summaryrefslogtreecommitdiff
path: root/lib/Analysis/PostDominators.cpp
blob: a818e6a03c8ba592659777853abac1cf5556bbe5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
//===- PostDominators.cpp - Post-Dominator Calculation --------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the post-dominator construction algorithms.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/PostDominators.h"
#include "llvm/Instructions.h"
#include "llvm/Support/CFG.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SetOperations.h"
using namespace llvm;

//===----------------------------------------------------------------------===//
//  PostDominatorTree Implementation
//===----------------------------------------------------------------------===//

const char PostDominatorTree::ID = 0;
const char PostDominanceFrontier::ID = 0;
const char PostETForest::ID = 0;
static RegisterPass<PostDominatorTree>
F("postdomtree", "Post-Dominator Tree Construction", true);

unsigned PostDominatorTree::DFSPass(BasicBlock *V, InfoRec &VInfo,
                                          unsigned N) {
  std::vector<std::pair<BasicBlock *, InfoRec *> > workStack;
  std::set<BasicBlock *> visited;
  workStack.push_back(std::make_pair(V, &VInfo));

  do {
    BasicBlock *currentBB = workStack.back().first; 
    InfoRec *currentVInfo = workStack.back().second;

    // Visit each block only once.
    if (visited.count(currentBB) == 0) {

      visited.insert(currentBB);
      currentVInfo->Semi = ++N;
      currentVInfo->Label = currentBB;
      
      Vertex.push_back(currentBB);  // Vertex[n] = current;
      // Info[currentBB].Ancestor = 0;     
      // Ancestor[n] = 0
      // Child[currentBB] = 0;
      currentVInfo->Size = 1;       // Size[currentBB] = 1
    }

    // Visit children
    bool visitChild = false;
    for (pred_iterator PI = pred_begin(currentBB), PE = pred_end(currentBB); 
         PI != PE && !visitChild; ++PI) {
      InfoRec &SuccVInfo = Info[*PI];
      if (SuccVInfo.Semi == 0) {
        SuccVInfo.Parent = currentBB;
        if (visited.count (*PI) == 0) {
          workStack.push_back(std::make_pair(*PI, &SuccVInfo));   
          visitChild = true;
        }
      }
    }

    // If all children are visited or if this block has no child then pop this
    // block out of workStack.
    if (!visitChild)
      workStack.pop_back();

  } while (!workStack.empty());

  return N;
}

void PostDominatorTree::Compress(BasicBlock *V, InfoRec &VInfo) {
  BasicBlock *VAncestor = VInfo.Ancestor;
  InfoRec &VAInfo = Info[VAncestor];
  if (VAInfo.Ancestor == 0)
    return;
  
  Compress(VAncestor, VAInfo);
  
  BasicBlock *VAncestorLabel = VAInfo.Label;
  BasicBlock *VLabel = VInfo.Label;
  if (Info[VAncestorLabel].Semi < Info[VLabel].Semi)
    VInfo.Label = VAncestorLabel;
  
  VInfo.Ancestor = VAInfo.Ancestor;
}

BasicBlock *PostDominatorTree::Eval(BasicBlock *V) {
  InfoRec &VInfo = Info[V];

  // Higher-complexity but faster implementation
  if (VInfo.Ancestor == 0)
    return V;
  Compress(V, VInfo);
  return VInfo.Label;
}

void PostDominatorTree::Link(BasicBlock *V, BasicBlock *W, 
                                   InfoRec &WInfo) {
  // Higher-complexity but faster implementation
  WInfo.Ancestor = V;
}

void PostDominatorTree::calculate(Function &F) {
  // Step #0: Scan the function looking for the root nodes of the post-dominance
  // relationships.  These blocks, which have no successors, end with return and
  // unwind instructions.
  for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
    if (succ_begin(I) == succ_end(I))
      Roots.push_back(I);
  
  Vertex.push_back(0);
  
  // Step #1: Number blocks in depth-first order and initialize variables used
  // in later stages of the algorithm.
  unsigned N = 0;
  for (unsigned i = 0, e = Roots.size(); i != e; ++i)
    N = DFSPass(Roots[i], Info[Roots[i]], N);
  
  for (unsigned i = N; i >= 2; --i) {
    BasicBlock *W = Vertex[i];
    InfoRec &WInfo = Info[W];
    
