  /// after instruction selection by calling a target hook. For example, this
  /// can be used to fill in ARM 's' optional operand depending on whether
  /// the conditional flag register is used.
  bool hasPostISelHook(QueryType Type = IgnoreBundle) const {
    return hasProperty(MCID::HasPostISelHook, Type);
  }

  /// isRematerializable - Returns true if this instruction is a candidate for
  /// remat.  This flag is deprecated, please don't use it anymore.  If this
  /// flag is set, the isReallyTriviallyReMaterializable() method is called to
  /// verify the instruction is really rematable.
  bool isRematerializable(QueryType Type = AllInBundle) const {
    // It's only possible to re-mat a bundle if all bundled instructions are
    // re-materializable.
    return hasProperty(MCID::Rematerializable, Type);
  }

  /// isAsCheapAsAMove - Returns true if this instruction has the same cost (or
  /// less) than a move instruction. This is useful during certain types of
  /// optimizations (e.g., remat during two-address conversion or machine licm)
  /// where we would like to remat or hoist the instruction, but not if it costs
  /// more than moving the instruction into the appropriate register. Note, we
  /// are not marking copies from and to the same register class with this flag.
  bool isAsCheapAsAMove(QueryType Type = AllInBundle) const {
    // Only returns true for a bundle if all bundled instructions are cheap.
    // FIXME: This probably requires a target hook.
    return hasProperty(MCID::CheapAsAMove, Type);
  }

  /// hasExtraSrcRegAllocReq - Returns true if this instruction source operands
  /// have special register allocation requirements that are not captured by the
  /// operand register classes. e.g. ARM::STRD's two source registers must be an
  /// even / odd pair, ARM::STM registers have to be in ascending order.
  /// Post-register allocation passes should not attempt to change allocations
  /// for sources of instructions with this flag.
  bool hasExtraSrcRegAllocReq(QueryType Type = AnyInBundle) const {
    return hasProperty(MCID::ExtraSrcRegAllocReq, Type);
  }

  /// hasExtraDefRegAllocReq - Returns true if this instruction def operands
  /// have special register allocation requirements that are not captured by the
  /// operand register classes. e.g. ARM::LDRD's two def registers must be an
  /// even / odd pair, ARM::LDM registers have to be in ascending order.
  /// Post-register allocation passes should not attempt to change allocations
  /// for definitions of instructions with this flag.
  bool hasExtraDefRegAllocReq(QueryType Type = AnyInBundle) const {
    return hasProperty(MCID::ExtraDefRegAllocReq, Type);
  }


  enum MICheckType {
    CheckDefs,      // Check all operands for equality
    CheckKillDead,  // Check all operands including kill / dead markers
    IgnoreDefs,     // Ignore all definitions
    IgnoreVRegDefs  // Ignore virtual register definitions
  };

  /// isIdenticalTo - Return true if this instruction is identical to (same
  /// opcode and same operands as) the specified instruction.
  bool isIdenticalTo(const MachineInstr *Other,
                     MICheckType Check = CheckDefs) const;

  /// Unlink 'this' from the containing basic block, and return it without
  /// deleting it.
  ///
  /// This function can not be used on bundled instructions, use
  /// removeFromBundle() to remove individual instructions from a bundle.
  MachineInstr *removeFromParent();

  /// Unlink this instruction from its basic block and return it without
  /// deleting it.
  ///
  /// If the instruction is part of a bundle, the other instructions in the
  /// bundle remain bundled.
  MachineInstr *removeFromBundle();

  /// Unlink 'this' from the containing basic block and delete it.
  ///
  /// If this instruction is the header of a bundle, the whole bundle is erased.
  /// This function can not be used for instructions inside a bundle, use
  /// eraseFromBundle() to erase individual bundled instructions.
  void eraseFromParent();

  /// Unlink 'this' form its basic block and delete it.
  ///
  /// If the instruction is part of a bundle, the other instructions in the
  /// bundle remain bundled.
  void eraseFromBundle();

