summaryrefslogtreecommitdiff
path: root/include/llvm/CodeGen/MachineRegisterInfo.h
blob: 58ca907316acc3dcc1bc1f2301af85c9fe5e7679 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
//===-- llvm/CodeGen/MachineRegisterInfo.h ----------------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the MachineRegisterInfo class.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_CODEGEN_MACHINEREGISTERINFO_H
#define LLVM_CODEGEN_MACHINEREGISTERINFO_H

#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/IndexedMap.h"
#include "llvm/CodeGen/MachineInstrBundle.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include <vector>

namespace llvm {
class PSetIterator;

/// MachineRegisterInfo - Keep track of information for virtual and physical
/// registers, including vreg register classes, use/def chains for registers,
/// etc.
class MachineRegisterInfo {
public:
  class Delegate {
    virtual void anchor();
  public:
    virtual void MRI_NoteNewVirtualRegister(unsigned Reg) = 0;

    virtual ~Delegate() {}
  };

private:
  const TargetMachine &TM;
  Delegate *TheDelegate;

  /// IsSSA - True when the machine function is in SSA form and virtual
  /// registers have a single def.
  bool IsSSA;

  /// TracksLiveness - True while register liveness is being tracked accurately.
  /// Basic block live-in lists, kill flags, and implicit defs may not be
  /// accurate when after this flag is cleared.
  bool TracksLiveness;

  /// VRegInfo - Information we keep for each virtual register.
  ///
  /// Each element in this list contains the register class of the vreg and the
  /// start of the use/def list for the register.
  IndexedMap<std::pair<const TargetRegisterClass*, MachineOperand*>,
             VirtReg2IndexFunctor> VRegInfo;

  /// RegAllocHints - This vector records register allocation hints for virtual
  /// registers. For each virtual register, it keeps a register and hint type
  /// pair making up the allocation hint. Hint type is target specific except
  /// for the value 0 which means the second value of the pair is the preferred
  /// register for allocation. For example, if the hint is <0, 1024>, it means
  /// the allocator should prefer the physical register allocated to the virtual
  /// register of the hint.
  IndexedMap<std::pair<unsigned, unsigned>, VirtReg2IndexFunctor> RegAllocHints;

  /// PhysRegUseDefLists - This is an array of the head of the use/def list for
  /// physical registers.
  MachineOperand **PhysRegUseDefLists;

  /// getRegUseDefListHead - Return the head pointer for the register use/def
  /// list for the specified virtual or physical register.
  MachineOperand *&getRegUseDefListHead(unsigned RegNo) {
    if (TargetRegisterInfo::isVirtualRegister(RegNo))
      return VRegInfo[RegNo].second;
    return PhysRegUseDefLists[RegNo];
  }

  MachineOperand *getRegUseDefListHead(unsigned RegNo) const {
    if (TargetRegisterInfo::isVirtualRegister(RegNo))
      return VRegInfo[RegNo].second;
    return PhysRegUseDefLists[RegNo];
  }

  /// Get the next element in the use-def chain.
  static MachineOperand *getNextOperandForReg(const MachineOperand *MO) {
    assert(MO && MO->isReg() && "This is not a register operand!");
    return MO->Contents.Reg.Next;
  }

  /// UsedRegUnits - This is a bit vector that is computed and set by the
  /// register allocator, and must be kept up to date by passes that run after
  /// register allocation (though most don't modify this).  This is used
  /// so that the code generator knows which callee save registers to save and
  /// for other target specific uses.
  /// This vector has bits set for register units that are modified in the
  /// current function. It doesn't include registers clobbered by function
  /// calls with register mask operands.
  BitVector UsedRegUnits;

  /// UsedPhysRegMask - Additional used physregs including aliases.
  /// This bit vector represents all the registers clobbered by function calls.
  /// It can model things that UsedRegUnits can't, such as function calls that
  /// clobber ymm7 but preserve the low half in xmm7.
  BitVector UsedPhysRegMask;

