summaryrefslogtreecommitdiff
path: root/include/llvm/IR/PassManager.h
blob: 4057771e2074370462d31b51467fe902e42f1f1e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
//===- PassManager.h - Pass management infrastructure -----------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
///
/// This header defines various interfaces for pass management in LLVM. There
/// is no "pass" interface in LLVM per se. Instead, an instance of any class
/// which supports a method to 'run' it over a unit of IR can be used as
/// a pass. A pass manager is generally a tool to collect a sequence of passes
/// which run over a particular IR construct, and run each of them in sequence
/// over each such construct in the containing IR construct. As there is no
/// containing IR construct for a Module, a manager for passes over modules
/// forms the base case which runs its managed passes in sequence over the
/// single module provided.
///
/// The core IR library provides managers for running passes over
/// modules and functions.
///
/// * FunctionPassManager can run over a Module, runs each pass over
///   a Function.
/// * ModulePassManager must be directly run, runs each pass over the Module.
///
/// Note that the implementations of the pass managers use concept-based
/// polymorphism as outlined in the "Value Semantics and Concept-based
/// Polymorphism" talk (or its abbreviated sibling "Inheritance Is The Base
/// Class of Evil") by Sean Parent:
/// * http://github.com/sean-parent/sean-parent.github.com/wiki/Papers-and-Presentations
/// * http://www.youtube.com/watch?v=_BpMYeUFXv8
/// * http://channel9.msdn.com/Events/GoingNative/2013/Inheritance-Is-The-Base-Class-of-Evil
///
//===----------------------------------------------------------------------===//

#ifndef LLVM_IR_PASS_MANAGER_H
#define LLVM_IR_PASS_MANAGER_H

#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/polymorphic_ptr.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/type_traits.h"
#include <list>
#include <vector>

namespace llvm {

class Module;
class Function;

/// \brief An abstract set of preserved analyses following a transformation pass
/// run.
///
/// When a transformation pass is run, it can return a set of analyses whose
/// results were preserved by that transformation. The default set is "none",
/// and preserving analyses must be done explicitly.
///
/// There is also an explicit all state which can be used (for example) when
/// the IR is not mutated at all.
class PreservedAnalyses {
public:
  /// \brief Convenience factory function for the empty preserved set.
  static PreservedAnalyses none() { return PreservedAnalyses(); }

  /// \brief Construct a special preserved set that preserves all passes.
  static PreservedAnalyses all() {
    PreservedAnalyses PA;
    PA.PreservedPassIDs.insert((void *)AllPassesID);
    return PA;
  }

  PreservedAnalyses &operator=(PreservedAnalyses Arg) {
    swap(Arg);
    return *this;
  }

  void swap(PreservedAnalyses &Arg) {
    PreservedPassIDs.swap(Arg.PreservedPassIDs);
  }

  /// \brief Mark a particular pass as preserved, adding it to the set.
  template <typename PassT> void preserve() {
    if (!areAllPreserved())
      PreservedPassIDs.insert(PassT::ID());
  }

  /// \brief Intersect this set with another in place.
  ///
  /// This is a mutating operation on this preserved set, removing all
  /// preserved passes which are not also preserved in the argument.
  void intersect(const PreservedAnalyses &Arg) {
    if (Arg.areAllPreserved())
      return;
    if (areAllPreserved()) {
      PreservedPassIDs = Arg.PreservedPassIDs;
      return;
    }
    for (SmallPtrSet<void *, 2>::const_iterator I = PreservedPassIDs.begin(),
                                                E = PreservedPassIDs.end();
         I != E; ++I)
      if (!Arg.PreservedPassIDs.count(*I))
        PreservedPassIDs.erase(*I);
  }