  /// isLabel - Returns true if the MachineInstr represents a label.
  ///
  bool isLabel() const {
    return getOpcode() == TargetOpcode::PROLOG_LABEL ||
           getOpcode() == TargetOpcode::EH_LABEL ||
           getOpcode() == TargetOpcode::GC_LABEL;
  }

  bool isPrologLabel() const {
    return getOpcode() == TargetOpcode::PROLOG_LABEL;
  }
  bool isEHLabel() const { return getOpcode() == TargetOpcode::EH_LABEL; }
  bool isGCLabel() const { return getOpcode() == TargetOpcode::GC_LABEL; }
  bool isDebugValue() const { return getOpcode() == TargetOpcode::DBG_VALUE; }

  bool isPHI() const { return getOpcode() == TargetOpcode::PHI; }
  bool isKill() const { return getOpcode() == TargetOpcode::KILL; }
  bool isImplicitDef() const { return getOpcode()==TargetOpcode::IMPLICIT_DEF; }
  bool isInlineAsm() const { return getOpcode() == TargetOpcode::INLINEASM; }
  bool isStackAligningInlineAsm() const;
  InlineAsm::AsmDialect getInlineAsmDialect() const;
  bool isInsertSubreg() const {
    return getOpcode() == TargetOpcode::INSERT_SUBREG;
  }
  bool isSubregToReg() const {
    return getOpcode() == TargetOpcode::SUBREG_TO_REG;
  }
  bool isRegSequence() const {
    return getOpcode() == TargetOpcode::REG_SEQUENCE;
  }
  bool isBundle() const {
    return getOpcode() == TargetOpcode::BUNDLE;
  }
  bool isCopy() const {
    return getOpcode() == TargetOpcode::COPY;
  }
  bool isFullCopy() const {
    return isCopy() && !getOperand(0).getSubReg() && !getOperand(1).getSubReg();
  }

  /// isCopyLike - Return true if the instruction behaves like a copy.
  /// This does not include native copy instructions.
  bool isCopyLike() const {
    return isCopy() || isSubregToReg();
  }

  /// isIdentityCopy - Return true is the instruction is an identity copy.
  bool isIdentityCopy() const {
    return isCopy() && getOperand(0).getReg() == getOperand(1).getReg() &&
      getOperand(0).getSubReg() == getOperand(1).getSubReg();
  }

  /// isTransient - Return true if this is a transient instruction that is
  /// either very likely to be eliminated during register allocation (such as
  /// copy-like instructions), or if this instruction doesn't have an
  /// execution-time cost.
  bool isTransient() const {
    switch(getOpcode()) {
    default: return false;
    // Copy-like instructions are usually eliminated during register allocation.
    case TargetOpcode::PHI:
    case TargetOpcode::COPY:
    case TargetOpcode::INSERT_SUBREG:
    case TargetOpcode::SUBREG_TO_REG:
    case TargetOpcode::REG_SEQUENCE:
    // Pseudo-instructions that don't produce any real output.
    case TargetOpcode::IMPLICIT_DEF:
    case TargetOpcode::KILL:
    case TargetOpcode::PROLOG_LABEL:
    case TargetOpcode::EH_LABEL:
    case TargetOpcode::GC_LABEL:
    case TargetOpcode::DBG_VALUE:
      return true;
    }
  }

  /// getBundleSize - Return the number of instructions inside the MI bundle.
  unsigned getBundleSize() const;

  /// readsRegister - Return true if the MachineInstr reads the specified
  /// register. If TargetRegisterInfo is passed, then it also checks if there
  /// is a read of a super-register.
  /// This does not count partial redefines of virtual registers as reads:
  ///   %reg1024:6 = OP.
  bool readsRegister(unsigned Reg, const TargetRegisterInfo *TRI = NULL) const {
    return findRegisterUseOperandIdx(Reg, false, TRI) != -1;
  }