  /// ReservedRegs - This is a bit vector of reserved registers.  The target
  /// may change its mind about which registers should be reserved.  This
  /// vector is the frozen set of reserved registers when register allocation
  /// started.
  BitVector ReservedRegs;

  /// Keep track of the physical registers that are live in to the function.
  /// Live in values are typically arguments in registers.  LiveIn values are
  /// allowed to have virtual registers associated with them, stored in the
  /// second element.
  std::vector<std::pair<unsigned, unsigned> > LiveIns;

  MachineRegisterInfo(const MachineRegisterInfo&) LLVM_DELETED_FUNCTION;
  void operator=(const MachineRegisterInfo&) LLVM_DELETED_FUNCTION;
public:
  explicit MachineRegisterInfo(const TargetMachine &TM);
  ~MachineRegisterInfo();

  const TargetRegisterInfo *getTargetRegisterInfo() const {
    return TM.getRegisterInfo();
  }

  void resetDelegate(Delegate *delegate) {
    // Ensure another delegate does not take over unless the current
    // delegate first unattaches itself. If we ever need to multicast
    // notifications, we will need to change to using a list.
    assert(TheDelegate == delegate &&
           "Only the current delegate can perform reset!");
    TheDelegate = 0;
  }

  void setDelegate(Delegate *delegate) {
    assert(delegate && !TheDelegate &&
           "Attempted to set delegate to null, or to change it without "
           "first resetting it!");

    TheDelegate = delegate;
  }

  //===--------------------------------------------------------------------===//
  // Function State
  //===--------------------------------------------------------------------===//

  // isSSA - Returns true when the machine function is in SSA form. Early
  // passes require the machine function to be in SSA form where every virtual
  // register has a single defining instruction.
  //
  // The TwoAddressInstructionPass and PHIElimination passes take the machine
  // function out of SSA form when they introduce multiple defs per virtual
  // register.
  bool isSSA() const { return IsSSA; }

  // leaveSSA - Indicates that the machine function is no longer in SSA form.
  void leaveSSA() { IsSSA = false; }

  /// tracksLiveness - Returns true when tracking register liveness accurately.
  ///
  /// While this flag is true, register liveness information in basic block
  /// live-in lists and machine instruction operands is accurate. This means it
  /// can be used to change the code in ways that affect the values in
  /// registers, for example by the register scavenger.
  ///
  /// When this flag is false, liveness is no longer reliable.
  bool tracksLiveness() const { return TracksLiveness; }

  /// invalidateLiveness - Indicates that register liveness is no longer being
  /// tracked accurately.
  ///
  /// This should be called by late passes that invalidate the liveness
  /// information.
  void invalidateLiveness() { TracksLiveness = false; }

  //===--------------------------------------------------------------------===//
  // Register Info
  //===--------------------------------------------------------------------===//

  // Strictly for use by MachineInstr.cpp.
  void addRegOperandToUseList(MachineOperand *MO);

  // Strictly for use by MachineInstr.cpp.
  void removeRegOperandFromUseList(MachineOperand *MO);

  // Strictly for use by MachineInstr.cpp.
  void moveOperands(MachineOperand *Dst, MachineOperand *Src, unsigned NumOps);

  /// Verify the sanity of the use list for Reg.
  void verifyUseList(unsigned Reg) const;

  /// Verify the use list of all registers.
  void verifyUseLists() const;

  /// reg_begin/reg_end - Provide iteration support to walk over all definitions
  /// and uses of a register within the MachineFunction that corresponds to this
  /// MachineRegisterInfo object.
  template<bool Uses, bool Defs, bool SkipDebug>
  class defusechain_iterator;

  // Make it a friend so it can access getNextOperandForReg().
  template<bool, bool, bool> friend class defusechain_iterator;

