summaryrefslogtreecommitdiff
path: root/include/llvm/Support/PatternMatch.h
blob: 7420fab1a743d89e62ec87595a9753c87d887ce7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
//===-- llvm/Support/PatternMatch.h - Match on the LLVM IR ------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file provides a simple and efficient mechanism for performing general
// tree-based pattern matches on the LLVM IR.  The power of these routines is
// that it allows you to write concise patterns that are expressive and easy to
// understand.  The other major advantage of this is that it allows you to
// trivially capture/bind elements in the pattern to variables.  For example,
// you can do something like this:
//
//  Value *Exp = ...
//  Value *X, *Y;  ConstantInt *C1, *C2;      // (X & C1) | (Y & C2)
//  if (match(Exp, m_Or(m_And(m_Value(X), m_ConstantInt(C1)),
//                      m_And(m_Value(Y), m_ConstantInt(C2))))) {
//    ... Pattern is matched and variables are bound ...
//  }
//
// This is primarily useful to things like the instruction combiner, but can
// also be useful for static analysis tools or code generators.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_SUPPORT_PATTERNMATCH_H
#define LLVM_SUPPORT_PATTERNMATCH_H

#include "llvm/Constants.h"
#include "llvm/Instructions.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/Operator.h"
#include "llvm/Support/CallSite.h"

namespace llvm {
namespace PatternMatch {

template<typename Val, typename Pattern>
bool match(Val *V, const Pattern &P) {
  return const_cast<Pattern&>(P).match(V);
}


template<typename SubPattern_t>
struct OneUse_match {
  SubPattern_t SubPattern;

  OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {}

  template<typename OpTy>
  bool match(OpTy *V) {
    return V->hasOneUse() && SubPattern.match(V);
  }
};

template<typename T>
inline OneUse_match<T> m_OneUse(const T &SubPattern) { return SubPattern; }


template<typename Class>
struct class_match {
  template<typename ITy>
  bool match(ITy *V) { return isa<Class>(V); }
};

/// m_Value() - Match an arbitrary value and ignore it.
inline class_match<Value> m_Value() { return class_match<Value>(); }
/// m_ConstantInt() - Match an arbitrary ConstantInt and ignore it.
inline class_match<ConstantInt> m_ConstantInt() {
  return class_match<ConstantInt>();
}
/// m_Undef() - Match an arbitrary undef constant.
inline class_match<UndefValue> m_Undef() { return class_match<UndefValue>(); }

inline class_match<Constant> m_Constant() { return class_match<Constant>(); }

/// Matching combinators
template<typename LTy, typename RTy>
struct match_combine_or {
  LTy L;
  RTy R;

  match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) { }

  template<typename ITy>
  bool match(ITy *V) {
    if (L.match(V))
      return true;
    if (R.match(V))
      return true;
    return false;
  }
};

template<typename LTy, typename RTy>
struct match_combine_and {
  LTy L;
  RTy R;

  match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) { }

  template<typename ITy>
  bool match(ITy *V) {
    if (L.match(V))
      if (R.match(V))
        return true;
    return false;
  }
};

/// Combine two pattern matchers matching L || R
template<typename LTy, typename RTy>
inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) {
  return match_combine_or<LTy, RTy>(L, R);
}

/// Combine two pattern matchers matching L && R
template<typename LTy, typename RTy>
inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) {
  return match_combine_and<LTy, RTy>(L, R);
}

struct match_zero {
  template<typename ITy>
  bool match(ITy *V) {
    if (const Constant *C = dyn_cast<Constant>(V))
      return C->isNullValue();
    return false;
  }
};

/// m_Zero() - Match an arbitrary zero/null constant.  This includes
/// zero_initializer for vectors and ConstantPointerNull for pointers.
inline match_zero m_Zero() { return match_zero(); }

struct match_neg_zero {
  template<typename ITy>
  bool match(ITy *V) {
    if (const Constant *C = dyn_cast<Constant>(V))
      return C->isNegativeZeroValue();
    return false;
  }
};