  /// readsVirtualRegister - Return true if the MachineInstr reads the specified
  /// virtual register. Take into account that a partial define is a
  /// read-modify-write operation.
  bool readsVirtualRegister(unsigned Reg) const {
    return readsWritesVirtualRegister(Reg).first;
  }

  /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
  /// indicating if this instruction reads or writes Reg. This also considers
  /// partial defines.
  /// If Ops is not null, all operand indices for Reg are added.
  std::pair<bool,bool> readsWritesVirtualRegister(unsigned Reg,
                                      SmallVectorImpl<unsigned> *Ops = 0) const;

  /// killsRegister - Return true if the MachineInstr kills the specified
  /// register. If TargetRegisterInfo is passed, then it also checks if there is
  /// a kill of a super-register.
  bool killsRegister(unsigned Reg, const TargetRegisterInfo *TRI = NULL) const {
    return findRegisterUseOperandIdx(Reg, true, TRI) != -1;
  }

  /// definesRegister - Return true if the MachineInstr fully defines the
  /// specified register. If TargetRegisterInfo is passed, then it also checks
  /// if there is a def of a super-register.
  /// NOTE: It's ignoring subreg indices on virtual registers.
  bool definesRegister(unsigned Reg, const TargetRegisterInfo *TRI=NULL) const {
    return findRegisterDefOperandIdx(Reg, false, false, TRI) != -1;
  }

  /// modifiesRegister - Return true if the MachineInstr modifies (fully define
  /// or partially define) the specified register.
  /// NOTE: It's ignoring subreg indices on virtual registers.
  bool modifiesRegister(unsigned Reg, const TargetRegisterInfo *TRI) const {
    return findRegisterDefOperandIdx(Reg, false, true, TRI) != -1;
  }

  /// registerDefIsDead - Returns true if the register is dead in this machine
  /// instruction. If TargetRegisterInfo is passed, then it also checks
  /// if there is a dead def of a super-register.
  bool registerDefIsDead(unsigned Reg,
                         const TargetRegisterInfo *TRI = NULL) const {
    return findRegisterDefOperandIdx(Reg, true, false, TRI) != -1;
  }

  /// findRegisterUseOperandIdx() - Returns the operand index that is a use of
  /// the specific register or -1 if it is not found. It further tightens
  /// the search criteria to a use that kills the register if isKill is true.
  int findRegisterUseOperandIdx(unsigned Reg, bool isKill = false,
                                const TargetRegisterInfo *TRI = NULL) const;

  /// findRegisterUseOperand - Wrapper for findRegisterUseOperandIdx, it returns
  /// a pointer to the MachineOperand rather than an index.
  MachineOperand *findRegisterUseOperand(unsigned Reg, bool isKill = false,
                                         const TargetRegisterInfo *TRI = NULL) {
    int Idx = findRegisterUseOperandIdx(Reg, isKill, TRI);
    return (Idx == -1) ? NULL : &getOperand(Idx);
  }

  /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
  /// the specified register or -1 if it is not found. If isDead is true, defs
  /// that are not dead are skipped. If Overlap is true, then it also looks for
  /// defs that merely overlap the specified register. If TargetRegisterInfo is
  /// non-null, then it also checks if there is a def of a super-register.
  /// This may also return a register mask operand when Overlap is true.
  int findRegisterDefOperandIdx(unsigned Reg,
                                bool isDead = false, bool Overlap = false,
                                const TargetRegisterInfo *TRI = NULL) const;

  /// findRegisterDefOperand - Wrapper for findRegisterDefOperandIdx, it returns
  /// a pointer to the MachineOperand rather than an index.
  MachineOperand *findRegisterDefOperand(unsigned Reg, bool isDead = false,
                                         const TargetRegisterInfo *TRI = NULL) {
    int Idx = findRegisterDefOperandIdx(Reg, isDead, false, TRI);
    return (Idx == -1) ? NULL : &getOperand(Idx);
  }

