summaryrefslogtreecommitdiff
path: root/include/llvm/Type.h
blob: 65cf2e74f22dc1bdff74ef0a7901a287e5f1e79a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
//===-- llvm/Type.h - Classes for handling data types -----------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the declaration of the Type class.  For more "Type"
// stuff, look in DerivedTypes.h.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_TYPE_H
#define LLVM_TYPE_H

#include "llvm/AbstractTypeUser.h"
#include "llvm/Support/Casting.h"
#include <string>
#include <vector>

namespace llvm {

class DerivedType;
class PointerType;
class IntegerType;
class TypeMapBase;
class raw_ostream;
class Module;
class LLVMContext;
template<class GraphType> struct GraphTraits;

/// The instances of the Type class are immutable: once they are created,
/// they are never changed.  Also note that only one instance of a particular
/// type is ever created.  Thus seeing if two types are equal is a matter of
/// doing a trivial pointer comparison. To enforce that no two equal instances
/// are created, Type instances can only be created via static factory methods 
/// in class Type and in derived classes.
/// 
/// Once allocated, Types are never free'd, unless they are an abstract type
/// that is resolved to a more concrete type.
/// 
/// Types themself don't have a name, and can be named either by:
/// - using SymbolTable instance, typically from some Module,
/// - using convenience methods in the Module class (which uses module's 
///    SymbolTable too).
///
/// Opaque types are simple derived types with no state.  There may be many
/// different Opaque type objects floating around, but two are only considered
/// identical if they are pointer equals of each other.  This allows us to have
/// two opaque types that end up resolving to different concrete types later.
///
/// Opaque types are also kinda weird and scary and different because they have
/// to keep a list of uses of the type.  When, through linking, parsing, or
/// bitcode reading, they become resolved, they need to find and update all
/// users of the unknown type, causing them to reference a new, more concrete
/// type.  Opaque types are deleted when their use list dwindles to zero users.
///
/// @brief Root of type hierarchy
class Type : public AbstractTypeUser {
public:
  //===--------------------------------------------------------------------===//
  /// Definitions of all of the base types for the Type system.  Based on this
  /// value, you can cast to a "DerivedType" subclass (see DerivedTypes.h)
  /// Note: If you add an element to this, you need to add an element to the
  /// Type::getPrimitiveType function, or else things will break!
  /// Also update LLVMTypeKind and LLVMGetTypeKind () in the C binding.
  ///
  enum TypeID {
    // PrimitiveTypes .. make sure LastPrimitiveTyID stays up to date
    VoidTyID = 0,    ///<  0: type with no size
    FloatTyID,       ///<  1: 32-bit floating point type
    DoubleTyID,      ///<  2: 64-bit floating point type
    X86_FP80TyID,    ///<  3: 80-bit floating point type (X87)
    FP128TyID,       ///<  4: 128-bit floating point type (112-bit mantissa)
    PPC_FP128TyID,   ///<  5: 128-bit floating point type (two 64-bits, PowerPC)
    LabelTyID,       ///<  6: Labels
    MetadataTyID,    ///<  7: Metadata
    X86_MMXTyID,     ///<  8: MMX vectors (64 bits, X86 specific)

    // Derived types... see DerivedTypes.h file.
    // Make sure FirstDerivedTyID stays up to date!
    IntegerTyID,     ///<  9: Arbitrary bit width integers
    FunctionTyID,    ///< 10: Functions
    StructTyID,      ///< 11: Structures
    ArrayTyID,       ///< 12: Arrays
    PointerTyID,     ///< 13: Pointers
    OpaqueTyID,      ///< 14: Opaque: type with unknown structure
    VectorTyID,      ///< 15: SIMD 'packed' format, or other vector type

    NumTypeIDs,                         // Must remain as last defined ID
    LastPrimitiveTyID = X86_MMXTyID,
    FirstDerivedTyID = IntegerTyID
  };

private:
  TypeID   ID : 8;    // The current base type of this type.
  bool     Abstract : 1;  // True if type contains an OpaqueType
  unsigned SubclassData : 23; //Space for subclasses to store data

  /// RefCount - This counts the number of PATypeHolders that are pointing to
  /// this type.  When this number falls to zero, if the type is abstract and
  /// has no AbstractTypeUsers, the type is deleted.  This is only sensical for
  /// derived types.
  ///
  mutable unsigned RefCount;

  /// Context - This refers to the LLVMContext in which this type was uniqued.
  LLVMContext &Context;
  friend class LLVMContextImpl;

  const Type *getForwardedTypeInternal() const;