  /// \brief Intersect this set with a temporary other set in place.
  ///
  /// This is a mutating operation on this preserved set, removing all
  /// preserved passes which are not also preserved in the argument.
  void intersect(PreservedAnalyses &&Arg) {
    if (Arg.areAllPreserved())
      return;
    if (areAllPreserved()) {
      PreservedPassIDs = std::move(Arg.PreservedPassIDs);
      return;
    }
    for (SmallPtrSet<void *, 2>::const_iterator I = PreservedPassIDs.begin(),
                                                E = PreservedPassIDs.end();
         I != E; ++I)
      if (!Arg.PreservedPassIDs.count(*I))
        PreservedPassIDs.erase(*I);
  }

  /// \brief Query whether a pass is marked as preserved by this set.
  template <typename PassT> bool preserved() const {
    return preserved(PassT::ID());
  }

  /// \brief Query whether an abstract pass ID is marked as preserved by this
  /// set.
  bool preserved(void *PassID) const {
    return PreservedPassIDs.count((void *)AllPassesID) ||
           PreservedPassIDs.count(PassID);
  }

private:
  // Note that this must not be -1 or -2 as those are already used by the
  // SmallPtrSet.
  static const uintptr_t AllPassesID = (intptr_t)-3;

  bool areAllPreserved() const { return PreservedPassIDs.count((void *)AllPassesID); }

  SmallPtrSet<void *, 2> PreservedPassIDs;
};

inline void swap(PreservedAnalyses &LHS, PreservedAnalyses &RHS) {
  LHS.swap(RHS);
}

/// \brief Implementation details of the pass manager interfaces.
namespace detail {

/// \brief Template for the abstract base class used to dispatch
/// polymorphically over pass objects.
template <typename IRUnitT, typename AnalysisManagerT> struct PassConcept {
  // Boiler plate necessary for the container of derived classes.
  virtual ~PassConcept() {}
  virtual PassConcept *clone() = 0;

  /// \brief The polymorphic API which runs the pass over a given IR entity.
  ///
  /// Note that actual pass object can omit the analysis manager argument if
  /// desired. Also that the analysis manager may be null if there is no
  /// analysis manager in the pass pipeline.
  virtual PreservedAnalyses run(IRUnitT IR, AnalysisManagerT *AM) = 0;

  /// \brief Polymorphic method to access the name of a pass.
  virtual StringRef name() = 0;
};

/// \brief SFINAE metafunction for computing whether \c PassT has a run method
/// accepting an \c AnalysisManagerT.
template <typename IRUnitT, typename AnalysisManagerT, typename PassT,
          typename ResultT>
class PassRunAcceptsAnalysisManager {
  typedef char SmallType;
  struct BigType { char a, b; };

  template <typename T, ResultT (T::*)(IRUnitT, AnalysisManagerT *)>
  struct Checker;

  template <typename T> static SmallType f(Checker<T, &T::run> *);
  template <typename T> static BigType f(...);

public:
  enum { Value = sizeof(f<PassT>(0)) == sizeof(SmallType) };
};

/// \brief A template wrapper used to implement the polymorphic API.
///
/// Can be instantiated for any object which provides a \c run method accepting
/// an \c IRUnitT. It requires the pass to be a copyable object. When the
/// \c run method also accepts an \c AnalysisManagerT*, we pass it along.
template <typename IRUnitT, typename AnalysisManagerT, typename PassT,
          bool AcceptsAnalysisManager = PassRunAcceptsAnalysisManager<
              IRUnitT, AnalysisManagerT, PassT, PreservedAnalyses>::Value>
struct PassModel;

/// \brief Specialization of \c PassModel for passes that accept an analyis
/// manager.
template <typename IRUnitT, typename AnalysisManagerT, typename PassT>
struct PassModel<IRUnitT, AnalysisManagerT, PassT,
                 true> : PassConcept<IRUnitT, AnalysisManagerT> {
  PassModel(PassT Pass) : Pass(std::move(Pass)) {}
  virtual PassModel *clone() { return new PassModel(Pass); }
  virtual PreservedAnalyses run(IRUnitT IR, AnalysisManagerT *AM) {
    return Pass.run(IR, AM);
  }
  virtual StringRef name() { return PassT::name(); }
  PassT Pass;
};