  /// findFirstPredOperandIdx() - Find the index of the first operand in the
  /// operand list that is used to represent the predicate. It returns -1 if
  /// none is found.
  int findFirstPredOperandIdx() const;

  /// findInlineAsmFlagIdx() - Find the index of the flag word operand that
  /// corresponds to operand OpIdx on an inline asm instruction.  Returns -1 if
  /// getOperand(OpIdx) does not belong to an inline asm operand group.
  ///
  /// If GroupNo is not NULL, it will receive the number of the operand group
  /// containing OpIdx.
  ///
  /// The flag operand is an immediate that can be decoded with methods like
  /// InlineAsm::hasRegClassConstraint().
  ///
  int findInlineAsmFlagIdx(unsigned OpIdx, unsigned *GroupNo = 0) const;

  /// getRegClassConstraint - Compute the static register class constraint for
  /// operand OpIdx.  For normal instructions, this is derived from the
  /// MCInstrDesc.  For inline assembly it is derived from the flag words.
  ///
  /// Returns NULL if the static register classs constraint cannot be
  /// determined.
  ///
  const TargetRegisterClass*
  getRegClassConstraint(unsigned OpIdx,
                        const TargetInstrInfo *TII,
                        const TargetRegisterInfo *TRI) const;

  /// tieOperands - Add a tie between the register operands at DefIdx and
  /// UseIdx. The tie will cause the register allocator to ensure that the two
  /// operands are assigned the same physical register.
  ///
  /// Tied operands are managed automatically for explicit operands in the
  /// MCInstrDesc. This method is for exceptional cases like inline asm.
  void tieOperands(unsigned DefIdx, unsigned UseIdx);

  /// findTiedOperandIdx - Given the index of a tied register operand, find the
  /// operand it is tied to. Defs are tied to uses and vice versa. Returns the
  /// index of the tied operand which must exist.
  unsigned findTiedOperandIdx(unsigned OpIdx) const;

  /// isRegTiedToUseOperand - Given the index of a register def operand,
  /// check if the register def is tied to a source operand, due to either
  /// two-address elimination or inline assembly constraints. Returns the
  /// first tied use operand index by reference if UseOpIdx is not null.
  bool isRegTiedToUseOperand(unsigned DefOpIdx, unsigned *UseOpIdx = 0) const {
    const MachineOperand &MO = getOperand(DefOpIdx);
    if (!MO.isReg() || !MO.isDef() || !MO.isTied())
      return false;
    if (UseOpIdx)
      *UseOpIdx = findTiedOperandIdx(DefOpIdx);
    return true;
  }

  /// isRegTiedToDefOperand - Return true if the use operand of the specified
  /// index is tied to an def operand. It also returns the def operand index by
  /// reference if DefOpIdx is not null.
  bool isRegTiedToDefOperand(unsigned UseOpIdx, unsigned *DefOpIdx = 0) const {
    const MachineOperand &MO = getOperand(UseOpIdx);
    if (!MO.isReg() || !MO.isUse() || !MO.isTied())
      return false;
    if (DefOpIdx)
      *DefOpIdx = findTiedOperandIdx(UseOpIdx);
    return true;
  }

  /// clearKillInfo - Clears kill flags on all operands.
  ///
  void clearKillInfo();

  /// substituteRegister - Replace all occurrences of FromReg with ToReg:SubIdx,
  /// properly composing subreg indices where necessary.
  void substituteRegister(unsigned FromReg, unsigned ToReg, unsigned SubIdx,
                          const TargetRegisterInfo &RegInfo);

  /// addRegisterKilled - We have determined MI kills a register. Look for the
  /// operand that uses it and mark it as IsKill. If AddIfNotFound is true,
  /// add a implicit operand if it's not found. Returns true if the operand
  /// exists / is added.
  bool addRegisterKilled(unsigned IncomingReg,
                         const TargetRegisterInfo *RegInfo,
                         bool AddIfNotFound = false);