  // When the last reference to a forwarded type is removed, it is destroyed.
  void destroy() const;

protected:
  explicit Type(LLVMContext &C, TypeID id) :
                             ID(id), Abstract(false), SubclassData(0),
                             RefCount(0), Context(C),
                             ForwardType(0), NumContainedTys(0),
                             ContainedTys(0) {}
  virtual ~Type() {
    assert(AbstractTypeUsers.empty() && "Abstract types remain");
  }

  /// Types can become nonabstract later, if they are refined.
  ///
  inline void setAbstract(bool Val) { Abstract = Val; }

  unsigned getRefCount() const { return RefCount; }

  unsigned getSubclassData() const { return SubclassData; }
  void setSubclassData(unsigned val) { SubclassData = val; }

  /// ForwardType - This field is used to implement the union find scheme for
  /// abstract types.  When types are refined to other types, this field is set
  /// to the more refined type.  Only abstract types can be forwarded.
  mutable const Type *ForwardType;


  /// AbstractTypeUsers - Implement a list of the users that need to be notified
  /// if I am a type, and I get resolved into a more concrete type.
  ///
  mutable std::vector<AbstractTypeUser *> AbstractTypeUsers;

  /// NumContainedTys - Keeps track of how many PATypeHandle instances there
  /// are at the end of this type instance for the list of contained types. It
  /// is the subclasses responsibility to set this up. Set to 0 if there are no
  /// contained types in this type.
  unsigned NumContainedTys;

  /// ContainedTys - A pointer to the array of Types (PATypeHandle) contained 
  /// by this Type.  For example, this includes the arguments of a function 
  /// type, the elements of a structure, the pointee of a pointer, the element
  /// type of an array, etc.  This pointer may be 0 for types that don't 
  /// contain other types (Integer, Double, Float).  In general, the subclass 
  /// should arrange for space for the PATypeHandles to be included in the 
  /// allocation of the type object and set this pointer to the address of the 
  /// first element. This allows the Type class to manipulate the ContainedTys 
  /// without understanding the subclass's placement for this array.  keeping 
  /// it here also allows the subtype_* members to be implemented MUCH more 
  /// efficiently, and dynamically very few types do not contain any elements.
  PATypeHandle *ContainedTys;

public:
  void print(raw_ostream &O) const;

  /// @brief Debugging support: print to stderr
  void dump() const;

  /// @brief Debugging support: print to stderr (use type names from context
  /// module).
  void dump(const Module *Context) const;

  /// getContext - Fetch the LLVMContext in which this type was uniqued.
  LLVMContext &getContext() const { return Context; }

  //===--------------------------------------------------------------------===//
  // Property accessors for dealing with types... Some of these virtual methods
  // are defined in private classes defined in Type.cpp for primitive types.
  //

  /// getDescription - Return the string representation of the type.
  std::string getDescription() const;

  /// getTypeID - Return the type id for the type.  This will return one
  /// of the TypeID enum elements defined above.
  ///
  inline TypeID getTypeID() const { return ID; }

  /// isVoidTy - Return true if this is 'void'.
  bool isVoidTy() const { return ID == VoidTyID; }

  /// isFloatTy - Return true if this is 'float', a 32-bit IEEE fp type.
  bool isFloatTy() const { return ID == FloatTyID; }
  
  /// isDoubleTy - Return true if this is 'double', a 64-bit IEEE fp type.
  bool isDoubleTy() const { return ID == DoubleTyID; }

  /// isX86_FP80Ty - Return true if this is x86 long double.
  bool isX86_FP80Ty() const { return ID == X86_FP80TyID; }

  /// isFP128Ty - Return true if this is 'fp128'.
  bool isFP128Ty() const { return ID == FP128TyID; }

  /// isPPC_FP128Ty - Return true if this is powerpc long double.
  bool isPPC_FP128Ty() const { return ID == PPC_FP128TyID; }

  /// isFloatingPointTy - Return true if this is one of the five floating point
  /// types
  bool isFloatingPointTy() const { return ID == FloatTyID || ID == DoubleTyID ||
      ID == X86_FP80TyID || ID == FP128TyID || ID == PPC_FP128TyID; }

  /// isX86_MMXTy - Return true if this is X86 MMX.
  bool isX86_MMXTy() const { return ID == X86_MMXTyID; }

  /// isFPOrFPVectorTy - Return true if this is a FP type or a vector of FP.
  ///
  bool isFPOrFPVectorTy() const;
 
  /// isLabelTy - Return true if this is 'label'.
  bool isLabelTy() const { return ID == LabelTyID; }