/// m_NegZero() - Match an arbitrary zero/null constant.  This includes
/// zero_initializer for vectors and ConstantPointerNull for pointers. For
/// floating point constants, this will match negative zero but not positive
/// zero
inline match_neg_zero m_NegZero() { return match_neg_zero(); }

/// m_AnyZero() - Match an arbitrary zero/null constant.  This includes
/// zero_initializer for vectors and ConstantPointerNull for pointers. For
/// floating point constants, this will match negative zero and positive zero
inline match_combine_or<match_zero, match_neg_zero> m_AnyZero() {
  return m_CombineOr(m_Zero(), m_NegZero());
}

struct apint_match {
  const APInt *&Res;
  apint_match(const APInt *&R) : Res(R) {}
  template<typename ITy>
  bool match(ITy *V) {
    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
      Res = &CI->getValue();
      return true;
    }
    if (V->getType()->isVectorTy())
      if (const Constant *C = dyn_cast<Constant>(V))
        if (ConstantInt *CI =
            dyn_cast_or_null<ConstantInt>(C->getSplatValue())) {
          Res = &CI->getValue();
          return true;
        }
    return false;
  }
};

/// m_APInt - Match a ConstantInt or splatted ConstantVector, binding the
/// specified pointer to the contained APInt.
inline apint_match m_APInt(const APInt *&Res) { return Res; }


template<int64_t Val>
struct constantint_match {
  template<typename ITy>
  bool match(ITy *V) {
    if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
      const APInt &CIV = CI->getValue();
      if (Val >= 0)
        return CIV == static_cast<uint64_t>(Val);
      // If Val is negative, and CI is shorter than it, truncate to the right
      // number of bits.  If it is larger, then we have to sign extend.  Just
      // compare their negated values.
      return -CIV == -Val;
    }
    return false;
  }
};

/// m_ConstantInt<int64_t> - Match a ConstantInt with a specific value.
template<int64_t Val>
inline constantint_match<Val> m_ConstantInt() {
  return constantint_match<Val>();
}

/// cst_pred_ty - This helper class is used to match scalar and vector constants
/// that satisfy a specified predicate.
template<typename Predicate>
struct cst_pred_ty : public Predicate {
  template<typename ITy>
  bool match(ITy *V) {
    if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
      return this->isValue(CI->getValue());
    if (V->getType()->isVectorTy())
      if (const Constant *C = dyn_cast<Constant>(V))
        if (const ConstantInt *CI =
            dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
          return this->isValue(CI->getValue());
    return false;
  }
};

/// api_pred_ty - This helper class is used to match scalar and vector constants
/// that satisfy a specified predicate, and bind them to an APInt.
template<typename Predicate>
struct api_pred_ty : public Predicate {
  const APInt *&Res;
  api_pred_ty(const APInt *&R) : Res(R) {}
  template<typename ITy>
  bool match(ITy *V) {
    if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
      if (this->isValue(CI->getValue())) {
        Res = &CI->getValue();
        return true;
      }
    if (V->getType()->isVectorTy())
      if (const Constant *C = dyn_cast<Constant>(V))
        if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
          if (this->isValue(CI->getValue())) {
            Res = &CI->getValue();
            return true;
          }

    return false;
  }
};


struct is_one {
  bool isValue(const APInt &C) { return C == 1; }
};

/// m_One() - Match an integer 1 or a vector with all elements equal to 1.
inline cst_pred_ty<is_one> m_One() { return cst_pred_ty<is_one>(); }
inline api_pred_ty<is_one> m_One(const APInt *&V) { return V; }

struct is_all_ones {
  bool isValue(const APInt &C) { return C.isAllOnesValue(); }
};

/// m_AllOnes() - Match an integer or vector with all bits set to true.
inline cst_pred_ty<is_all_ones> m_AllOnes() {return cst_pred_ty<is_all_ones>();}
inline api_pred_ty<is_all_ones> m_AllOnes(const APInt *&V) { return V; }

struct is_sign_bit {
  bool isValue(const APInt &C) { return C.isSignBit(); }
};