/// \brief Specialization of \c PassModel for passes that accept an analyis
/// manager.
template <typename IRUnitT, typename AnalysisManagerT, typename PassT>
struct PassModel<IRUnitT, AnalysisManagerT, PassT,
                 false> : PassConcept<IRUnitT, AnalysisManagerT> {
  PassModel(PassT Pass) : Pass(std::move(Pass)) {}
  virtual PassModel *clone() { return new PassModel(Pass); }
  virtual PreservedAnalyses run(IRUnitT IR, AnalysisManagerT *AM) {
    return Pass.run(IR);
  }
  virtual StringRef name() { return PassT::name(); }
  PassT Pass;
};

/// \brief Abstract concept of an analysis result.
///
/// This concept is parameterized over the IR unit that this result pertains
/// to.
template <typename IRUnitT> struct AnalysisResultConcept {
  virtual ~AnalysisResultConcept() {}
  virtual AnalysisResultConcept *clone() = 0;

  /// \brief Method to try and mark a result as invalid.
  ///
  /// When the outer analysis manager detects a change in some underlying
  /// unit of the IR, it will call this method on all of the results cached.
  ///
  /// This method also receives a set of preserved analyses which can be used
  /// to avoid invalidation because the pass which changed the underlying IR
  /// took care to update or preserve the analysis result in some way.
  ///
  /// \returns true if the result is indeed invalid (the default).
  virtual bool invalidate(IRUnitT IR, const PreservedAnalyses &PA) = 0;
};

/// \brief SFINAE metafunction for computing whether \c ResultT provides an
/// \c invalidate member function.
template <typename IRUnitT, typename ResultT> class ResultHasInvalidateMethod {
  typedef char SmallType;
  struct BigType { char a, b; };

  template <typename T, bool (T::*)(IRUnitT, const PreservedAnalyses &)>
  struct Checker;

  template <typename T> static SmallType f(Checker<T, &T::invalidate> *);
  template <typename T> static BigType f(...);

public:
  enum { Value = sizeof(f<ResultT>(0)) == sizeof(SmallType) };
};

/// \brief Wrapper to model the analysis result concept.
///
/// By default, this will implement the invalidate method with a trivial
/// implementation so that the actual analysis result doesn't need to provide
/// an invalidation handler. It is only selected when the invalidation handler
/// is not part of the ResultT's interface.
template <typename IRUnitT, typename PassT, typename ResultT,
          bool HasInvalidateHandler =
              ResultHasInvalidateMethod<IRUnitT, ResultT>::Value>
struct AnalysisResultModel;

/// \brief Specialization of \c AnalysisResultModel which provides the default
/// invalidate functionality.
template <typename IRUnitT, typename PassT, typename ResultT>
struct AnalysisResultModel<IRUnitT, PassT, ResultT,
                           false> : AnalysisResultConcept<IRUnitT> {
  AnalysisResultModel(ResultT Result) : Result(std::move(Result)) {}
  AnalysisResultModel *clone() override {
    return new AnalysisResultModel(Result);
  }

  /// \brief The model bases invalidation solely on being in the preserved set.
  //
  // FIXME: We should actually use two different concepts for analysis results
  // rather than two different models, and avoid the indirect function call for
  // ones that use the trivial behavior.
  bool invalidate(IRUnitT, const PreservedAnalyses &PA) override {
    return !PA.preserved(PassT::ID());
  }

  ResultT Result;
};

/// \brief Specialization of \c AnalysisResultModel which delegates invalidate
/// handling to \c ResultT.
template <typename IRUnitT, typename PassT, typename ResultT>
struct AnalysisResultModel<IRUnitT, PassT, ResultT,
                           true> : AnalysisResultConcept<IRUnitT> {
  AnalysisResultModel(ResultT Result) : Result(std::move(Result)) {}
  virtual AnalysisResultModel *clone() {
    return new AnalysisResultModel(Result);
  }

  /// \brief The model delegates to the \c ResultT method.
  virtual bool invalidate(IRUnitT IR, const PreservedAnalyses &PA) {
    return Result.invalidate(IR, PA);
  }

