summaryrefslogtreecommitdiff
path: root/lib/Analysis/IPA/Andersens.cpp
blob: 3e5be678ed39324e2a06bf7c23597c6d52e522e4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
//===- Andersens.cpp - Andersen's Interprocedural Alias Analysis ----------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a very simple implementation of Andersen's interprocedural
// alias analysis.  This implementation does not include any of the fancy
// features that make Andersen's reasonably efficient (like cycle elimination or
// variable substitution), but it should be useful for getting precision
// numbers and can be extended in the future.
//
// In pointer analysis terms, this is a subset-based, flow-insensitive,
// field-insensitive, and context-insensitive algorithm pointer algorithm.
//
// This algorithm is implemented as three stages:
//   1. Object identification.
//   2. Inclusion constraint identification.
//   3. Inclusion constraint solving.
//
// The object identification stage identifies all of the memory objects in the
// program, which includes globals, heap allocated objects, and stack allocated
// objects.
//
// The inclusion constraint identification stage finds all inclusion constraints
// in the program by scanning the program, looking for pointer assignments and
// other statements that effect the points-to graph.  For a statement like "A =
// B", this statement is processed to indicate that A can point to anything that
// B can point to.  Constraints can handle copies, loads, and stores.
//
// The inclusion constraint solving phase iteratively propagates the inclusion
// constraints until a fixed point is reached.  This is an O(N^3) algorithm.
//
// In the initial pass, all indirect function calls are completely ignored.  As
// the analysis discovers new targets of function pointers, it iteratively
// resolves a precise (and conservative) call graph.  Also related, this
// analysis initially assumes that all internal functions have known incoming
// pointers.  If we find that an internal function's address escapes outside of
// the program, we update this assumption.
//
// Future Improvements:
//   This implementation of Andersen's algorithm is extremely slow.  To make it
//   scale reasonably well, the inclusion constraints could be sorted (easy),
//   offline variable substitution would be a huge win (straight-forward), and
//   online cycle elimination (trickier) might help as well.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "anders-aa"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Instructions.h"
#include "llvm/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/InstIterator.h"
#include "llvm/Support/InstVisitor.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/Statistic.h"
#include <algorithm>
#include <set>
using namespace llvm;

STATISTIC(NumIters            , "Number of iterations to reach convergence");
STATISTIC(NumConstraints      , "Number of constraints");
STATISTIC(NumNodes            , "Number of nodes");
STATISTIC(NumEscapingFunctions, "Number of internal functions that escape");
STATISTIC(NumIndirectCallees  , "Number of indirect callees found");

namespace {
  class VISIBILITY_HIDDEN Andersens : public ModulePass, public AliasAnalysis,
                                      private InstVisitor<Andersens> {
  public:
    static const char ID; // Class identification, replacement for typeinfo
    Andersens() : ModulePass((intptr_t)&ID) {}
  private:
    /// Node class - This class is used to represent a memory object in the
    /// program, and is the primitive used to build the points-to graph.
    class Node {
      std::vector<Node*> Pointees;
      Value *Val;
    public:
      static const unsigned ID; // Pass identifcation, replacement for typeid
      Node() : Val(0) {}
      Node *setValue(Value *V) {
        assert(Val == 0 && "Value already set for this node!");
        Val = V;
        return this;
      }

      /// getValue - Return the LLVM value corresponding to this node.
      ///
      Value *getValue() const { return Val; }

      typedef std::vector<Node*>::const_iterator iterator;
      iterator begin() const { return Pointees.begin(); }
      iterator end() const { return Pointees.end(); }

      /// addPointerTo - Add a pointer to the list of pointees of this node,
      /// returning true if this caused a new pointer to be added, or false if
      /// we already knew about the points-to relation.
      bool addPointerTo(Node *N) {
        std::vector<Node*>::iterator I = std::lower_bound(Pointees.begin(),
                                                          Pointees.end(),
                                                          N);
        if (I != Pointees.end() && *I == N)
          return false;
        Pointees.insert(I, N);
        return true;
      }

      /// intersects - Return true if the points-to set of this node intersects
      /// with the points-to set of the specified node.
      bool intersects(Node *N) const;

      /// intersectsIgnoring - Return true if the points-to set of this node
      /// intersects with the points-to set of the specified node on any nodes
      /// except for the specified node to ignore.
      bool intersectsIgnoring(Node *N, Node *Ignoring) const;

      // Constraint application methods.
      bool copyFrom(Node *N);
      bool loadFrom(Node *N);
      bool storeThrough(Node *N);
    };

    /// GraphNodes - This vector is populated as part of the object
    /// identification stage of the analysis, which populates this vector with a
    /// node for each memory object and fills in the ValueNodes map.
    std::vector<Node> GraphNodes;

    /// ValueNodes - This map indicates the Node that a particular Value* is
    /// represented by.  This contains entries for all pointers.
    std::map<Value*, unsigned> ValueNodes;

    /// ObjectNodes - This map contains entries for each memory object in the
    /// program: globals, alloca's and mallocs.
    std::map<Value*, unsigned> ObjectNodes;

    /// ReturnNodes - This map contains an entry for each function in the
    /// program that returns a value.
    std::map<Function*, unsigned> ReturnNodes;

    /// VarargNodes - This map contains the entry used to represent all pointers
    /// passed through the varargs portion of a function call for a particular
    /// function.  An entry is not present in this map for functions that do not
    /// take variable arguments.
    std::map<Function*, unsigned> VarargNodes;