/// m_SignBit() - Match an integer or vector with only the sign bit(s) set.
inline cst_pred_ty<is_sign_bit> m_SignBit() {return cst_pred_ty<is_sign_bit>();}
inline api_pred_ty<is_sign_bit> m_SignBit(const APInt *&V) { return V; }

struct is_power2 {
  bool isValue(const APInt &C) { return C.isPowerOf2(); }
};

/// m_Power2() - Match an integer or vector power of 2.
inline cst_pred_ty<is_power2> m_Power2() { return cst_pred_ty<is_power2>(); }
inline api_pred_ty<is_power2> m_Power2(const APInt *&V) { return V; }

template<typename Class>
struct bind_ty {
  Class *&VR;
  bind_ty(Class *&V) : VR(V) {}

  template<typename ITy>
  bool match(ITy *V) {
    if (Class *CV = dyn_cast<Class>(V)) {
      VR = CV;
      return true;
    }
    return false;
  }
};

/// m_Value - Match a value, capturing it if we match.
inline bind_ty<Value> m_Value(Value *&V) { return V; }

/// m_ConstantInt - Match a ConstantInt, capturing the value if we match.
inline bind_ty<ConstantInt> m_ConstantInt(ConstantInt *&CI) { return CI; }

/// m_Constant - Match a Constant, capturing the value if we match.
inline bind_ty<Constant> m_Constant(Constant *&C) { return C; }

/// m_ConstantFP - Match a ConstantFP, capturing the value if we match.
inline bind_ty<ConstantFP> m_ConstantFP(ConstantFP *&C) { return C; }

/// specificval_ty - Match a specified Value*.
struct specificval_ty {
  const Value *Val;
  specificval_ty(const Value *V) : Val(V) {}

  template<typename ITy>
  bool match(ITy *V) {
    return V == Val;
  }
};

/// m_Specific - Match if we have a specific specified value.
inline specificval_ty m_Specific(const Value *V) { return V; }

/// Match a specified floating point value or vector of all elements of that
/// value.
struct specific_fpval {
  double Val;
  specific_fpval(double V) : Val(V) {}

  template<typename ITy>
  bool match(ITy *V) {
    if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
      return CFP->isExactlyValue(Val);
    if (V->getType()->isVectorTy())
      if (const Constant *C = dyn_cast<Constant>(V))
        if (ConstantFP *CFP = dyn_cast_or_null<ConstantFP>(C->getSplatValue()))
          return CFP->isExactlyValue(Val);
    return false;
  }
};

/// Match a specific floating point value or vector with all elements equal to
/// the value.
inline specific_fpval m_SpecificFP(double V) { return specific_fpval(V); }

/// Match a float 1.0 or vector with all elements equal to 1.0.
inline specific_fpval m_FPOne() { return m_SpecificFP(1.0); }

struct bind_const_intval_ty {
  uint64_t &VR;
  bind_const_intval_ty(uint64_t &V) : VR(V) {}

  template<typename ITy>
  bool match(ITy *V) {
    if (ConstantInt *CV = dyn_cast<ConstantInt>(V))
      if (CV->getBitWidth() <= 64) {
        VR = CV->getZExtValue();
        return true;
      }
    return false;
  }
};

/// m_ConstantInt - Match a ConstantInt and bind to its value.  This does not
/// match ConstantInts wider than 64-bits.
inline bind_const_intval_ty m_ConstantInt(uint64_t &V) { return V; }

//===----------------------------------------------------------------------===//
// Matchers for specific binary operators.
//

template<typename LHS_t, typename RHS_t, unsigned Opcode>
struct BinaryOp_match {
  LHS_t L;
  RHS_t R;

  BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}

  template<typename OpTy>
  bool match(OpTy *V) {
    if (V->getValueID() == Value::InstructionVal + Opcode) {
      BinaryOperator *I = cast<BinaryOperator>(V);
      return L.match(I->getOperand(0)) && R.match(I->getOperand(1));
    }
    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
      return CE->getOpcode() == Opcode && L.match(CE->getOperand(0)) &&
             R.match(CE->getOperand(1));
    return false;
  }
};

template<typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::Add>
m_Add(const LHS &L, const RHS &R) {
  return BinaryOp_match<LHS, RHS, Instruction::Add>(L, R);
}

template<typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::FAdd>
m_FAdd(const LHS &L, const RHS &R) {
  return BinaryOp_match<LHS, RHS, Instruction::FAdd>(L, R);
}

template<typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::Sub>
m_Sub(const LHS &L, const RHS &R) {
  return BinaryOp_match<LHS, RHS, Instruction::Sub>(L, R);
}

template<typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::FSub>
m_FSub(const LHS &L, const RHS &R) {
  return BinaryOp_match<LHS, RHS, Instruction::FSub>(L, R);
}

template<typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::Mul>
m_Mul(const LHS &L, const RHS &R) {
  return BinaryOp_match<LHS, RHS, Instruction::Mul>(L, R);
}

template<typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::FMul>
m_FMul(const LHS &L, const RHS &R) {
  return BinaryOp_match<LHS, RHS, Instruction::FMul>(L, R);
}

template<typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::UDiv>
m_UDiv(const LHS &L, const RHS &R) {
  return BinaryOp_match<LHS, RHS, Instruction::UDiv>(L, R);
}

template<typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::SDiv>
m_SDiv(const LHS &L, const RHS &R) {
  return BinaryOp_match<LHS, RHS, Instruction::SDiv>(L, R);
}

template<typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::FDiv>
m_FDiv(const LHS &L, const RHS &R) {
  return BinaryOp_match<LHS, RHS, Instruction::FDiv>(L, R);
}

template<typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::URem>
m_URem(const LHS &L, const RHS &R) {
  return BinaryOp_match<LHS, RHS, Instruction::URem>(L, R);
}

template<typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::SRem>
m_SRem(const LHS &L, const RHS &R) {
  return BinaryOp_match<LHS, RHS, Instruction::SRem>(L, R);
}

template<typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::FRem>
m_FRem(const LHS &L, const RHS &R) {
  return BinaryOp_match<LHS, RHS, Instruction::FRem>(L, R);
}

template<typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::And>
m_And(const LHS &L, const RHS &R) {
  return BinaryOp_match<LHS, RHS, Instruction::And>(L, R);
}

template<typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::Or>
m_Or(const LHS &L, const RHS &R) {
  return BinaryOp_match<LHS, RHS, Instruction::Or>(L, R);
}

template<typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::Xor>
m_Xor(const LHS &L, const RHS &R) {
  return BinaryOp_match<LHS, RHS, Instruction::Xor>(L, R);
}

template<typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::Shl>
m_Shl(const LHS &L, const RHS &R) {
  return BinaryOp_match<LHS, RHS, Instruction::Shl>(L, R);
}

template<typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::LShr>
m_LShr(const LHS &L, const RHS &R) {
  return BinaryOp_match<LHS, RHS, Instruction::LShr>(L, R);
}

template<typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::AShr>
m_AShr(const LHS &L, const RHS &R) {
  return BinaryOp_match<LHS, RHS, Instruction::AShr>(L, R);
}

//===----------------------------------------------------------------------===//
// Class that matches two different binary ops.
//
template<typename LHS_t, typename RHS_t, unsigned Opc1, unsigned Opc2>
struct BinOp2_match {
  LHS_t L;
  RHS_t R;

  BinOp2_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}

  template<typename OpTy>
  bool match(OpTy *V) {
    if (V->getValueID() == Value::InstructionVal + Opc1 ||
        V->getValueID() == Value::InstructionVal + Opc2) {
      BinaryOperator *I = cast<BinaryOperator>(V);
      return L.match(I->getOperand(0)) && R.match(I->getOperand(1));
    }
    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
      return (CE->getOpcode() == Opc1 || CE->getOpcode() == Opc2) &&
             L.match(CE->getOperand(0)) && R.match(CE->getOperand(1));
    return false;
  }
};