  /// reg_iterator/reg_begin/reg_end - Walk all defs and uses of the specified
  /// register.
  typedef defusechain_iterator<true,true,false> reg_iterator;
  reg_iterator reg_begin(unsigned RegNo) const {
    return reg_iterator(getRegUseDefListHead(RegNo));
  }
  static reg_iterator reg_end() { return reg_iterator(0); }

  /// reg_empty - Return true if there are no instructions using or defining the
  /// specified register (it may be live-in).
  bool reg_empty(unsigned RegNo) const { return reg_begin(RegNo) == reg_end(); }

  /// reg_nodbg_iterator/reg_nodbg_begin/reg_nodbg_end - Walk all defs and uses
  /// of the specified register, skipping those marked as Debug.
  typedef defusechain_iterator<true,true,true> reg_nodbg_iterator;
  reg_nodbg_iterator reg_nodbg_begin(unsigned RegNo) const {
    return reg_nodbg_iterator(getRegUseDefListHead(RegNo));
  }
  static reg_nodbg_iterator reg_nodbg_end() { return reg_nodbg_iterator(0); }

  /// reg_nodbg_empty - Return true if the only instructions using or defining
  /// Reg are Debug instructions.
  bool reg_nodbg_empty(unsigned RegNo) const {
    return reg_nodbg_begin(RegNo) == reg_nodbg_end();
  }

  /// def_iterator/def_begin/def_end - Walk all defs of the specified register.
  typedef defusechain_iterator<false,true,false> def_iterator;
  def_iterator def_begin(unsigned RegNo) const {
    return def_iterator(getRegUseDefListHead(RegNo));
  }
  static def_iterator def_end() { return def_iterator(0); }

  /// def_empty - Return true if there are no instructions defining the
  /// specified register (it may be live-in).
  bool def_empty(unsigned RegNo) const { return def_begin(RegNo) == def_end(); }

  /// hasOneDef - Return true if there is exactly one instruction defining the
  /// specified register.
  bool hasOneDef(unsigned RegNo) const {
    def_iterator DI = def_begin(RegNo);
    if (DI == def_end())
      return false;
    return ++DI == def_end();
  }

  /// use_iterator/use_begin/use_end - Walk all uses of the specified register.
  typedef defusechain_iterator<true,false,false> use_iterator;
  use_iterator use_begin(unsigned RegNo) const {
    return use_iterator(getRegUseDefListHead(RegNo));
  }
  static use_iterator use_end() { return use_iterator(0); }

  /// use_empty - Return true if there are no instructions using the specified
  /// register.
  bool use_empty(unsigned RegNo) const { return use_begin(RegNo) == use_end(); }

  /// hasOneUse - Return true if there is exactly one instruction using the
  /// specified register.
  bool hasOneUse(unsigned RegNo) const {
    use_iterator UI = use_begin(RegNo);
    if (UI == use_end())
      return false;
    return ++UI == use_end();
  }

  /// use_nodbg_iterator/use_nodbg_begin/use_nodbg_end - Walk all uses of the
  /// specified register, skipping those marked as Debug.
  typedef defusechain_iterator<true,false,true> use_nodbg_iterator;
  use_nodbg_iterator use_nodbg_begin(unsigned RegNo) const {
    return use_nodbg_iterator(getRegUseDefListHead(RegNo));
  }
  static use_nodbg_iterator use_nodbg_end() { return use_nodbg_iterator(0); }

  /// use_nodbg_empty - Return true if there are no non-Debug instructions
  /// using the specified register.
  bool use_nodbg_empty(unsigned RegNo) const {
    return use_nodbg_begin(RegNo) == use_nodbg_end();
  }

  /// hasOneNonDBGUse - Return true if there is exactly one non-Debug
  /// instruction using the specified register.
  bool hasOneNonDBGUse(unsigned RegNo) const;