  /// isMetadataTy - Return true if this is 'metadata'.
  bool isMetadataTy() const { return ID == MetadataTyID; }

  /// isIntegerTy - True if this is an instance of IntegerType.
  ///
  bool isIntegerTy() const { return ID == IntegerTyID; } 

  /// isIntegerTy - Return true if this is an IntegerType of the given width.
  bool isIntegerTy(unsigned Bitwidth) const;

  /// isIntOrIntVectorTy - Return true if this is an integer type or a vector of
  /// integer types.
  ///
  bool isIntOrIntVectorTy() const;
  
  /// isFunctionTy - True if this is an instance of FunctionType.
  ///
  bool isFunctionTy() const { return ID == FunctionTyID; }

  /// isStructTy - True if this is an instance of StructType.
  ///
  bool isStructTy() const { return ID == StructTyID; }

  /// isArrayTy - True if this is an instance of ArrayType.
  ///
  bool isArrayTy() const { return ID == ArrayTyID; }

  /// isPointerTy - True if this is an instance of PointerType.
  ///
  bool isPointerTy() const { return ID == PointerTyID; }

  /// isOpaqueTy - True if this is an instance of OpaqueType.
  ///
  bool isOpaqueTy() const { return ID == OpaqueTyID; }

  /// isVectorTy - True if this is an instance of VectorType.
  ///
  bool isVectorTy() const { return ID == VectorTyID; }

  /// isAbstract - True if the type is either an Opaque type, or is a derived
  /// type that includes an opaque type somewhere in it.
  ///
  inline bool isAbstract() const { return Abstract; }

  /// canLosslesslyBitCastTo - Return true if this type could be converted 
  /// with a lossless BitCast to type 'Ty'. For example, i8* to i32*. BitCasts 
  /// are valid for types of the same size only where no re-interpretation of 
  /// the bits is done.
  /// @brief Determine if this type could be losslessly bitcast to Ty
  bool canLosslesslyBitCastTo(const Type *Ty) const;

  /// isEmptyTy - Return true if this type is empty, that is, it has no
  /// elements or all its elements are empty.
  bool isEmptyTy() const;

  /// Here are some useful little methods to query what type derived types are
  /// Note that all other types can just compare to see if this == Type::xxxTy;
  ///
  inline bool isPrimitiveType() const { return ID <= LastPrimitiveTyID; }
  inline bool isDerivedType()   const { return ID >= FirstDerivedTyID; }

  /// isFirstClassType - Return true if the type is "first class", meaning it
  /// is a valid type for a Value.
  ///
  inline bool isFirstClassType() const {
    // There are more first-class kinds than non-first-class kinds, so a
    // negative test is simpler than a positive one.
    return ID != FunctionTyID && ID != VoidTyID && ID != OpaqueTyID;
  }

  /// isSingleValueType - Return true if the type is a valid type for a
  /// virtual register in codegen.  This includes all first-class types
  /// except struct and array types.
  ///
  inline bool isSingleValueType() const {
    return (ID != VoidTyID && ID <= LastPrimitiveTyID) ||
            ID == IntegerTyID || ID == PointerTyID || ID == VectorTyID;
  }

  /// isAggregateType - Return true if the type is an aggregate type. This
  /// means it is valid as the first operand of an insertvalue or
  /// extractvalue instruction. This includes struct and array types, but
  /// does not include vector types.
  ///
  inline bool isAggregateType() const {
    return ID == StructTyID || ID == ArrayTyID;
  }

  /// isSized - Return true if it makes sense to take the size of this type.  To
  /// get the actual size for a particular target, it is reasonable to use the
  /// TargetData subsystem to do this.
  ///
  bool isSized() const {
    // If it's a primitive, it is always sized.
    if (ID == IntegerTyID || isFloatingPointTy() || ID == PointerTyID ||
        ID == X86_MMXTyID)
      return true;
    // If it is not something that can have a size (e.g. a function or label),
    // it doesn't have a size.
    if (ID != StructTyID && ID != ArrayTyID && ID != VectorTyID)
      return false;
    // If it is something that can have a size and it's concrete, it definitely
    // has a size, otherwise we have to try harder to decide.
    return !isAbstract() || isSizedDerivedType();
  }

  /// getPrimitiveSizeInBits - Return the basic size of this type if it is a
  /// primitive type.  These are fixed by LLVM and are not target dependent.
  /// This will return zero if the type does not have a size or is not a
  /// primitive type.
  ///
  /// Note that this may not reflect the size of memory allocated for an
  /// instance of the type or the number of bytes that are written when an
  /// instance of the type is stored to memory. The TargetData class provides
  /// additional query functions to provide this information.
  ///
  unsigned getPrimitiveSizeInBits() const;