/// m_Shr - Matches LShr or AShr.
template<typename LHS, typename RHS>
inline BinOp2_match<LHS, RHS, Instruction::LShr, Instruction::AShr>
m_Shr(const LHS &L, const RHS &R) {
  return BinOp2_match<LHS, RHS, Instruction::LShr, Instruction::AShr>(L, R);
}

/// m_LogicalShift - Matches LShr or Shl.
template<typename LHS, typename RHS>
inline BinOp2_match<LHS, RHS, Instruction::LShr, Instruction::Shl>
m_LogicalShift(const LHS &L, const RHS &R) {
  return BinOp2_match<LHS, RHS, Instruction::LShr, Instruction::Shl>(L, R);
}

/// m_IDiv - Matches UDiv and SDiv.
template<typename LHS, typename RHS>
inline BinOp2_match<LHS, RHS, Instruction::SDiv, Instruction::UDiv>
m_IDiv(const LHS &L, const RHS &R) {
  return BinOp2_match<LHS, RHS, Instruction::SDiv, Instruction::UDiv>(L, R);
}

//===----------------------------------------------------------------------===//
// Class that matches exact binary ops.
//
template<typename SubPattern_t>
struct Exact_match {
  SubPattern_t SubPattern;

  Exact_match(const SubPattern_t &SP) : SubPattern(SP) {}

  template<typename OpTy>
  bool match(OpTy *V) {
    if (PossiblyExactOperator *PEO = dyn_cast<PossiblyExactOperator>(V))
      return PEO->isExact() && SubPattern.match(V);
    return false;
  }
};

template<typename T>
inline Exact_match<T> m_Exact(const T &SubPattern) { return SubPattern; }

//===----------------------------------------------------------------------===//
// Matchers for CmpInst classes
//

template<typename LHS_t, typename RHS_t, typename Class, typename PredicateTy>
struct CmpClass_match {
  PredicateTy &Predicate;
  LHS_t L;
  RHS_t R;

  CmpClass_match(PredicateTy &Pred, const LHS_t &LHS, const RHS_t &RHS)
    : Predicate(Pred), L(LHS), R(RHS) {}

  template<typename OpTy>
  bool match(OpTy *V) {
    if (Class *I = dyn_cast<Class>(V))
      if (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) {
        Predicate = I->getPredicate();
        return true;
      }
    return false;
  }
};

template<typename LHS, typename RHS>
inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>
m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
  return CmpClass_match<LHS, RHS,
                        ICmpInst, ICmpInst::Predicate>(Pred, L, R);
}

template<typename LHS, typename RHS>
inline CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>
m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
  return CmpClass_match<LHS, RHS,
                        FCmpInst, FCmpInst::Predicate>(Pred, L, R);
}

//===----------------------------------------------------------------------===//
// Matchers for SelectInst classes
//

template<typename Cond_t, typename LHS_t, typename RHS_t>
struct SelectClass_match {
  Cond_t C;
  LHS_t L;
  RHS_t R;

  SelectClass_match(const Cond_t &Cond, const LHS_t &LHS,
                    const RHS_t &RHS)
    : C(Cond), L(LHS), R(RHS) {}

  template<typename OpTy>
  bool match(OpTy *V) {
    if (SelectInst *I = dyn_cast<SelectInst>(V))
      return C.match(I->getOperand(0)) &&
             L.match(I->getOperand(1)) &&
             R.match(I->getOperand(2));
    return false;
  }
};

template<typename Cond, typename LHS, typename RHS>
inline SelectClass_match<Cond, LHS, RHS>
m_Select(const Cond &C, const LHS &L, const RHS &R) {
  return SelectClass_match<Cond, LHS, RHS>(C, L, R);
}

/// m_SelectCst - This matches a select of two constants, e.g.:
///    m_SelectCst<-1, 0>(m_Value(V))
template<int64_t L, int64_t R, typename Cond>
inline SelectClass_match<Cond, constantint_match<L>, constantint_match<R> >
m_SelectCst(const Cond &C) {
  return m_Select(C, m_ConstantInt<L>(), m_ConstantInt<R>());
}