    /// Constraint - Objects of this structure are used to represent the various
    /// constraints identified by the algorithm.  The constraints are 'copy',
    /// for statements like "A = B", 'load' for statements like "A = *B", and
    /// 'store' for statements like "*A = B".
    struct Constraint {
      enum ConstraintType { Copy, Load, Store } Type;
      Node *Dest, *Src;

      Constraint(ConstraintType Ty, Node *D, Node *S)
        : Type(Ty), Dest(D), Src(S) {}
    };

    /// Constraints - This vector contains a list of all of the constraints
    /// identified by the program.
    std::vector<Constraint> Constraints;

    /// EscapingInternalFunctions - This set contains all of the internal
    /// functions that are found to escape from the program.  If the address of
    /// an internal function is passed to an external function or otherwise
    /// escapes from the analyzed portion of the program, we must assume that
    /// any pointer arguments can alias the universal node.  This set keeps
    /// track of those functions we are assuming to escape so far.
    std::set<Function*> EscapingInternalFunctions;

    /// IndirectCalls - This contains a list of all of the indirect call sites
    /// in the program.  Since the call graph is iteratively discovered, we may
    /// need to add constraints to our graph as we find new targets of function
    /// pointers.
    std::vector<CallSite> IndirectCalls;

    /// IndirectCallees - For each call site in the indirect calls list, keep
    /// track of the callees that we have discovered so far.  As the analysis
    /// proceeds, more callees are discovered, until the call graph finally
    /// stabilizes.
    std::map<CallSite, std::vector<Function*> > IndirectCallees;

    /// This enum defines the GraphNodes indices that correspond to important
    /// fixed sets.
    enum {
      UniversalSet = 0,
      NullPtr      = 1,
      NullObject   = 2
    };

  public:
    bool runOnModule(Module &M) {
      InitializeAliasAnalysis(this);
      IdentifyObjects(M);
      CollectConstraints(M);
      DEBUG(PrintConstraints());
      SolveConstraints();
      DEBUG(PrintPointsToGraph());

      // Free the constraints list, as we don't need it to respond to alias
      // requests.
      ObjectNodes.clear();
      ReturnNodes.clear();
      VarargNodes.clear();
      EscapingInternalFunctions.clear();
      std::vector<Constraint>().swap(Constraints);
      return false;
    }

    void releaseMemory() {
      // FIXME: Until we have transitively required passes working correctly,
      // this cannot be enabled!  Otherwise, using -count-aa with the pass
      // causes memory to be freed too early. :(
#if 0
      // The memory objects and ValueNodes data structures at the only ones that
      // are still live after construction.
      std::vector<Node>().swap(GraphNodes);
      ValueNodes.clear();
#endif
    }

    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AliasAnalysis::getAnalysisUsage(AU);
      AU.setPreservesAll();                         // Does not transform code
    }

    //------------------------------------------------
    // Implement the AliasAnalysis API
    //
    AliasResult alias(const Value *V1, unsigned V1Size,
                      const Value *V2, unsigned V2Size);
    virtual ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
    virtual ModRefResult getModRefInfo(CallSite CS1, CallSite CS2);
    void getMustAliases(Value *P, std::vector<Value*> &RetVals);
    bool pointsToConstantMemory(const Value *P);

    virtual void deleteValue(Value *V) {
      ValueNodes.erase(V);
      getAnalysis<AliasAnalysis>().deleteValue(V);
    }

    virtual void copyValue(Value *From, Value *To) {
      ValueNodes[To] = ValueNodes[From];
      getAnalysis<AliasAnalysis>().copyValue(From, To);
    }

  private:
    /// getNode - Return the node corresponding to the specified pointer scalar.
    ///
    Node *getNode(Value *V) {
      if (Constant *C = dyn_cast<Constant>(V))
        if (!isa<GlobalValue>(C))
          return getNodeForConstantPointer(C);

      std::map<Value*, unsigned>::iterator I = ValueNodes.find(V);
      if (I == ValueNodes.end()) {
#ifndef NDEBUG
        V->dump();
#endif
        assert(0 && "Value does not have a node in the points-to graph!");
      }
      return &GraphNodes[I->second];
    }

    /// getObject - Return the node corresponding to the memory object for the
    /// specified global or allocation instruction.
    Node *getObject(Value *V) {
      std::map<Value*, unsigned>::iterator I = ObjectNodes.find(V);
      assert(I != ObjectNodes.end() &&
             "Value does not have an object in the points-to graph!");
      return &GraphNodes[I->second];
    }

    /// getReturnNode - Return the node representing the return value for the
    /// specified function.
    Node *getReturnNode(Function *F) {
      std::map<Function*, unsigned>::iterator I = ReturnNodes.find(F);
      assert(I != ReturnNodes.end() && "Function does not return a value!");
      return &GraphNodes[I->second];
    }

    /// getVarargNode - Return the node representing the variable arguments
    /// formal for the specified function.
    Node *getVarargNode(Function *F) {
      std::map<Function*, unsigned>::iterator I = VarargNodes.find(F);
      assert(I != VarargNodes.end() && "Function does not take var args!");
      return &GraphNodes[I->second];
    }

    /// getNodeValue - Get the node for the specified LLVM value and set the
    /// value for it to be the specified value.
    Node *getNodeValue(Value &V) {
      return getNode(&V)->setValue(&V);
    }

    void IdentifyObjects(Module &M);
    void CollectConstraints(Module &M);
    void SolveConstraints();