  /// getScalarSizeInBits - If this is a vector type, return the
  /// getPrimitiveSizeInBits value for the element type. Otherwise return the
  /// getPrimitiveSizeInBits value for this type.
  unsigned getScalarSizeInBits() const;

  /// getFPMantissaWidth - Return the width of the mantissa of this type.  This
  /// is only valid on floating point types.  If the FP type does not
  /// have a stable mantissa (e.g. ppc long double), this method returns -1.
  int getFPMantissaWidth() const;

  /// getForwardedType - Return the type that this type has been resolved to if
  /// it has been resolved to anything.  This is used to implement the
  /// union-find algorithm for type resolution, and shouldn't be used by general
  /// purpose clients.
  const Type *getForwardedType() const {
    if (!ForwardType) return 0;
    return getForwardedTypeInternal();
  }

  /// getScalarType - If this is a vector type, return the element type,
  /// otherwise return this.
  const Type *getScalarType() const;

  //===--------------------------------------------------------------------===//
  // Type Iteration support
  //
  typedef PATypeHandle *subtype_iterator;
  subtype_iterator subtype_begin() const { return ContainedTys; }
  subtype_iterator subtype_end() const { return &ContainedTys[NumContainedTys];}

  /// getContainedType - This method is used to implement the type iterator
  /// (defined a the end of the file).  For derived types, this returns the
  /// types 'contained' in the derived type.
  ///
  const Type *getContainedType(unsigned i) const {
    assert(i < NumContainedTys && "Index out of range!");
    return ContainedTys[i].get();
  }

  /// getNumContainedTypes - Return the number of types in the derived type.
  ///
  unsigned getNumContainedTypes() const { return NumContainedTys; }

  //===--------------------------------------------------------------------===//
  // Static members exported by the Type class itself.  Useful for getting
  // instances of Type.
  //

  /// getPrimitiveType - Return a type based on an identifier.
  static const Type *getPrimitiveType(LLVMContext &C, TypeID IDNumber);

  //===--------------------------------------------------------------------===//
  // These are the builtin types that are always available...
  //
  static const Type *getVoidTy(LLVMContext &C);
  static const Type *getLabelTy(LLVMContext &C);
  static const Type *getFloatTy(LLVMContext &C);
  static const Type *getDoubleTy(LLVMContext &C);
  static const Type *getMetadataTy(LLVMContext &C);
  static const Type *getX86_FP80Ty(LLVMContext &C);
  static const Type *getFP128Ty(LLVMContext &C);
  static const Type *getPPC_FP128Ty(LLVMContext &C);
  static const Type *getX86_MMXTy(LLVMContext &C);
  static const IntegerType *getIntNTy(LLVMContext &C, unsigned N);
  static const IntegerType *getInt1Ty(LLVMContext &C);
  static const IntegerType *getInt8Ty(LLVMContext &C);
  static const IntegerType *getInt16Ty(LLVMContext &C);
  static const IntegerType *getInt32Ty(LLVMContext &C);
  static const IntegerType *getInt64Ty(LLVMContext &C);

  //===--------------------------------------------------------------------===//
  // Convenience methods for getting pointer types with one of the above builtin
  // types as pointee.
  //
  static const PointerType *getFloatPtrTy(LLVMContext &C, unsigned AS = 0);
  static const PointerType *getDoublePtrTy(LLVMContext &C, unsigned AS = 0);
  static const PointerType *getX86_FP80PtrTy(LLVMContext &C, unsigned AS = 0);
  static const PointerType *getFP128PtrTy(LLVMContext &C, unsigned AS = 0);
  static const PointerType *getPPC_FP128PtrTy(LLVMContext &C, unsigned AS = 0);
  static const PointerType *getX86_MMXPtrTy(LLVMContext &C, unsigned AS = 0);
  static const PointerType *getIntNPtrTy(LLVMContext &C, unsigned N,
                                         unsigned AS = 0);
  static const PointerType *getInt1PtrTy(LLVMContext &C, unsigned AS = 0);
  static const PointerType *getInt8PtrTy(LLVMContext &C, unsigned AS = 0);
  static const PointerType *getInt16PtrTy(LLVMContext &C, unsigned AS = 0);
  static const PointerType *getInt32PtrTy(LLVMContext &C, unsigned AS = 0);
  static const PointerType *getInt64PtrTy(LLVMContext &C, unsigned AS = 0);