  /// clearRegisterKills - Clear all kill flags affecting Reg.  If RegInfo is
  /// provided, this includes super-register kills.
  void clearRegisterKills(unsigned Reg, const TargetRegisterInfo *RegInfo);

  /// addRegisterDead - We have determined MI defined a register without a use.
  /// Look for the operand that defines it and mark it as IsDead. If
  /// AddIfNotFound is true, add a implicit operand if it's not found. Returns
  /// true if the operand exists / is added.
  bool addRegisterDead(unsigned IncomingReg, const TargetRegisterInfo *RegInfo,
                       bool AddIfNotFound = false);

  /// addRegisterDefined - We have determined MI defines a register. Make sure
  /// there is an operand defining Reg.
  void addRegisterDefined(unsigned IncomingReg,
                          const TargetRegisterInfo *RegInfo = 0);

  /// setPhysRegsDeadExcept - Mark every physreg used by this instruction as
  /// dead except those in the UsedRegs list.
  ///
  /// On instructions with register mask operands, also add implicit-def
  /// operands for all registers in UsedRegs.
  void setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
                             const TargetRegisterInfo &TRI);

  /// isSafeToMove - Return true if it is safe to move this instruction. If
  /// SawStore is set to true, it means that there is a store (or call) between
  /// the instruction's location and its intended destination.
  bool isSafeToMove(const TargetInstrInfo *TII, AliasAnalysis *AA,
                    bool &SawStore) const;

  /// isSafeToReMat - Return true if it's safe to rematerialize the specified
  /// instruction which defined the specified register instead of copying it.
  bool isSafeToReMat(const TargetInstrInfo *TII, AliasAnalysis *AA,
                     unsigned DstReg) const;

  /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
  /// or volatile memory reference, or if the information describing the memory
  /// reference is not available. Return false if it is known to have no
  /// ordered or volatile memory references.
  bool hasOrderedMemoryRef() const;

  /// isInvariantLoad - Return true if this instruction is loading from a
  /// location whose value is invariant across the function.  For example,
  /// loading a value from the constant pool or from the argument area of
  /// a function if it does not change.  This should only return true of *all*
  /// loads the instruction does are invariant (if it does multiple loads).
  bool isInvariantLoad(AliasAnalysis *AA) const;

  /// isConstantValuePHI - If the specified instruction is a PHI that always
  /// merges together the same virtual register, return the register, otherwise
  /// return 0.
  unsigned isConstantValuePHI() const;

  /// hasUnmodeledSideEffects - Return true if this instruction has side
  /// effects that are not modeled by mayLoad / mayStore, etc.
  /// For all instructions, the property is encoded in MCInstrDesc::Flags
  /// (see MCInstrDesc::hasUnmodeledSideEffects(). The only exception is
  /// INLINEASM instruction, in which case the side effect property is encoded
  /// in one of its operands (see InlineAsm::Extra_HasSideEffect).
  ///
  bool hasUnmodeledSideEffects() const;

  /// allDefsAreDead - Return true if all the defs of this instruction are dead.
  ///
  bool allDefsAreDead() const;

  /// copyImplicitOps - Copy implicit register operands from specified
  /// instruction to this instruction.
  void copyImplicitOps(MachineFunction &MF, const MachineInstr *MI);

  //
  // Debugging support
  //
  void print(raw_ostream &OS, const TargetMachine *TM = 0) const;
  void dump() const;

  //===--------------------------------------------------------------------===//
  // Accessors used to build up machine instructions.