  /// replaceRegWith - Replace all instances of FromReg with ToReg in the
  /// machine function.  This is like llvm-level X->replaceAllUsesWith(Y),
  /// except that it also changes any definitions of the register as well.
  ///
  /// Note that it is usually necessary to first constrain ToReg's register
  /// class to match the FromReg constraints using:
  ///
  ///   constrainRegClass(ToReg, getRegClass(FromReg))
  ///
  /// That function will return NULL if the virtual registers have incompatible
  /// constraints.
  void replaceRegWith(unsigned FromReg, unsigned ToReg);

  /// getVRegDef - Return the machine instr that defines the specified virtual
  /// register or null if none is found.  This assumes that the code is in SSA
  /// form, so there should only be one definition.
  MachineInstr *getVRegDef(unsigned Reg) const;

  /// getUniqueVRegDef - Return the unique machine instr that defines the
  /// specified virtual register or null if none is found.  If there are
  /// multiple definitions or no definition, return null.
  MachineInstr *getUniqueVRegDef(unsigned Reg) const;

  /// clearKillFlags - Iterate over all the uses of the given register and
  /// clear the kill flag from the MachineOperand. This function is used by
  /// optimization passes which extend register lifetimes and need only
  /// preserve conservative kill flag information.
  void clearKillFlags(unsigned Reg) const;

#ifndef NDEBUG
  void dumpUses(unsigned RegNo) const;
#endif

  /// isConstantPhysReg - Returns true if PhysReg is unallocatable and constant
  /// throughout the function.  It is safe to move instructions that read such
  /// a physreg.
  bool isConstantPhysReg(unsigned PhysReg, const MachineFunction &MF) const;

  /// Get an iterator over the pressure sets affected by the given physical or
  /// virtual register. If RegUnit is physical, it must be a register unit (from
  /// MCRegUnitIterator).
  PSetIterator getPressureSets(unsigned RegUnit) const;

  //===--------------------------------------------------------------------===//
  // Virtual Register Info
  //===--------------------------------------------------------------------===//

  /// getRegClass - Return the register class of the specified virtual register.
  ///
  const TargetRegisterClass *getRegClass(unsigned Reg) const {
    return VRegInfo[Reg].first;
  }

  /// setRegClass - Set the register class of the specified virtual register.
  ///
  void setRegClass(unsigned Reg, const TargetRegisterClass *RC);

  /// constrainRegClass - Constrain the register class of the specified virtual
  /// register to be a common subclass of RC and the current register class,
  /// but only if the new class has at least MinNumRegs registers.  Return the
  /// new register class, or NULL if no such class exists.
  /// This should only be used when the constraint is known to be trivial, like
  /// GR32 -> GR32_NOSP. Beware of increasing register pressure.
  ///
  const TargetRegisterClass *constrainRegClass(unsigned Reg,
                                               const TargetRegisterClass *RC,
                                               unsigned MinNumRegs = 0);

  /// recomputeRegClass - Try to find a legal super-class of Reg's register
  /// class that still satisfies the constraints from the instructions using
  /// Reg.  Returns true if Reg was upgraded.
  ///
  /// This method can be used after constraints have been removed from a
  /// virtual register, for example after removing instructions or splitting
  /// the live range.
  ///
  bool recomputeRegClass(unsigned Reg, const TargetMachine&);

  /// createVirtualRegister - Create and return a new virtual register in the
  /// function with the specified register class.
  ///
  unsigned createVirtualRegister(const TargetRegisterClass *RegClass);

  /// getNumVirtRegs - Return the number of virtual registers created.
  ///
  unsigned getNumVirtRegs() const { return VRegInfo.size(); }

  /// clearVirtRegs - Remove all virtual registers (after physreg assignment).
  void clearVirtRegs();

  /// setRegAllocationHint - Specify a register allocation hint for the
  /// specified virtual register.
  void setRegAllocationHint(unsigned Reg, unsigned Type, unsigned PrefReg) {
    RegAllocHints[Reg].first  = Type;
    RegAllocHints[Reg].second = PrefReg;
  }