//===----------------------------------------------------------------------===//
// Matchers for CastInst classes
//

template<typename Op_t, unsigned Opcode>
struct CastClass_match {
  Op_t Op;

  CastClass_match(const Op_t &OpMatch) : Op(OpMatch) {}

  template<typename OpTy>
  bool match(OpTy *V) {
    if (Operator *O = dyn_cast<Operator>(V))
      return O->getOpcode() == Opcode && Op.match(O->getOperand(0));
    return false;
  }
};

/// m_BitCast
template<typename OpTy>
inline CastClass_match<OpTy, Instruction::BitCast>
m_BitCast(const OpTy &Op) {
  return CastClass_match<OpTy, Instruction::BitCast>(Op);
}

/// m_PtrToInt
template<typename OpTy>
inline CastClass_match<OpTy, Instruction::PtrToInt>
m_PtrToInt(const OpTy &Op) {
  return CastClass_match<OpTy, Instruction::PtrToInt>(Op);
}

/// m_Trunc
template<typename OpTy>
inline CastClass_match<OpTy, Instruction::Trunc>
m_Trunc(const OpTy &Op) {
  return CastClass_match<OpTy, Instruction::Trunc>(Op);
}

/// m_SExt
template<typename OpTy>
inline CastClass_match<OpTy, Instruction::SExt>
m_SExt(const OpTy &Op) {
  return CastClass_match<OpTy, Instruction::SExt>(Op);
}

/// m_ZExt
template<typename OpTy>
inline CastClass_match<OpTy, Instruction::ZExt>
m_ZExt(const OpTy &Op) {
  return CastClass_match<OpTy, Instruction::ZExt>(Op);
}


//===----------------------------------------------------------------------===//
// Matchers for unary operators
//

template<typename LHS_t>
struct not_match {
  LHS_t L;

  not_match(const LHS_t &LHS) : L(LHS) {}

  template<typename OpTy>
  bool match(OpTy *V) {
    if (Operator *O = dyn_cast<Operator>(V))
      if (O->getOpcode() == Instruction::Xor)
        return matchIfNot(O->getOperand(0), O->getOperand(1));
    return false;
  }
private:
  bool matchIfNot(Value *LHS, Value *RHS) {
    return (isa<ConstantInt>(RHS) || isa<ConstantDataVector>(RHS) ||
            // FIXME: Remove CV.
            isa<ConstantVector>(RHS)) &&
           cast<Constant>(RHS)->isAllOnesValue() &&
           L.match(LHS);
  }
};

template<typename LHS>
inline not_match<LHS> m_Not(const LHS &L) { return L; }


template<typename LHS_t>
struct neg_match {
  LHS_t L;

  neg_match(const LHS_t &LHS) : L(LHS) {}

  template<typename OpTy>
  bool match(OpTy *V) {
    if (Operator *O = dyn_cast<Operator>(V))
      if (O->getOpcode() == Instruction::Sub)
        return matchIfNeg(O->getOperand(0), O->getOperand(1));
    return false;
  }
private:
  bool matchIfNeg(Value *LHS, Value *RHS) {
    return ((isa<ConstantInt>(LHS) && cast<ConstantInt>(LHS)->isZero()) ||
            isa<ConstantAggregateZero>(LHS)) &&
           L.match(RHS);
  }
};

/// m_Neg - Match an integer negate.
template<typename LHS>
inline neg_match<LHS> m_Neg(const LHS &L) { return L; }


template<typename LHS_t>
struct fneg_match {
  LHS_t L;

  fneg_match(const LHS_t &LHS) : L(LHS) {}

  template<typename OpTy>
  bool match(OpTy *V) {
    if (Operator *O = dyn_cast<Operator>(V))
      if (O->getOpcode() == Instruction::FSub)
        return matchIfFNeg(O->getOperand(0), O->getOperand(1));
    return false;
  }
private:
  bool matchIfFNeg(Value *LHS, Value *RHS) {
    if (ConstantFP *C = dyn_cast<ConstantFP>(LHS))
      return C->isNegativeZeroValue() && L.match(RHS);
    return false;
  }
};