  /// Add the specified operand to the instruction.  If it is an implicit
  /// operand, it is added to the end of the operand list.  If it is an
  /// explicit operand it is added at the end of the explicit operand list
  /// (before the first implicit operand).
  ///
  /// MF must be the machine function that was used to allocate this
  /// instruction.
  ///
  /// MachineInstrBuilder provides a more convenient interface for creating
  /// instructions and adding operands.
  void addOperand(MachineFunction &MF, const MachineOperand &Op);

  /// Add an operand without providing an MF reference. This only works for
  /// instructions that are inserted in a basic block.
  ///
  /// MachineInstrBuilder and the two-argument addOperand(MF, MO) should be
  /// preferred.
  void addOperand(const MachineOperand &Op);

  /// setDesc - Replace the instruction descriptor (thus opcode) of
  /// the current instruction with a new one.
  ///
  void setDesc(const MCInstrDesc &tid) { MCID = &tid; }

  /// setDebugLoc - Replace current source information with new such.
  /// Avoid using this, the constructor argument is preferable.
  ///
  void setDebugLoc(const DebugLoc dl) { debugLoc = dl; }

  /// RemoveOperand - Erase an operand  from an instruction, leaving it with one
  /// fewer operand than it started with.
  ///
  void RemoveOperand(unsigned i);

  /// addMemOperand - Add a MachineMemOperand to the machine instruction.
  /// This function should be used only occasionally. The setMemRefs function
  /// is the primary method for setting up a MachineInstr's MemRefs list.
  void addMemOperand(MachineFunction &MF, MachineMemOperand *MO);

  /// setMemRefs - Assign this MachineInstr's memory reference descriptor
  /// list. This does not transfer ownership.
  void setMemRefs(mmo_iterator NewMemRefs, mmo_iterator NewMemRefsEnd) {
    MemRefs = NewMemRefs;
    NumMemRefs = NewMemRefsEnd - NewMemRefs;
  }

private:
  /// getRegInfo - If this instruction is embedded into a MachineFunction,
  /// return the MachineRegisterInfo object for the current function, otherwise
  /// return null.
  MachineRegisterInfo *getRegInfo();

  /// untieRegOperand - Break any tie involving OpIdx.
  void untieRegOperand(unsigned OpIdx) {
    MachineOperand &MO = getOperand(OpIdx);
    if (MO.isReg() && MO.isTied()) {
      getOperand(findTiedOperandIdx(OpIdx)).TiedTo = 0;
      MO.TiedTo = 0;
    }
  }

  /// addImplicitDefUseOperands - Add all implicit def and use operands to
  /// this instruction.
  void addImplicitDefUseOperands(MachineFunction &MF);

  /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
  /// this instruction from their respective use lists.  This requires that the
  /// operands already be on their use lists.
  void RemoveRegOperandsFromUseLists(MachineRegisterInfo&);

  /// AddRegOperandsToUseLists - Add all of the register operands in
  /// this instruction from their respective use lists.  This requires that the
  /// operands not be on their use lists yet.
  void AddRegOperandsToUseLists(MachineRegisterInfo&);

  /// hasPropertyInBundle - Slow path for hasProperty when we're dealing with a
  /// bundle.
  bool hasPropertyInBundle(unsigned Mask, QueryType Type) const;
};

/// MachineInstrExpressionTrait - Special DenseMapInfo traits to compare
/// MachineInstr* by *value* of the instruction rather than by pointer value.
/// The hashing and equality testing functions ignore definitions so this is
/// useful for CSE, etc.
struct MachineInstrExpressionTrait : DenseMapInfo<MachineInstr*> {
  static inline MachineInstr *getEmptyKey() {
    return 0;
  }

  static inline MachineInstr *getTombstoneKey() {
    return reinterpret_cast<MachineInstr*>(-1);
  }

  static unsigned getHashValue(const MachineInstr* const &MI);

  static bool isEqual(const MachineInstr* const &LHS,
                      const MachineInstr* const &RHS) {
    if (RHS == getEmptyKey() || RHS == getTombstoneKey() ||
        LHS == getEmptyKey() || LHS == getTombstoneKey())
      return LHS == RHS;
    return LHS->isIdenticalTo(RHS, MachineInstr::IgnoreVRegDefs);
  }
};

//===----------------------------------------------------------------------===//
// Debugging Support

inline raw_ostream& operator<<(raw_ostream &OS, const MachineInstr &MI) {
  MI.print(OS);
  return OS;
}

} // End llvm namespace

#endif