  /// Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const Type *) { return true; }

  void addRef() const {
    assert(isAbstract() && "Cannot add a reference to a non-abstract type!");
    ++RefCount;
  }

  void dropRef() const {
    assert(isAbstract() && "Cannot drop a reference to a non-abstract type!");
    assert(RefCount && "No objects are currently referencing this object!");

    // If this is the last PATypeHolder using this object, and there are no
    // PATypeHandles using it, the type is dead, delete it now.
    if (--RefCount == 0 && AbstractTypeUsers.empty())
      this->destroy();
  }
  
  /// addAbstractTypeUser - Notify an abstract type that there is a new user of
  /// it.  This function is called primarily by the PATypeHandle class.
  ///
  void addAbstractTypeUser(AbstractTypeUser *U) const;
  
  /// removeAbstractTypeUser - Notify an abstract type that a user of the class
  /// no longer has a handle to the type.  This function is called primarily by
  /// the PATypeHandle class.  When there are no users of the abstract type, it
  /// is annihilated, because there is no way to get a reference to it ever
  /// again.
  ///
  void removeAbstractTypeUser(AbstractTypeUser *U) const;

  /// getPointerTo - Return a pointer to the current type.  This is equivalent
  /// to PointerType::get(Foo, AddrSpace).
  const PointerType *getPointerTo(unsigned AddrSpace = 0) const;

private:
  /// isSizedDerivedType - Derived types like structures and arrays are sized
  /// iff all of the members of the type are sized as well.  Since asking for
  /// their size is relatively uncommon, move this operation out of line.
  bool isSizedDerivedType() const;

  virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);
  virtual void typeBecameConcrete(const DerivedType *AbsTy);

protected:
  // PromoteAbstractToConcrete - This is an internal method used to calculate
  // change "Abstract" from true to false when types are refined.
  void PromoteAbstractToConcrete();
  friend class TypeMapBase;
};

//===----------------------------------------------------------------------===//
// Define some inline methods for the AbstractTypeUser.h:PATypeHandle class.
// These are defined here because they MUST be inlined, yet are dependent on
// the definition of the Type class.
//
inline void PATypeHandle::addUser() {
  assert(Ty && "Type Handle has a null type!");
  if (Ty->isAbstract())
    Ty->addAbstractTypeUser(User);
}
inline void PATypeHandle::removeUser() {
  if (Ty->isAbstract())
    Ty->removeAbstractTypeUser(User);
}

// Define inline methods for PATypeHolder.

/// get - This implements the forwarding part of the union-find algorithm for
/// abstract types.  Before every access to the Type*, we check to see if the
/// type we are pointing to is forwarding to a new type.  If so, we drop our
/// reference to the type.
///
inline Type *PATypeHolder::get() const {
  if (Ty == 0) return 0;
  const Type *NewTy = Ty->getForwardedType();
  if (!NewTy) return const_cast<Type*>(Ty);
  return *const_cast<PATypeHolder*>(this) = NewTy;
}

inline void PATypeHolder::addRef() {
  if (Ty && Ty->isAbstract())
    Ty->addRef();
}

inline void PATypeHolder::dropRef() {
  if (Ty && Ty->isAbstract())
    Ty->dropRef();
}


//===----------------------------------------------------------------------===//
// Provide specializations of GraphTraits to be able to treat a type as a
// graph of sub types.

template <> struct GraphTraits<Type*> {
  typedef Type NodeType;
  typedef Type::subtype_iterator ChildIteratorType;

  static inline NodeType *getEntryNode(Type *T) { return T; }
  static inline ChildIteratorType child_begin(NodeType *N) {
    return N->subtype_begin();
  }
  static inline ChildIteratorType child_end(NodeType *N) {
    return N->subtype_end();
  }
};

template <> struct GraphTraits<const Type*> {
  typedef const Type NodeType;
  typedef Type::subtype_iterator ChildIteratorType;

  static inline NodeType *getEntryNode(const Type *T) { return T; }
  static inline ChildIteratorType child_begin(NodeType *N) {
    return N->subtype_begin();
  }
  static inline ChildIteratorType child_end(NodeType *N) {
    return N->subtype_end();
  }
};

template <> struct isa_impl<PointerType, Type> {
  static inline bool doit(const Type &Ty) {
    return Ty.getTypeID() == Type::PointerTyID;
  }
};

raw_ostream &operator<<(raw_ostream &OS, const Type &T);

} // End llvm namespace

#endif