/// m_FNeg - Match a floating point negate.
template<typename LHS>
inline fneg_match<LHS> m_FNeg(const LHS &L) { return L; }


//===----------------------------------------------------------------------===//
// Matchers for control flow.
//

template<typename Cond_t>
struct brc_match {
  Cond_t Cond;
  BasicBlock *&T, *&F;
  brc_match(const Cond_t &C, BasicBlock *&t, BasicBlock *&f)
    : Cond(C), T(t), F(f) {
  }

  template<typename OpTy>
  bool match(OpTy *V) {
    if (BranchInst *BI = dyn_cast<BranchInst>(V))
      if (BI->isConditional() && Cond.match(BI->getCondition())) {
        T = BI->getSuccessor(0);
        F = BI->getSuccessor(1);
        return true;
      }
    return false;
  }
};

template<typename Cond_t>
inline brc_match<Cond_t> m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F) {
  return brc_match<Cond_t>(C, T, F);
}


//===----------------------------------------------------------------------===//
// Matchers for max/min idioms, eg: "select (sgt x, y), x, y" -> smax(x,y).
//

template<typename LHS_t, typename RHS_t, typename Pred_t>
struct MaxMin_match {
  LHS_t L;
  RHS_t R;

  MaxMin_match(const LHS_t &LHS, const RHS_t &RHS)
    : L(LHS), R(RHS) {}

  template<typename OpTy>
  bool match(OpTy *V) {
    // Look for "(x pred y) ? x : y" or "(x pred y) ? y : x".
    SelectInst *SI = dyn_cast<SelectInst>(V);
    if (!SI)
      return false;
    ICmpInst *Cmp = dyn_cast<ICmpInst>(SI->getCondition());
    if (!Cmp)
      return false;
    // At this point we have a select conditioned on a comparison.  Check that
    // it is the values returned by the select that are being compared.
    Value *TrueVal = SI->getTrueValue();
    Value *FalseVal = SI->getFalseValue();
    Value *LHS = Cmp->getOperand(0);
    Value *RHS = Cmp->getOperand(1);
    if ((TrueVal != LHS || FalseVal != RHS) &&
        (TrueVal != RHS || FalseVal != LHS))
      return false;
    ICmpInst::Predicate Pred = LHS == TrueVal ?
      Cmp->getPredicate() : Cmp->getSwappedPredicate();
    // Does "(x pred y) ? x : y" represent the desired max/min operation?
    if (!Pred_t::match(Pred))
      return false;
    // It does!  Bind the operands.
    return L.match(LHS) && R.match(RHS);
  }
};

/// smax_pred_ty - Helper class for identifying signed max predicates.
struct smax_pred_ty {
  static bool match(ICmpInst::Predicate Pred) {
    return Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE;
  }
};

/// smin_pred_ty - Helper class for identifying signed min predicates.
struct smin_pred_ty {
  static bool match(ICmpInst::Predicate Pred) {
    return Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SLE;
  }
};

/// umax_pred_ty - Helper class for identifying unsigned max predicates.
struct umax_pred_ty {
  static bool match(ICmpInst::Predicate Pred) {
    return Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE;
  }
};

/// umin_pred_ty - Helper class for identifying unsigned min predicates.
struct umin_pred_ty {
  static bool match(ICmpInst::Predicate Pred) {
    return Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_ULE;
  }
};

template<typename LHS, typename RHS>
inline MaxMin_match<LHS, RHS, smax_pred_ty>
m_SMax(const LHS &L, const RHS &R) {
  return MaxMin_match<LHS, RHS, smax_pred_ty>(L, R);
}

template<typename LHS, typename RHS>
inline MaxMin_match<LHS, RHS, smin_pred_ty>
m_SMin(const LHS &L, const RHS &R) {
  return MaxMin_match<LHS, RHS, smin_pred_ty>(L, R);
}

template<typename LHS, typename RHS>
inline MaxMin_match<LHS, RHS, umax_pred_ty>
m_UMax(const LHS &L, const RHS &R) {
  return MaxMin_match<LHS, RHS, umax_pred_ty>(L, R);
}

template<typename LHS, typename RHS>
inline MaxMin_match<LHS, RHS, umin_pred_ty>
m_UMin(const LHS &L, const RHS &R) {
  return MaxMin_match<LHS, RHS, umin_pred_ty>(L, R);
}

template<typename Opnd_t>
struct Argument_match {
  unsigned OpI;
  Opnd_t Val;
  Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) { }

  template<typename OpTy>
  bool match(OpTy *V) {
    CallSite CS(V);
    return CS.isCall() && Val.match(CS.getArgument(OpI));
  }
};