  /// getRegAllocationHint - Return the register allocation hint for the
  /// specified virtual register.
  std::pair<unsigned, unsigned>
  getRegAllocationHint(unsigned Reg) const {
    return RegAllocHints[Reg];
  }

  /// getSimpleHint - Return the preferred register allocation hint, or 0 if a
  /// standard simple hint (Type == 0) is not set.
  unsigned getSimpleHint(unsigned Reg) const {
    std::pair<unsigned, unsigned> Hint = getRegAllocationHint(Reg);
    return Hint.first ? 0 : Hint.second;
  }


  //===--------------------------------------------------------------------===//
  // Physical Register Use Info
  //===--------------------------------------------------------------------===//

  /// isPhysRegUsed - Return true if the specified register is used in this
  /// function. Also check for clobbered aliases and registers clobbered by
  /// function calls with register mask operands.
  ///
  /// This only works after register allocation. It is primarily used by
  /// PrologEpilogInserter to determine which callee-saved registers need
  /// spilling.
  bool isPhysRegUsed(unsigned Reg) const {
    if (UsedPhysRegMask.test(Reg))
      return true;
    for (MCRegUnitIterator Units(Reg, getTargetRegisterInfo());
         Units.isValid(); ++Units)
      if (UsedRegUnits.test(*Units))
        return true;
    return false;
  }

  /// Mark the specified register unit as used in this function.
  /// This should only be called during and after register allocation.
  void setRegUnitUsed(unsigned RegUnit) {
    UsedRegUnits.set(RegUnit);
  }

  /// setPhysRegUsed - Mark the specified register used in this function.
  /// This should only be called during and after register allocation.
  void setPhysRegUsed(unsigned Reg) {
    for (MCRegUnitIterator Units(Reg, getTargetRegisterInfo());
         Units.isValid(); ++Units)
      UsedRegUnits.set(*Units);
  }

  /// addPhysRegsUsedFromRegMask - Mark any registers not in RegMask as used.
  /// This corresponds to the bit mask attached to register mask operands.
  void addPhysRegsUsedFromRegMask(const uint32_t *RegMask) {
    UsedPhysRegMask.setBitsNotInMask(RegMask);
  }

  /// setPhysRegUnused - Mark the specified register unused in this function.
  /// This should only be called during and after register allocation.
  void setPhysRegUnused(unsigned Reg) {
    UsedPhysRegMask.reset(Reg);
    for (MCRegUnitIterator Units(Reg, getTargetRegisterInfo());
         Units.isValid(); ++Units)
      UsedRegUnits.reset(*Units);
  }


  //===--------------------------------------------------------------------===//
  // Reserved Register Info
  //===--------------------------------------------------------------------===//
  //
  // The set of reserved registers must be invariant during register
  // allocation.  For example, the target cannot suddenly decide it needs a
  // frame pointer when the register allocator has already used the frame
  // pointer register for something else.
  //
  // These methods can be used by target hooks like hasFP() to avoid changing
  // the reserved register set during register allocation.

  /// freezeReservedRegs - Called by the register allocator to freeze the set
  /// of reserved registers before allocation begins.
  void freezeReservedRegs(const MachineFunction&);

  /// reservedRegsFrozen - Returns true after freezeReservedRegs() was called
  /// to ensure the set of reserved registers stays constant.
  bool reservedRegsFrozen() const {
    return !ReservedRegs.empty();
  }

  /// canReserveReg - Returns true if PhysReg can be used as a reserved
  /// register.  Any register can be reserved before freezeReservedRegs() is
  /// called.
  bool canReserveReg(unsigned PhysReg) const {
    return !reservedRegsFrozen() || ReservedRegs.test(PhysReg);
  }