    Node *getNodeForConstantPointer(Constant *C);
    Node *getNodeForConstantPointerTarget(Constant *C);
    void AddGlobalInitializerConstraints(Node *N, Constant *C);

    void AddConstraintsForNonInternalLinkage(Function *F);
    void AddConstraintsForCall(CallSite CS, Function *F);
    bool AddConstraintsForExternalCall(CallSite CS, Function *F);


    void PrintNode(Node *N);
    void PrintConstraints();
    void PrintPointsToGraph();

    //===------------------------------------------------------------------===//
    // Instruction visitation methods for adding constraints
    //
    friend class InstVisitor<Andersens>;
    void visitReturnInst(ReturnInst &RI);
    void visitInvokeInst(InvokeInst &II) { visitCallSite(CallSite(&II)); }
    void visitCallInst(CallInst &CI) { visitCallSite(CallSite(&CI)); }
    void visitCallSite(CallSite CS);
    void visitAllocationInst(AllocationInst &AI);
    void visitLoadInst(LoadInst &LI);
    void visitStoreInst(StoreInst &SI);
    void visitGetElementPtrInst(GetElementPtrInst &GEP);
    void visitPHINode(PHINode &PN);
    void visitCastInst(CastInst &CI);
    void visitICmpInst(ICmpInst &ICI) {} // NOOP!
    void visitFCmpInst(FCmpInst &ICI) {} // NOOP!
    void visitSelectInst(SelectInst &SI);
    void visitVAArg(VAArgInst &I);
    void visitInstruction(Instruction &I);
  };

  const char Andersens::ID = 0;
  RegisterPass<Andersens> X("anders-aa",
                            "Andersen's Interprocedural Alias Analysis");
  RegisterAnalysisGroup<AliasAnalysis> Y(X);
}

ModulePass *llvm::createAndersensPass() { return new Andersens(); }

//===----------------------------------------------------------------------===//
//                  AliasAnalysis Interface Implementation
//===----------------------------------------------------------------------===//

AliasAnalysis::AliasResult Andersens::alias(const Value *V1, unsigned V1Size,
                                            const Value *V2, unsigned V2Size) {
  Node *N1 = getNode(const_cast<Value*>(V1));
  Node *N2 = getNode(const_cast<Value*>(V2));

  // Check to see if the two pointers are known to not alias.  They don't alias
  // if their points-to sets do not intersect.
  if (!N1->intersectsIgnoring(N2, &GraphNodes[NullObject]))
    return NoAlias;

  return AliasAnalysis::alias(V1, V1Size, V2, V2Size);
}

AliasAnalysis::ModRefResult
Andersens::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
  // The only thing useful that we can contribute for mod/ref information is
  // when calling external function calls: if we know that memory never escapes
  // from the program, it cannot be modified by an external call.
  //
  // NOTE: This is not really safe, at least not when the entire program is not
  // available.  The deal is that the external function could call back into the
  // program and modify stuff.  We ignore this technical niggle for now.  This
  // is, after all, a "research quality" implementation of Andersen's analysis.
  if (Function *F = CS.getCalledFunction())
    if (F->isDeclaration()) {
      Node *N1 = getNode(P);

      if (N1->begin() == N1->end())
        return NoModRef;  // P doesn't point to anything.

      // Get the first pointee.
      Node *FirstPointee = *N1->begin();
      if (FirstPointee != &GraphNodes[UniversalSet])
        return NoModRef;  // P doesn't point to the universal set.
    }

  return AliasAnalysis::getModRefInfo(CS, P, Size);
}

AliasAnalysis::ModRefResult
Andersens::getModRefInfo(CallSite CS1, CallSite CS2) {
  return AliasAnalysis::getModRefInfo(CS1,CS2);
}

/// getMustAlias - We can provide must alias information if we know that a
/// pointer can only point to a specific function or the null pointer.
/// Unfortunately we cannot determine must-alias information for global
/// variables or any other memory memory objects because we do not track whether
/// a pointer points to the beginning of an object or a field of it.
void Andersens::getMustAliases(Value *P, std::vector<Value*> &RetVals) {
  Node *N = getNode(P);
  Node::iterator I = N->begin();
  if (I != N->end()) {
    // If there is exactly one element in the points-to set for the object...
    ++I;
    if (I == N->end()) {
      Node *Pointee = *N->begin();

      // If a function is the only object in the points-to set, then it must be
      // the destination.  Note that we can't handle global variables here,
      // because we don't know if the pointer is actually pointing to a field of
      // the global or to the beginning of it.
      if (Value *V = Pointee->getValue()) {
        if (Function *F = dyn_cast<Function>(V))
          RetVals.push_back(F);
      } else {
        // If the object in the points-to set is the null object, then the null
        // pointer is a must alias.
        if (Pointee == &GraphNodes[NullObject])
          RetVals.push_back(Constant::getNullValue(P->getType()));
      }
    }
  }

  AliasAnalysis::getMustAliases(P, RetVals);
}

/// pointsToConstantMemory - If we can determine that this pointer only points
/// to constant memory, return true.  In practice, this means that if the
/// pointer can only point to constant globals, functions, or the null pointer,
/// return true.
///
bool Andersens::pointsToConstantMemory(const Value *P) {
  Node *N = getNode((Value*)P);
  for (Node::iterator I = N->begin(), E = N->end(); I != E; ++I) {
    if (Value *V = (*I)->getValue()) {
      if (!isa<GlobalValue>(V) || (isa<GlobalVariable>(V) &&
                                   !cast<GlobalVariable>(V)->isConstant()))
        return AliasAnalysis::pointsToConstantMemory(P);
    } else {
      if (*I != &GraphNodes[NullObject])
        return AliasAnalysis::pointsToConstantMemory(P);
    }
  }

  return true;
}

//===----------------------------------------------------------------------===//
//                       Object Identification Phase
//===----------------------------------------------------------------------===//