  ResultT Result;
};

/// \brief Abstract concept of an analysis pass.
///
/// This concept is parameterized over the IR unit that it can run over and
/// produce an analysis result.
template <typename IRUnitT, typename AnalysisManagerT>
struct AnalysisPassConcept {
  virtual ~AnalysisPassConcept() {}
  virtual AnalysisPassConcept *clone() = 0;

  /// \brief Method to run this analysis over a unit of IR.
  /// \returns The analysis result object to be queried by users, the caller
  /// takes ownership.
  virtual AnalysisResultConcept<IRUnitT> *run(IRUnitT IR,
                                              AnalysisManagerT *AM) = 0;
};

/// \brief Wrapper to model the analysis pass concept.
///
/// Can wrap any type which implements a suitable \c run method. The method
/// must accept the IRUnitT as an argument and produce an object which can be
/// wrapped in a \c AnalysisResultModel.
template <typename IRUnitT, typename AnalysisManagerT, typename PassT,
          bool AcceptsAnalysisManager = PassRunAcceptsAnalysisManager<
              IRUnitT, AnalysisManagerT, PassT,
              typename PassT::Result>::Value> struct AnalysisPassModel;

/// \brief Specialization of \c AnalysisPassModel which passes an
/// \c AnalysisManager to PassT's run method.
template <typename IRUnitT, typename AnalysisManagerT, typename PassT>
struct AnalysisPassModel<IRUnitT, AnalysisManagerT, PassT,
                         true> : AnalysisPassConcept<IRUnitT,
                                                     AnalysisManagerT> {
  AnalysisPassModel(PassT Pass) : Pass(std::move(Pass)) {}
  virtual AnalysisPassModel *clone() { return new AnalysisPassModel(Pass); }

  // FIXME: Replace PassT::Result with type traits when we use C++11.
  typedef AnalysisResultModel<IRUnitT, PassT, typename PassT::Result>
      ResultModelT;

  /// \brief The model delegates to the \c PassT::run method.
  ///
  /// The return is wrapped in an \c AnalysisResultModel.
  virtual ResultModelT *run(IRUnitT IR, AnalysisManagerT *AM) {
    return new ResultModelT(Pass.run(IR, AM));
  }

  PassT Pass;
};

/// \brief Specialization of \c AnalysisPassModel which does not pass an
/// \c AnalysisManager to PassT's run method.
template <typename IRUnitT, typename AnalysisManagerT, typename PassT>
struct AnalysisPassModel<IRUnitT, AnalysisManagerT, PassT,
                         false> : AnalysisPassConcept<IRUnitT,
                                                     AnalysisManagerT> {
  AnalysisPassModel(PassT Pass) : Pass(std::move(Pass)) {}
  virtual AnalysisPassModel *clone() { return new AnalysisPassModel(Pass); }

  // FIXME: Replace PassT::Result with type traits when we use C++11.
  typedef AnalysisResultModel<IRUnitT, PassT, typename PassT::Result>
      ResultModelT;

  /// \brief The model delegates to the \c PassT::run method.
  ///
  /// The return is wrapped in an \c AnalysisResultModel.
  virtual ResultModelT *run(IRUnitT IR, AnalysisManagerT *) {
    return new ResultModelT(Pass.run(IR));
  }

  PassT Pass;
};

}

class ModuleAnalysisManager;

class ModulePassManager {
public:
  explicit ModulePassManager() {}

  /// \brief Run all of the module passes in this module pass manager over
  /// a module.
  ///
  /// This method should only be called for a single module as there is the
  /// expectation that the lifetime of a pass is bounded to that of a module.
  PreservedAnalyses run(Module *M, ModuleAnalysisManager *AM = 0);

  template <typename ModulePassT> void addPass(ModulePassT Pass) {
    Passes.push_back(new ModulePassModel<ModulePassT>(std::move(Pass)));
  }