  /// getReservedRegs - Returns a reference to the frozen set of reserved
  /// registers. This method should always be preferred to calling
  /// TRI::getReservedRegs() when possible.
  const BitVector &getReservedRegs() const {
    assert(reservedRegsFrozen() &&
           "Reserved registers haven't been frozen yet. "
           "Use TRI::getReservedRegs().");
    return ReservedRegs;
  }

  /// isReserved - Returns true when PhysReg is a reserved register.
  ///
  /// Reserved registers may belong to an allocatable register class, but the
  /// target has explicitly requested that they are not used.
  ///
  bool isReserved(unsigned PhysReg) const {
    return getReservedRegs().test(PhysReg);
  }

  /// isAllocatable - Returns true when PhysReg belongs to an allocatable
  /// register class and it hasn't been reserved.
  ///
  /// Allocatable registers may show up in the allocation order of some virtual
  /// register, so a register allocator needs to track its liveness and
  /// availability.
  bool isAllocatable(unsigned PhysReg) const {
    return getTargetRegisterInfo()->isInAllocatableClass(PhysReg) &&
      !isReserved(PhysReg);
  }

  //===--------------------------------------------------------------------===//
  // LiveIn Management
  //===--------------------------------------------------------------------===//

  /// addLiveIn - Add the specified register as a live-in.  Note that it
  /// is an error to add the same register to the same set more than once.
  void addLiveIn(unsigned Reg, unsigned vreg = 0) {
    LiveIns.push_back(std::make_pair(Reg, vreg));
  }

  // Iteration support for the live-ins set.  It's kept in sorted order
  // by register number.
  typedef std::vector<std::pair<unsigned,unsigned> >::const_iterator
  livein_iterator;
  livein_iterator livein_begin() const { return LiveIns.begin(); }
  livein_iterator livein_end()   const { return LiveIns.end(); }
  bool            livein_empty() const { return LiveIns.empty(); }

  bool isLiveIn(unsigned Reg) const;

  /// getLiveInPhysReg - If VReg is a live-in virtual register, return the
  /// corresponding live-in physical register.
  unsigned getLiveInPhysReg(unsigned VReg) const;

  /// getLiveInVirtReg - If PReg is a live-in physical register, return the
  /// corresponding live-in physical register.
  unsigned getLiveInVirtReg(unsigned PReg) const;

  /// EmitLiveInCopies - Emit copies to initialize livein virtual registers
  /// into the given entry block.
  void EmitLiveInCopies(MachineBasicBlock *EntryMBB,
                        const TargetRegisterInfo &TRI,
                        const TargetInstrInfo &TII);

  /// defusechain_iterator - This class provides iterator support for machine
  /// operands in the function that use or define a specific register.  If
  /// ReturnUses is true it returns uses of registers, if ReturnDefs is true it
  /// returns defs.  If neither are true then you are silly and it always
  /// returns end().  If SkipDebug is true it skips uses marked Debug
  /// when incrementing.
  template<bool ReturnUses, bool ReturnDefs, bool SkipDebug>
  class defusechain_iterator
    : public std::iterator<std::forward_iterator_tag, MachineInstr, ptrdiff_t> {
    MachineOperand *Op;
    explicit defusechain_iterator(MachineOperand *op) : Op(op) {
      // If the first node isn't one we're interested in, advance to one that
      // we are interested in.
      if (op) {
        if ((!ReturnUses && op->isUse()) ||
            (!ReturnDefs && op->isDef()) ||
            (SkipDebug && op->isDebug()))
          ++*this;
      }
    }
    friend class MachineRegisterInfo;
  public:
    typedef std::iterator<std::forward_iterator_tag,
                          MachineInstr, ptrdiff_t>::reference reference;
    typedef std::iterator<std::forward_iterator_tag,
                          MachineInstr, ptrdiff_t>::pointer pointer;

    defusechain_iterator(const defusechain_iterator &I) : Op(I.Op) {}
    defusechain_iterator() : Op(0) {}

    bool operator==(const defusechain_iterator &x) const {
      return Op == x.Op;
    }
    bool operator!=(const defusechain_iterator &x) const {
      return !operator==(x);
    }