/// IdentifyObjects - This stage scans the program, adding an entry to the
/// GraphNodes list for each memory object in the program (global stack or
/// heap), and populates the ValueNodes and ObjectNodes maps for these objects.
///
void Andersens::IdentifyObjects(Module &M) {
  unsigned NumObjects = 0;

  // Object #0 is always the universal set: the object that we don't know
  // anything about.
  assert(NumObjects == UniversalSet && "Something changed!");
  ++NumObjects;

  // Object #1 always represents the null pointer.
  assert(NumObjects == NullPtr && "Something changed!");
  ++NumObjects;

  // Object #2 always represents the null object (the object pointed to by null)
  assert(NumObjects == NullObject && "Something changed!");
  ++NumObjects;

  // Add all the globals first.
  for (Module::global_iterator I = M.global_begin(), E = M.global_end();
       I != E; ++I) {
    ObjectNodes[I] = NumObjects++;
    ValueNodes[I] = NumObjects++;
  }

  // Add nodes for all of the functions and the instructions inside of them.
  for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
    // The function itself is a memory object.
    ValueNodes[F] = NumObjects++;
    ObjectNodes[F] = NumObjects++;
    if (isa<PointerType>(F->getFunctionType()->getReturnType()))
      ReturnNodes[F] = NumObjects++;
    if (F->getFunctionType()->isVarArg())
      VarargNodes[F] = NumObjects++;

    // Add nodes for all of the incoming pointer arguments.
    for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
         I != E; ++I)
      if (isa<PointerType>(I->getType()))
        ValueNodes[I] = NumObjects++;

    // Scan the function body, creating a memory object for each heap/stack
    // allocation in the body of the function and a node to represent all
    // pointer values defined by instructions and used as operands.
    for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) {
      // If this is an heap or stack allocation, create a node for the memory
      // object.
      if (isa<PointerType>(II->getType())) {
        ValueNodes[&*II] = NumObjects++;
        if (AllocationInst *AI = dyn_cast<AllocationInst>(&*II))
          ObjectNodes[AI] = NumObjects++;
      }
    }
  }

  // Now that we know how many objects to create, make them all now!
  GraphNodes.resize(NumObjects);
  NumNodes += NumObjects;
}

//===----------------------------------------------------------------------===//
//                     Constraint Identification Phase
//===----------------------------------------------------------------------===//

/// getNodeForConstantPointer - Return the node corresponding to the constant
/// pointer itself.
Andersens::Node *Andersens::getNodeForConstantPointer(Constant *C) {
  assert(isa<PointerType>(C->getType()) && "Not a constant pointer!");

  if (isa<ConstantPointerNull>(C) || isa<UndefValue>(C))
    return &GraphNodes[NullPtr];
  else if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
    return getNode(GV);
  else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
    switch (CE->getOpcode()) {
    case Instruction::GetElementPtr:
      return getNodeForConstantPointer(CE->getOperand(0));
    case Instruction::IntToPtr:
      return &GraphNodes[UniversalSet];
    case Instruction::BitCast:
      return getNodeForConstantPointer(CE->getOperand(0));
    default:
      cerr << "Constant Expr not yet handled: " << *CE << "\n";
      assert(0);
    }
  } else {
    assert(0 && "Unknown constant pointer!");
  }
  return 0;
}

/// getNodeForConstantPointerTarget - Return the node POINTED TO by the
/// specified constant pointer.
Andersens::Node *Andersens::getNodeForConstantPointerTarget(Constant *C) {
  assert(isa<PointerType>(C->getType()) && "Not a constant pointer!");

  if (isa<ConstantPointerNull>(C))
    return &GraphNodes[NullObject];
  else if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
    return getObject(GV);
  else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
    switch (CE->getOpcode()) {
    case Instruction::GetElementPtr:
      return getNodeForConstantPointerTarget(CE->getOperand(0));
    case Instruction::IntToPtr:
      return &GraphNodes[UniversalSet];
    case Instruction::BitCast:
      return getNodeForConstantPointerTarget(CE->getOperand(0));
    default:
      cerr << "Constant Expr not yet handled: " << *CE << "\n";
      assert(0);
    }
  } else {
    assert(0 && "Unknown constant pointer!");
  }
  return 0;
}

/// AddGlobalInitializerConstraints - Add inclusion constraints for the memory
/// object N, which contains values indicated by C.
void Andersens::AddGlobalInitializerConstraints(Node *N, Constant *C) {
  if (C->getType()->isFirstClassType()) {
    if (isa<PointerType>(C->getType()))
      N->copyFrom(getNodeForConstantPointer(C));

  } else if (C->isNullValue()) {
    N->addPointerTo(&GraphNodes[NullObject]);
    return;
  } else if (!isa<UndefValue>(C)) {
    // If this is an array or struct, include constraints for each element.
    assert(isa<ConstantArray>(C) || isa<ConstantStruct>(C));
    for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
      AddGlobalInitializerConstraints(N, cast<Constant>(C->getOperand(i)));
  }
}

/// AddConstraintsForNonInternalLinkage - If this function does not have
/// internal linkage, realize that we can't trust anything passed into or
/// returned by this function.
void Andersens::AddConstraintsForNonInternalLinkage(Function *F) {
  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
    if (isa<PointerType>(I->getType()))
      // If this is an argument of an externally accessible function, the
      // incoming pointer might point to anything.
      Constraints.push_back(Constraint(Constraint::Copy, getNode(I),
                                       &GraphNodes[UniversalSet]));
}