  static StringRef name() { return "ModulePassManager"; }

private:
  // Pull in the concept type and model template specialized for modules.
  typedef detail::PassConcept<Module *, ModuleAnalysisManager> ModulePassConcept;
  template <typename PassT>
  struct ModulePassModel
      : detail::PassModel<Module *, ModuleAnalysisManager, PassT> {
    ModulePassModel(PassT Pass)
        : detail::PassModel<Module *, ModuleAnalysisManager, PassT>(Pass) {}
  };

  std::vector<polymorphic_ptr<ModulePassConcept> > Passes;
};

class FunctionAnalysisManager;

class FunctionPassManager {
public:
  explicit FunctionPassManager() {}

  template <typename FunctionPassT> void addPass(FunctionPassT Pass) {
    Passes.push_back(new FunctionPassModel<FunctionPassT>(std::move(Pass)));
  }

  PreservedAnalyses run(Function *F, FunctionAnalysisManager *AM = 0);

  static StringRef name() { return "FunctionPassManager"; }

private:
  // Pull in the concept type and model template specialized for functions.
  typedef detail::PassConcept<Function *, FunctionAnalysisManager>
      FunctionPassConcept;
  template <typename PassT>
  struct FunctionPassModel
      : detail::PassModel<Function *, FunctionAnalysisManager, PassT> {
    FunctionPassModel(PassT Pass)
        : detail::PassModel<Function *, FunctionAnalysisManager, PassT>(Pass) {}
  };

  std::vector<polymorphic_ptr<FunctionPassConcept> > Passes;
};

namespace detail {

/// \brief A CRTP base used to implement analysis managers.
///
/// This class template serves as the boiler plate of an analysis manager. Any
/// analysis manager can be implemented on top of this base class. Any
/// implementation will be required to provide specific hooks:
///
/// - getResultImpl
/// - getCachedResultImpl
/// - invalidateImpl
///
/// The details of the call pattern are within.
template <typename DerivedT, typename IRUnitT>
class AnalysisManagerBase {
  DerivedT *derived_this() { return static_cast<DerivedT *>(this); }
  const DerivedT *derived_this() const { return static_cast<const DerivedT *>(this); }

protected:
  typedef detail::AnalysisResultConcept<IRUnitT> ResultConceptT;
  typedef detail::AnalysisPassConcept<IRUnitT, DerivedT> PassConceptT;

  // FIXME: Provide template aliases for the models when we're using C++11 in
  // a mode supporting them.

public:
  /// \brief Get the result of an analysis pass for this module.
  ///
  /// If there is not a valid cached result in the manager already, this will
  /// re-run the analysis to produce a valid result.
  template <typename PassT> typename PassT::Result &getResult(IRUnitT IR) {
    assert(AnalysisPasses.count(PassT::ID()) &&
           "This analysis pass was not registered prior to being queried");

    ResultConceptT &ResultConcept =
        derived_this()->getResultImpl(PassT::ID(), IR);
    typedef detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result>
        ResultModelT;
    return static_cast<ResultModelT &>(ResultConcept).Result;
  }

  /// \brief Get the cached result of an analysis pass for this module.
  ///
  /// This method never runs the analysis.
  ///
  /// \returns null if there is no cached result.
  template <typename PassT>
  typename PassT::Result *getCachedResult(IRUnitT IR) const {
    assert(AnalysisPasses.count(PassT::ID()) &&
           "This analysis pass was not registered prior to being queried");

    ResultConceptT *ResultConcept =
        derived_this()->getCachedResultImpl(PassT::ID(), IR);
    if (!ResultConcept)
      return 0;

    typedef detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result>
        ResultModelT;
    return &static_cast<ResultModelT *>(ResultConcept)->Result;
  }

  /// \brief Register an analysis pass with the manager.
  ///
  /// This provides an initialized and set-up analysis pass to the analysis
  /// manager. Whomever is setting up analysis passes must use this to populate
  /// the manager with all of the analysis passes available.
  template <typename PassT> void registerPass(PassT Pass) {
    assert(!AnalysisPasses.count(PassT::ID()) &&
           "Registered the same analysis pass twice!");
    typedef detail::AnalysisPassModel<IRUnitT, DerivedT, PassT> PassModelT;
    AnalysisPasses[PassT::ID()] = new PassModelT(std::move(Pass));
  }