    /// atEnd - return true if this iterator is equal to reg_end() on the value.
    bool atEnd() const { return Op == 0; }

    // Iterator traversal: forward iteration only
    defusechain_iterator &operator++() {          // Preincrement
      assert(Op && "Cannot increment end iterator!");
      Op = getNextOperandForReg(Op);

      // All defs come before the uses, so stop def_iterator early.
      if (!ReturnUses) {
        if (Op) {
          if (Op->isUse())
            Op = 0;
          else
            assert(!Op->isDebug() && "Can't have debug defs");
        }
      } else {
        // If this is an operand we don't care about, skip it.
        while (Op && ((!ReturnDefs && Op->isDef()) ||
                      (SkipDebug && Op->isDebug())))
          Op = getNextOperandForReg(Op);
      }

      return *this;
    }
    defusechain_iterator operator++(int) {        // Postincrement
      defusechain_iterator tmp = *this; ++*this; return tmp;
    }

    /// skipInstruction - move forward until reaching a different instruction.
    /// Return the skipped instruction that is no longer pointed to, or NULL if
    /// already pointing to end().
    MachineInstr *skipInstruction() {
      if (!Op) return 0;
      MachineInstr *MI = Op->getParent();
      do ++*this;
      while (Op && Op->getParent() == MI);
      return MI;
    }

    MachineInstr *skipBundle() {
      if (!Op) return 0;
      MachineInstr *MI = getBundleStart(Op->getParent());
      do ++*this;
      while (Op && getBundleStart(Op->getParent()) == MI);
      return MI;
    }

    MachineOperand &getOperand() const {
      assert(Op && "Cannot dereference end iterator!");
      return *Op;
    }

    /// getOperandNo - Return the operand # of this MachineOperand in its
    /// MachineInstr.
    unsigned getOperandNo() const {
      assert(Op && "Cannot dereference end iterator!");
      return Op - &Op->getParent()->getOperand(0);
    }

    // Retrieve a reference to the current operand.
    MachineInstr &operator*() const {
      assert(Op && "Cannot dereference end iterator!");
      return *Op->getParent();
    }

    MachineInstr *operator->() const {
      assert(Op && "Cannot dereference end iterator!");
      return Op->getParent();
    }
  };
};

/// Iterate over the pressure sets affected by the given physical or virtual
/// register. If Reg is physical, it must be a register unit (from
/// MCRegUnitIterator).
class PSetIterator {
  const int *PSet;
  unsigned Weight;
public:
  PSetIterator(): PSet(0), Weight(0) {}
  PSetIterator(unsigned RegUnit, const MachineRegisterInfo *MRI) {
    const TargetRegisterInfo *TRI = MRI->getTargetRegisterInfo();
    if (TargetRegisterInfo::isVirtualRegister(RegUnit)) {
      const TargetRegisterClass *RC = MRI->getRegClass(RegUnit);
      PSet = TRI->getRegClassPressureSets(RC);
      Weight = TRI->getRegClassWeight(RC).RegWeight;
    }
    else {
      PSet = TRI->getRegUnitPressureSets(RegUnit);
      Weight = TRI->getRegUnitWeight(RegUnit);
    }
    if (*PSet == -1)
      PSet = 0;
  }
  bool isValid() const { return PSet; }

  unsigned getWeight() const { return Weight; }

  unsigned operator*() const { return *PSet; }

  void operator++() {
    assert(isValid() && "Invalid PSetIterator.");
    ++PSet;
    if (*PSet == -1)
      PSet = 0;
  }
};

inline PSetIterator MachineRegisterInfo::
getPressureSets(unsigned RegUnit) const {
  return PSetIterator(RegUnit, this);
}

} // End llvm namespace

#endif