/// AddConstraintsForCall - If this is a call to a "known" function, add the
/// constraints and return true.  If this is a call to an unknown function,
/// return false.
bool Andersens::AddConstraintsForExternalCall(CallSite CS, Function *F) {
  assert(F->isDeclaration() && "Not an external function!");

  // These functions don't induce any points-to constraints.
  if (F->getName() == "atoi" || F->getName() == "atof" ||
      F->getName() == "atol" || F->getName() == "atoll" ||
      F->getName() == "remove" || F->getName() == "unlink" ||
      F->getName() == "rename" || F->getName() == "memcmp" ||
      F->getName() == "llvm.memset.i32" ||
      F->getName() == "llvm.memset.i64" ||
      F->getName() == "strcmp" || F->getName() == "strncmp" ||
      F->getName() == "execl" || F->getName() == "execlp" ||
      F->getName() == "execle" || F->getName() == "execv" ||
      F->getName() == "execvp" || F->getName() == "chmod" ||
      F->getName() == "puts" || F->getName() == "write" ||
      F->getName() == "open" || F->getName() == "create" ||
      F->getName() == "truncate" || F->getName() == "chdir" ||
      F->getName() == "mkdir" || F->getName() == "rmdir" ||
      F->getName() == "read" || F->getName() == "pipe" ||
      F->getName() == "wait" || F->getName() == "time" ||
      F->getName() == "stat" || F->getName() == "fstat" ||
      F->getName() == "lstat" || F->getName() == "strtod" ||
      F->getName() == "strtof" || F->getName() == "strtold" ||
      F->getName() == "fopen" || F->getName() == "fdopen" ||
      F->getName() == "freopen" ||
      F->getName() == "fflush" || F->getName() == "feof" ||
      F->getName() == "fileno" || F->getName() == "clearerr" ||
      F->getName() == "rewind" || F->getName() == "ftell" ||
      F->getName() == "ferror" || F->getName() == "fgetc" ||
      F->getName() == "fgetc" || F->getName() == "_IO_getc" ||
      F->getName() == "fwrite" || F->getName() == "fread" ||
      F->getName() == "fgets" || F->getName() == "ungetc" ||
      F->getName() == "fputc" ||
      F->getName() == "fputs" || F->getName() == "putc" ||
      F->getName() == "ftell" || F->getName() == "rewind" ||
      F->getName() == "_IO_putc" || F->getName() == "fseek" ||
      F->getName() == "fgetpos" || F->getName() == "fsetpos" ||
      F->getName() == "printf" || F->getName() == "fprintf" ||
      F->getName() == "sprintf" || F->getName() == "vprintf" ||
      F->getName() == "vfprintf" || F->getName() == "vsprintf" ||
      F->getName() == "scanf" || F->getName() == "fscanf" ||
      F->getName() == "sscanf" || F->getName() == "__assert_fail" ||
      F->getName() == "modf")
    return true;


  // These functions do induce points-to edges.
  if (F->getName() == "llvm.memcpy.i32" || F->getName() == "llvm.memcpy.i64" || 
      F->getName() == "llvm.memmove.i32" ||F->getName() == "llvm.memmove.i64" ||
      F->getName() == "memmove") {
    // Note: this is a poor approximation, this says Dest = Src, instead of
    // *Dest = *Src.
    Constraints.push_back(Constraint(Constraint::Copy,
                                     getNode(CS.getArgument(0)),
                                     getNode(CS.getArgument(1))));
    return true;
  }

  // Result = Arg0
  if (F->getName() == "realloc" || F->getName() == "strchr" ||
      F->getName() == "strrchr" || F->getName() == "strstr" ||
      F->getName() == "strtok") {
    Constraints.push_back(Constraint(Constraint::Copy,
                                     getNode(CS.getInstruction()),
                                     getNode(CS.getArgument(0))));
    return true;
  }

  return false;
}



/// CollectConstraints - This stage scans the program, adding a constraint to
/// the Constraints list for each instruction in the program that induces a
/// constraint, and setting up the initial points-to graph.
///
void Andersens::CollectConstraints(Module &M) {
  // First, the universal set points to itself.
  GraphNodes[UniversalSet].addPointerTo(&GraphNodes[UniversalSet]);
  //Constraints.push_back(Constraint(Constraint::Load, &GraphNodes[UniversalSet],
  //                                 &GraphNodes[UniversalSet]));
  Constraints.push_back(Constraint(Constraint::Store, &GraphNodes[UniversalSet],
                                   &GraphNodes[UniversalSet]));

  // Next, the null pointer points to the null object.
  GraphNodes[NullPtr].addPointerTo(&GraphNodes[NullObject]);

  // Next, add any constraints on global variables and their initializers.
  for (Module::global_iterator I = M.global_begin(), E = M.global_end();
       I != E; ++I) {
    // Associate the address of the global object as pointing to the memory for
    // the global: &G = <G memory>
    Node *Object = getObject(I);
    Object->setValue(I);
    getNodeValue(*I)->addPointerTo(Object);

    if (I->hasInitializer()) {
      AddGlobalInitializerConstraints(Object, I->getInitializer());
    } else {
      // If it doesn't have an initializer (i.e. it's defined in another
      // translation unit), it points to the universal set.
      Constraints.push_back(Constraint(Constraint::Copy, Object,
                                       &GraphNodes[UniversalSet]));
    }
  }

  for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
    // Make the function address point to the function object.
    getNodeValue(*F)->addPointerTo(getObject(F)->setValue(F));