/// Match an argument
template<unsigned OpI, typename Opnd_t>
inline Argument_match<Opnd_t> m_Argument(const Opnd_t &Op) {
  return Argument_match<Opnd_t>(OpI, Op);
}

/// Intrinsic matchers.
struct IntrinsicID_match {
  unsigned ID;
  IntrinsicID_match(unsigned IntrID) : ID(IntrID) { }

  template<typename OpTy>
  bool match(OpTy *V) {
    IntrinsicInst *II = dyn_cast<IntrinsicInst>(V);
    return II && II->getIntrinsicID() == ID;
  }
};

/// Intrinsic matches are combinations of ID matchers, and argument
/// matchers. Higher arity matcher are defined recursively in terms of and-ing
/// them with lower arity matchers. Here's some convenient typedefs for up to
/// several arguments, and more can be added as needed
template <typename T0 = void, typename T1 = void, typename T2 = void,
          typename T3 = void, typename T4 = void, typename T5 = void,
          typename T6 = void, typename T7 = void, typename T8 = void,
          typename T9 = void, typename T10 = void> struct m_Intrinsic_Ty;
template <typename T0>
struct m_Intrinsic_Ty<T0> {
  typedef match_combine_and<IntrinsicID_match, Argument_match<T0> > Ty;
};
template <typename T0, typename T1>
struct m_Intrinsic_Ty<T0, T1> {
  typedef match_combine_and<typename m_Intrinsic_Ty<T0>::Ty,
                            Argument_match<T1> > Ty;
};
template <typename T0, typename T1, typename T2>
struct m_Intrinsic_Ty<T0, T1, T2> {
  typedef match_combine_and<typename m_Intrinsic_Ty<T0, T1>::Ty,
                            Argument_match<T2> > Ty;
};
template <typename T0, typename T1, typename T2, typename T3>
struct m_Intrinsic_Ty<T0, T1, T2, T3> {
  typedef match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2>::Ty,
                            Argument_match<T3> > Ty;
};

/// Match intrinsic calls like this:
///   m_Intrinsic<Intrinsic::fabs>(m_Value(X))
template <unsigned IntrID>
inline IntrinsicID_match
m_Intrinsic() { return IntrinsicID_match(IntrID); }

template<unsigned IntrID, typename T0>
inline typename m_Intrinsic_Ty<T0>::Ty
m_Intrinsic(const T0 &Op0) {
  return m_CombineAnd(m_Intrinsic<IntrID>(), m_Argument<0>(Op0));
}

template<unsigned IntrID, typename T0, typename T1>
inline typename m_Intrinsic_Ty<T0, T1>::Ty
m_Intrinsic(const T0 &Op0, const T1 &Op1) {
  return m_CombineAnd(m_Intrinsic<IntrID>(Op0), m_Argument<1>(Op1));
}

template<unsigned IntrID, typename T0, typename T1, typename T2>
inline typename m_Intrinsic_Ty<T0, T1, T2>::Ty
m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) {
  return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1), m_Argument<2>(Op2));
}

template<unsigned IntrID, typename T0, typename T1, typename T2, typename T3>
inline typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty
m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) {
  return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2), m_Argument<3>(Op3));
}

// Helper intrinsic matching specializations
template<typename Opnd0>
inline typename m_Intrinsic_Ty<Opnd0>::Ty
m_BSwap(const Opnd0 &Op0) {
  return m_Intrinsic<Intrinsic::bswap>(Op0);
}

} // end namespace PatternMatch
} // end namespace llvm

#endif