  /// \brief Invalidate a specific analysis pass for an IR module.
  ///
  /// Note that the analysis result can disregard invalidation.
  template <typename PassT> void invalidate(Module *M) {
    assert(AnalysisPasses.count(PassT::ID()) &&
           "This analysis pass was not registered prior to being invalidated");
    derived_this()->invalidateImpl(PassT::ID(), M);
  }

  /// \brief Invalidate analyses cached for an IR unit.
  ///
  /// Walk through all of the analyses pertaining to this unit of IR and
  /// invalidate them unless they are preserved by the PreservedAnalyses set.
  void invalidate(IRUnitT IR, const PreservedAnalyses &PA) {
    derived_this()->invalidateImpl(IR, PA);
  }

protected:
  /// \brief Lookup a registered analysis pass.
  PassConceptT &lookupPass(void *PassID) {
    typename AnalysisPassMapT::iterator PI = AnalysisPasses.find(PassID);
    assert(PI != AnalysisPasses.end() &&
           "Analysis passes must be registered prior to being queried!");
    return *PI->second;
  }

  /// \brief Lookup a registered analysis pass.
  const PassConceptT &lookupPass(void *PassID) const {
    typename AnalysisPassMapT::const_iterator PI = AnalysisPasses.find(PassID);
    assert(PI != AnalysisPasses.end() &&
           "Analysis passes must be registered prior to being queried!");
    return *PI->second;
  }

private:
  /// \brief Map type from module analysis pass ID to pass concept pointer.
  typedef DenseMap<void *, polymorphic_ptr<PassConceptT> > AnalysisPassMapT;

  /// \brief Collection of module analysis passes, indexed by ID.
  AnalysisPassMapT AnalysisPasses;
};

}

/// \brief A module analysis pass manager with lazy running and caching of
/// results.
class ModuleAnalysisManager
    : public detail::AnalysisManagerBase<ModuleAnalysisManager, Module *> {
  friend class detail::AnalysisManagerBase<ModuleAnalysisManager, Module *>;
  typedef detail::AnalysisManagerBase<ModuleAnalysisManager, Module *> BaseT;
  typedef BaseT::ResultConceptT ResultConceptT;
  typedef BaseT::PassConceptT PassConceptT;

public:
  // Public methods provided by the base class.

private:
  /// \brief Get a module pass result, running the pass if necessary.
  ResultConceptT &getResultImpl(void *PassID, Module *M);

  /// \brief Get a cached module pass result or return null.
  ResultConceptT *getCachedResultImpl(void *PassID, Module *M) const;

  /// \brief Invalidate a module pass result.
  void invalidateImpl(void *PassID, Module *M);

  /// \brief Invalidate results across a module.
  void invalidateImpl(Module *M, const PreservedAnalyses &PA);

  /// \brief Map type from module analysis pass ID to pass result concept pointer.
  typedef DenseMap<void *,
                   polymorphic_ptr<detail::AnalysisResultConcept<Module *> > >
      ModuleAnalysisResultMapT;

  /// \brief Cache of computed module analysis results for this module.
  ModuleAnalysisResultMapT ModuleAnalysisResults;
};

/// \brief A function analysis manager to coordinate and cache analyses run over
/// a module.
class FunctionAnalysisManager
    : public detail::AnalysisManagerBase<FunctionAnalysisManager, Function *> {
  friend class detail::AnalysisManagerBase<FunctionAnalysisManager, Function *>;
  typedef detail::AnalysisManagerBase<FunctionAnalysisManager, Function *> BaseT;
  typedef BaseT::ResultConceptT ResultConceptT;
  typedef BaseT::PassConceptT PassConceptT;

public:
  // Most public APIs are inherited from the CRTP base class.