    // Set up the return value node.
    if (isa<PointerType>(F->getFunctionType()->getReturnType()))
      getReturnNode(F)->setValue(F);
    if (F->getFunctionType()->isVarArg())
      getVarargNode(F)->setValue(F);

    // Set up incoming argument nodes.
    for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
         I != E; ++I)
      if (isa<PointerType>(I->getType()))
        getNodeValue(*I);

    if (!F->hasInternalLinkage())
      AddConstraintsForNonInternalLinkage(F);

    if (!F->isDeclaration()) {
      // Scan the function body, creating a memory object for each heap/stack
      // allocation in the body of the function and a node to represent all
      // pointer values defined by instructions and used as operands.
      visit(F);
    } else {
      // External functions that return pointers return the universal set.
      if (isa<PointerType>(F->getFunctionType()->getReturnType()))
        Constraints.push_back(Constraint(Constraint::Copy,
                                         getReturnNode(F),
                                         &GraphNodes[UniversalSet]));

      // Any pointers that are passed into the function have the universal set
      // stored into them.
      for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
           I != E; ++I)
        if (isa<PointerType>(I->getType())) {
          // Pointers passed into external functions could have anything stored
          // through them.
          Constraints.push_back(Constraint(Constraint::Store, getNode(I),
                                           &GraphNodes[UniversalSet]));
          // Memory objects passed into external function calls can have the
          // universal set point to them.
          Constraints.push_back(Constraint(Constraint::Copy,
                                           &GraphNodes[UniversalSet],
                                           getNode(I)));
        }

      // If this is an external varargs function, it can also store pointers
      // into any pointers passed through the varargs section.
      if (F->getFunctionType()->isVarArg())
        Constraints.push_back(Constraint(Constraint::Store, getVarargNode(F),
                                         &GraphNodes[UniversalSet]));
    }
  }
  NumConstraints += Constraints.size();
}


void Andersens::visitInstruction(Instruction &I) {
#ifdef NDEBUG
  return;          // This function is just a big assert.
#endif
  if (isa<BinaryOperator>(I))
    return;
  // Most instructions don't have any effect on pointer values.
  switch (I.getOpcode()) {
  case Instruction::Br:
  case Instruction::Switch:
  case Instruction::Unwind:
  case Instruction::Unreachable:
  case Instruction::Free:
  case Instruction::ICmp:
  case Instruction::FCmp:
    return;
  default:
    // Is this something we aren't handling yet?
    cerr << "Unknown instruction: " << I;
    abort();
  }
}

void Andersens::visitAllocationInst(AllocationInst &AI) {
  getNodeValue(AI)->addPointerTo(getObject(&AI)->setValue(&AI));
}

void Andersens::visitReturnInst(ReturnInst &RI) {
  if (RI.getNumOperands() && isa<PointerType>(RI.getOperand(0)->getType()))
    // return V   -->   <Copy/retval{F}/v>
    Constraints.push_back(Constraint(Constraint::Copy,
                                     getReturnNode(RI.getParent()->getParent()),
                                     getNode(RI.getOperand(0))));
}

void Andersens::visitLoadInst(LoadInst &LI) {
  if (isa<PointerType>(LI.getType()))
    // P1 = load P2  -->  <Load/P1/P2>
    Constraints.push_back(Constraint(Constraint::Load, getNodeValue(LI),
                                     getNode(LI.getOperand(0))));
}

void Andersens::visitStoreInst(StoreInst &SI) {
  if (isa<PointerType>(SI.getOperand(0)->getType()))
    // store P1, P2  -->  <Store/P2/P1>
    Constraints.push_back(Constraint(Constraint::Store,
                                     getNode(SI.getOperand(1)),
                                     getNode(SI.getOperand(0))));
}

void Andersens::visitGetElementPtrInst(GetElementPtrInst &GEP) {
  // P1 = getelementptr P2, ... --> <Copy/P1/P2>
  Constraints.push_back(Constraint(Constraint::Copy, getNodeValue(GEP),
                                   getNode(GEP.getOperand(0))));
}

void Andersens::visitPHINode(PHINode &PN) {
  if (isa<PointerType>(PN.getType())) {
    Node *PNN = getNodeValue(PN);
    for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
      // P1 = phi P2, P3  -->  <Copy/P1/P2>, <Copy/P1/P3>, ...
      Constraints.push_back(Constraint(Constraint::Copy, PNN,
                                       getNode(PN.getIncomingValue(i))));
  }
}

void Andersens::visitCastInst(CastInst &CI) {
  Value *Op = CI.getOperand(0);
  if (isa<PointerType>(CI.getType())) {
    if (isa<PointerType>(Op->getType())) {
      // P1 = cast P2  --> <Copy/P1/P2>
      Constraints.push_back(Constraint(Constraint::Copy, getNodeValue(CI),
                                       getNode(CI.getOperand(0))));
    } else {
      // P1 = cast int --> <Copy/P1/Univ>
#if 0
      Constraints.push_back(Constraint(Constraint::Copy, getNodeValue(CI),
                                       &GraphNodes[UniversalSet]));
#else
      getNodeValue(CI);
#endif
    }
  } else if (isa<PointerType>(Op->getType())) {
    // int = cast P1 --> <Copy/Univ/P1>
#if 0
    Constraints.push_back(Constraint(Constraint::Copy,
                                     &GraphNodes[UniversalSet],
                                     getNode(CI.getOperand(0))));
#else
    getNode(CI.getOperand(0));
#endif
  }
}

void Andersens::visitSelectInst(SelectInst &SI) {
  if (isa<PointerType>(SI.getType())) {
    Node *SIN = getNodeValue(SI);
    // P1 = select C, P2, P3   ---> <Copy/P1/P2>, <Copy/P1/P3>
    Constraints.push_back(Constraint(Constraint::Copy, SIN,
                                     getNode(SI.getOperand(1))));
    Constraints.push_back(Constraint(Constraint::Copy, SIN,
                                     getNode(SI.getOperand(2))));
  }
}

void Andersens::visitVAArg(VAArgInst &I) {
  assert(0 && "vaarg not handled yet!");
}

/// AddConstraintsForCall - Add constraints for a call with actual arguments
/// specified by CS to the function specified by F.  Note that the types of
/// arguments might not match up in the case where this is an indirect call and
/// the function pointer has been casted.  If this is the case, do something
/// reasonable.
void Andersens::AddConstraintsForCall(CallSite CS, Function *F) {
  // If this is a call to an external function, handle it directly to get some
  // taste of context sensitivity.
  if (F->isDeclaration() && AddConstraintsForExternalCall(CS, F))
    return;

  if (isa<PointerType>(CS.getType())) {
    Node *CSN = getNode(CS.getInstruction());
    if (isa<PointerType>(F->getFunctionType()->getReturnType())) {
      Constraints.push_back(Constraint(Constraint::Copy, CSN,
                                       getReturnNode(F)));
    } else {
      // If the function returns a non-pointer value, handle this just like we
      // treat a nonpointer cast to pointer.
      Constraints.push_back(Constraint(Constraint::Copy, CSN,
                                       &GraphNodes[UniversalSet]));
    }
  } else if (isa<PointerType>(F->getFunctionType()->getReturnType())) {
    Constraints.push_back(Constraint(Constraint::Copy,
                                     &GraphNodes[UniversalSet],
                                     getReturnNode(F)));
  }

  Function::arg_iterator AI = F->arg_begin(), AE = F->arg_end();
  CallSite::arg_iterator ArgI = CS.arg_begin(), ArgE = CS.arg_end();
  for (; AI != AE && ArgI != ArgE; ++AI, ++ArgI)
    if (isa<PointerType>(AI->getType())) {
      if (isa<PointerType>((*ArgI)->getType())) {
        // Copy the actual argument into the formal argument.
        Constraints.push_back(Constraint(Constraint::Copy, getNode(AI),
                                         getNode(*ArgI)));
      } else {
        Constraints.push_back(Constraint(Constraint::Copy, getNode(AI),
                                         &GraphNodes[UniversalSet]));
      }
    } else if (isa<PointerType>((*ArgI)->getType())) {
      Constraints.push_back(Constraint(Constraint::Copy,
                                       &GraphNodes[UniversalSet],
                                       getNode(*ArgI)));
    }

  // Copy all pointers passed through the varargs section to the varargs node.
  if (F->getFunctionType()->isVarArg())
    for (; ArgI != ArgE; ++ArgI)
      if (isa<PointerType>((*ArgI)->getType()))
        Constraints.push_back(Constraint(Constraint::Copy, getVarargNode(F),
                                         getNode(*ArgI)));
  // If more arguments are passed in than we track, just drop them on the floor.
}

void Andersens::visitCallSite(CallSite CS) {
  if (isa<PointerType>(CS.getType()))
    getNodeValue(*CS.getInstruction());

  if (Function *F = CS.getCalledFunction()) {
    AddConstraintsForCall(CS, F);
  } else {
    // We don't handle indirect call sites yet.  Keep track of them for when we
    // discover the call graph incrementally.
    IndirectCalls.push_back(CS);
  }
}

//===----------------------------------------------------------------------===//
//                         Constraint Solving Phase
//===----------------------------------------------------------------------===//

/// intersects - Return true if the points-to set of this node intersects
/// with the points-to set of the specified node.
bool Andersens::Node::intersects(Node *N) const {
  iterator I1 = begin(), I2 = N->begin(), E1 = end(), E2 = N->end();
  while (I1 != E1 && I2 != E2) {
    if (*I1 == *I2) return true;
    if (*I1 < *I2)
      ++I1;
    else
      ++I2;
  }
  return false;
}

/// intersectsIgnoring - Return true if the points-to set of this node
/// intersects with the points-to set of the specified node on any nodes
/// except for the specified node to ignore.
bool Andersens::Node::intersectsIgnoring(Node *N, Node *Ignoring) const {
  iterator I1 = begin(), I2 = N->begin(), E1 = end(), E2 = N->end();
  while (I1 != E1 && I2 != E2) {
    if (*I1 == *I2) {
      if (*I1 != Ignoring) return true;
      ++I1; ++I2;
    } else if (*I1 < *I2)
      ++I1;
    else
      ++I2;
  }
  return false;
}

// Copy constraint: all edges out of the source node get copied to the
// destination node.  This returns true if a change is made.
bool Andersens::Node::copyFrom(Node *N) {
  // Use a mostly linear-time merge since both of the lists are sorted.
  bool Changed = false;
  iterator I = N->begin(), E = N->end();
  unsigned i = 0;
  while (I != E && i != Pointees.size()) {
    if (Pointees[i] < *I) {
      ++i;
    } else if (Pointees[i] == *I) {
      ++i; ++I;
    } else {
      // We found a new element to copy over.
      Changed = true;
      Pointees.insert(Pointees.begin()+i, *I);
       ++i; ++I;
    }
  }

  if (I != E) {
    Pointees.insert(Pointees.end(), I, E);
    Changed = true;
  }

  return Changed;
}

bool Andersens::Node::loadFrom(Node *N) {
  bool Changed = false;
  for (iterator I = N->begin(), E = N->end(); I != E; ++I)
    Changed |= copyFrom(*I);
  return Changed;
}

bool Andersens::Node::storeThrough(Node *N) {
  bool Changed = false;
  for (iterator I = begin(), E = end(); I != E; ++I)
    Changed |= (*I)->copyFrom(N);
  return Changed;
}