  /// \brief Returns true if the analysis manager has an empty results cache.
  bool empty() const;

  /// \brief Clear the function analysis result cache.
  ///
  /// This routine allows cleaning up when the set of functions itself has
  /// potentially changed, and thus we can't even look up a a result and
  /// invalidate it directly. Notably, this does *not* call invalidate
  /// functions as there is nothing to be done for them.
  void clear();

private:
  /// \brief Get a function pass result, running the pass if necessary.
  ResultConceptT &getResultImpl(void *PassID, Function *F);

  /// \brief Get a cached function pass result or return null.
  ResultConceptT *getCachedResultImpl(void *PassID, Function *F) const;

  /// \brief Invalidate a function pass result.
  void invalidateImpl(void *PassID, Function *F);

  /// \brief Invalidate the results for a function..
  void invalidateImpl(Function *F, const PreservedAnalyses &PA);

  /// \brief List of function analysis pass IDs and associated concept pointers.
  ///
  /// Requires iterators to be valid across appending new entries and arbitrary
  /// erases. Provides both the pass ID and concept pointer such that it is
  /// half of a bijection and provides storage for the actual result concept.
  typedef std::list<std::pair<
      void *, polymorphic_ptr<detail::AnalysisResultConcept<Function *> > > >
      FunctionAnalysisResultListT;

  /// \brief Map type from function pointer to our custom list type.
  typedef DenseMap<Function *, FunctionAnalysisResultListT>
  FunctionAnalysisResultListMapT;

  /// \brief Map from function to a list of function analysis results.
  ///
  /// Provides linear time removal of all analysis results for a function and
  /// the ultimate storage for a particular cached analysis result.
  FunctionAnalysisResultListMapT FunctionAnalysisResultLists;

  /// \brief Map type from a pair of analysis ID and function pointer to an
  /// iterator into a particular result list.
  typedef DenseMap<std::pair<void *, Function *>,
                   FunctionAnalysisResultListT::iterator>
      FunctionAnalysisResultMapT;

  /// \brief Map from an analysis ID and function to a particular cached
  /// analysis result.
  FunctionAnalysisResultMapT FunctionAnalysisResults;
};

/// \brief A module analysis which acts as a proxy for a function analysis
/// manager.
///
/// This primarily proxies invalidation information from the module analysis
/// manager and module pass manager to a function analysis manager. You should
/// never use a function analysis manager from within (transitively) a module
/// pass manager unless your parent module pass has received a proxy result
/// object for it.
class FunctionAnalysisManagerModuleProxy {
public:
  class Result;

  static void *ID() { return (void *)&PassID; }

  FunctionAnalysisManagerModuleProxy(FunctionAnalysisManager &FAM) : FAM(FAM) {}

  /// \brief Run the analysis pass and create our proxy result object.
  ///
  /// This doesn't do any interesting work, it is primarily used to insert our
  /// proxy result object into the module analysis cache so that we can proxy
  /// invalidation to the function analysis manager.
  ///
  /// In debug builds, it will also assert that the analysis manager is empty
  /// as no queries should arrive at the function analysis manager prior to
  /// this analysis being requested.
  Result run(Module *M);

private:
  static char PassID;

  FunctionAnalysisManager &FAM;
};

/// \brief The result proxy object for the
/// \c FunctionAnalysisManagerModuleProxy.
///
/// See its documentation for more information.
class FunctionAnalysisManagerModuleProxy::Result {
public:
  Result(FunctionAnalysisManager &FAM) : FAM(FAM) {}
  ~Result();

  /// \brief Accessor for the \c FunctionAnalysisManager.
  FunctionAnalysisManager &getManager() { return FAM; }

  /// \brief Handler for invalidation of the module.
  ///
  /// If this analysis itself is preserved, then we assume that the set of \c
  /// Function objects in the \c Module hasn't changed and thus we don't need
  /// to invalidate *all* cached data associated with a \c Function* in the \c
  /// FunctionAnalysisManager.
  ///
  /// Regardless of whether this analysis is marked as preserved, all of the
  /// analyses in the \c FunctionAnalysisManager are potentially invalidated
  /// based on the set of preserved analyses.
  bool invalidate(Module *M, const PreservedAnalyses &PA);

private:
  FunctionAnalysisManager &FAM;
};