/// SolveConstraints - This stage iteratively processes the constraints list
/// propagating constraints (adding edges to the Nodes in the points-to graph)
/// until a fixed point is reached.
///
void Andersens::SolveConstraints() {
  bool Changed = true;
  unsigned Iteration = 0;
  while (Changed) {
    Changed = false;
    ++NumIters;
    DOUT << "Starting iteration #" << Iteration++ << "!\n";

    // Loop over all of the constraints, applying them in turn.
    for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
      Constraint &C = Constraints[i];
      switch (C.Type) {
      case Constraint::Copy:
        Changed |= C.Dest->copyFrom(C.Src);
        break;
      case Constraint::Load:
        Changed |= C.Dest->loadFrom(C.Src);
        break;
      case Constraint::Store:
        Changed |= C.Dest->storeThrough(C.Src);
        break;
      default:
        assert(0 && "Unknown constraint!");
      }
    }

    if (Changed) {
      // Check to see if any internal function's addresses have been passed to
      // external functions.  If so, we have to assume that their incoming
      // arguments could be anything.  If there are any internal functions in
      // the universal node that we don't know about, we must iterate.
      for (Node::iterator I = GraphNodes[UniversalSet].begin(),
             E = GraphNodes[UniversalSet].end(); I != E; ++I)
        if (Function *F = dyn_cast_or_null<Function>((*I)->getValue()))
          if (F->hasInternalLinkage() &&
              EscapingInternalFunctions.insert(F).second) {
            // We found a function that is just now escaping.  Mark it as if it
            // didn't have internal linkage.
            AddConstraintsForNonInternalLinkage(F);
            DOUT << "Found escaping internal function: " << F->getName() <<"\n";
            ++NumEscapingFunctions;
          }

      // Check to see if we have discovered any new callees of the indirect call
      // sites.  If so, add constraints to the analysis.
      for (unsigned i = 0, e = IndirectCalls.size(); i != e; ++i) {
        CallSite CS = IndirectCalls[i];
        std::vector<Function*> &KnownCallees = IndirectCallees[CS];
        Node *CN = getNode(CS.getCalledValue());

        for (Node::iterator NI = CN->begin(), E = CN->end(); NI != E; ++NI)
          if (Function *F = dyn_cast_or_null<Function>((*NI)->getValue())) {
            std::vector<Function*>::iterator IP =
              std::lower_bound(KnownCallees.begin(), KnownCallees.end(), F);
            if (IP == KnownCallees.end() || *IP != F) {
              // Add the constraints for the call now.
              AddConstraintsForCall(CS, F);
              DOUT << "Found actual callee '"
                   << F->getName() << "' for call: "
                   << *CS.getInstruction() << "\n";
              ++NumIndirectCallees;
              KnownCallees.insert(IP, F);
            }
          }
      }
    }
  }
}



//===----------------------------------------------------------------------===//
//                               Debugging Output
//===----------------------------------------------------------------------===//

void Andersens::PrintNode(Node *N) {
  if (N == &GraphNodes[UniversalSet]) {
    cerr << "<universal>";
    return;
  } else if (N == &GraphNodes[NullPtr]) {
    cerr << "<nullptr>";
    return;
  } else if (N == &GraphNodes[NullObject]) {
    cerr << "<null>";
    return;
  }

  assert(N->getValue() != 0 && "Never set node label!");
  Value *V = N->getValue();
  if (Function *F = dyn_cast<Function>(V)) {
    if (isa<PointerType>(F->getFunctionType()->getReturnType()) &&
        N == getReturnNode(F)) {
      cerr << F->getName() << ":retval";
      return;
    } else if (F->getFunctionType()->isVarArg() && N == getVarargNode(F)) {
      cerr << F->getName() << ":vararg";
      return;
    }
  }

  if (Instruction *I = dyn_cast<Instruction>(V))
    cerr << I->getParent()->getParent()->getName() << ":";
  else if (Argument *Arg = dyn_cast<Argument>(V))
    cerr << Arg->getParent()->getName() << ":";

  if (V->hasName())
    cerr << V->getName();
  else
    cerr << "(unnamed)";

  if (isa<GlobalValue>(V) || isa<AllocationInst>(V))
    if (N == getObject(V))
      cerr << "<mem>";
}

void Andersens::PrintConstraints() {
  cerr << "Constraints:\n";
  for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
    cerr << "  #" << i << ":  ";
    Constraint &C = Constraints[i];
    if (C.Type == Constraint::Store)
      cerr << "*";
    PrintNode(C.Dest);
    cerr << " = ";
    if (C.Type == Constraint::Load)
      cerr << "*";
    PrintNode(C.Src);
    cerr << "\n";
  }
}

void Andersens::PrintPointsToGraph() {
  cerr << "Points-to graph:\n";
  for (unsigned i = 0, e = GraphNodes.size(); i != e; ++i) {
    Node *N = &GraphNodes[i];
    cerr << "[" << (N->end() - N->begin()) << "] ";
    PrintNode(N);
    cerr << "\t--> ";
    for (Node::iterator I = N->begin(), E = N->end(); I != E; ++I) {
      if (I != N->begin()) cerr << ", ";
      PrintNode(*I);
    }
    cerr << "\n";
  }
}