/// \brief A function analysis which acts as a proxy for a module analysis
/// manager.
///
/// This primarily provides an accessor to a parent module analysis manager to
/// function passes. Only the const interface of the module analysis manager is
/// provided to indicate that once inside of a function analysis pass you
/// cannot request a module analysis to actually run. Instead, the user must
/// rely on the \c getCachedResult API.
///
/// This proxy *doesn't* manage the invalidation in any way. That is handled by
/// the recursive return path of each layer of the pass manager and the
/// returned PreservedAnalysis set.
class ModuleAnalysisManagerFunctionProxy {
public:
  /// \brief Result proxy object for \c ModuleAnalysisManagerFunctionProxy.
  class Result {
  public:
    Result(const ModuleAnalysisManager &MAM) : MAM(MAM) {}

    const ModuleAnalysisManager &getManager() const { return MAM; }

    /// \brief Handle invalidation by ignoring it, this pass is immutable.
    bool invalidate(Function *) { return false; }

  private:
    const ModuleAnalysisManager &MAM;
  };

  static void *ID() { return (void *)&PassID; }

  ModuleAnalysisManagerFunctionProxy(const ModuleAnalysisManager &MAM)
      : MAM(MAM) {}

  /// \brief Run the analysis pass and create our proxy result object.
  /// Nothing to see here, it just forwards the \c MAM reference into the
  /// result.
  Result run(Function *) { return Result(MAM); }

private:
  static char PassID;

  const ModuleAnalysisManager &MAM;
};

/// \brief Trivial adaptor that maps from a module to its functions.
///
/// Designed to allow composition of a FunctionPass(Manager) and
/// a ModulePassManager. Note that if this pass is constructed with a pointer
/// to a \c ModuleAnalysisManager it will run the
/// \c FunctionAnalysisManagerModuleProxy analysis prior to running the function
/// pass over the module to enable a \c FunctionAnalysisManager to be used
/// within this run safely.
template <typename FunctionPassT>
class ModuleToFunctionPassAdaptor {
public:
  explicit ModuleToFunctionPassAdaptor(FunctionPassT Pass)
      : Pass(std::move(Pass)) {}

  /// \brief Runs the function pass across every function in the module.
  PreservedAnalyses run(Module *M, ModuleAnalysisManager *AM) {
    FunctionAnalysisManager *FAM = 0;
    if (AM)
      // Setup the function analysis manager from its proxy.
      FAM = &AM->getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();

    PreservedAnalyses PA = PreservedAnalyses::all();
    for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I) {
      PreservedAnalyses PassPA = Pass.run(I, FAM);

      // We know that the function pass couldn't have invalidated any other
      // function's analyses (that's the contract of a function pass), so
      // directly handle the function analysis manager's invalidation here.
      if (FAM)
        FAM->invalidate(I, PassPA);

      // Then intersect the preserved set so that invalidation of module
      // analyses will eventually occur when the module pass completes.
      PA.intersect(std::move(PassPA));
    }

    // By definition we preserve the proxy. This precludes *any* invalidation
    // of function analyses by the proxy, but that's OK because we've taken
    // care to invalidate analyses in the function analysis manager
    // incrementally above.
    PA.preserve<FunctionAnalysisManagerModuleProxy>();
    return PA;
  }

  static StringRef name() { return "ModuleToFunctionPassAdaptor"; }

private:
  FunctionPassT Pass;
};

/// \brief A function to deduce a function pass type and wrap it in the
/// templated adaptor.
template <typename FunctionPassT>
ModuleToFunctionPassAdaptor<FunctionPassT>
createModuleToFunctionPassAdaptor(FunctionPassT Pass) {
  return ModuleToFunctionPassAdaptor<FunctionPassT>(std::move(Pass));
}

}

#endif