    // Step #2: Calculate the semidominators of all vertices
    for (succ_iterator SI = succ_begin(W), SE = succ_end(W); SI != SE; ++SI)
      if (Info.count(*SI)) {  // Only if this predecessor is reachable!
        unsigned SemiU = Info[Eval(*SI)].Semi;
        if (SemiU < WInfo.Semi)
          WInfo.Semi = SemiU;
      }
        
    Info[Vertex[WInfo.Semi]].Bucket.push_back(W);
    
    BasicBlock *WParent = WInfo.Parent;
    Link(WParent, W, WInfo);
    
    // Step #3: Implicitly define the immediate dominator of vertices
    std::vector<BasicBlock*> &WParentBucket = Info[WParent].Bucket;
    while (!WParentBucket.empty()) {
      BasicBlock *V = WParentBucket.back();
      WParentBucket.pop_back();
      BasicBlock *U = Eval(V);
      IDoms[V] = Info[U].Semi < Info[V].Semi ? U : WParent;
    }
  }
  
  // Step #4: Explicitly define the immediate dominator of each vertex
  for (unsigned i = 2; i <= N; ++i) {
    BasicBlock *W = Vertex[i];
    BasicBlock *&WIDom = IDoms[W];
    if (WIDom != Vertex[Info[W].Semi])
      WIDom = IDoms[WIDom];
  }
  
  if (Roots.empty()) return;

  // Add a node for the root.  This node might be the actual root, if there is
  // one exit block, or it may be the virtual exit (denoted by (BasicBlock *)0)
  // which postdominates all real exits if there are multiple exit blocks.
  BasicBlock *Root = Roots.size() == 1 ? Roots[0] : 0;
  Nodes[Root] = RootNode = new Node(Root, 0);
  
  // Loop over all of the reachable blocks in the function...
  for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
    if (BasicBlock *ImmPostDom = getIDom(I)) {  // Reachable block.
      Node *&BBNode = Nodes[I];
      if (!BBNode) {  // Haven't calculated this node yet?
                      // Get or calculate the node for the immediate dominator
        Node *IPDomNode = getNodeForBlock(ImmPostDom);
        
        // Add a new tree node for this BasicBlock, and link it as a child of
        // IDomNode
        BBNode = IPDomNode->addChild(new Node(I, IPDomNode));
      }
    }

  // Free temporary memory used to construct idom's
  IDoms.clear();
  Info.clear();
  std::vector<BasicBlock*>().swap(Vertex);
}


DominatorTreeBase::Node *PostDominatorTree::getNodeForBlock(BasicBlock *BB) {
  Node *&BBNode = Nodes[BB];
  if (BBNode) return BBNode;
  
  // Haven't calculated this node yet?  Get or calculate the node for the
  // immediate postdominator.
  BasicBlock *IPDom = getIDom(BB);
  Node *IPDomNode = getNodeForBlock(IPDom);
  
  // Add a new tree node for this BasicBlock, and link it as a child of
  // IDomNode
  return BBNode = IPDomNode->addChild(new Node(BB, IPDomNode));
}

//===----------------------------------------------------------------------===//
// PostETForest Implementation
//===----------------------------------------------------------------------===//

static RegisterPass<PostETForest>
G("postetforest", "Post-ET-Forest Construction", true);

ETNode *PostETForest::getNodeForBlock(BasicBlock *BB) {
  ETNode *&BBNode = Nodes[BB];
  if (BBNode) return BBNode;

  // Haven't calculated this node yet?  Get or calculate the node for the
  // immediate dominator.
  PostDominatorTree::Node *node = getAnalysis<PostDominatorTree>().getNode(BB);

  // If we are unreachable, we may not have an immediate dominator.
  if (!node)
    return 0;
  else if (!node->getIDom())
    return BBNode = new ETNode(BB);
  else {
    ETNode *IDomNode = getNodeForBlock(node->getIDom()->getBlock());
    
    // Add a new tree node for this BasicBlock, and link it as a child of
    // IDomNode
    BBNode = new ETNode(BB);
    BBNode->setFather(IDomNode);
    return BBNode;
  }
}

void PostETForest::calculate(const PostDominatorTree &DT) {
  for (unsigned i = 0, e = Roots.size(); i != e; ++i)
    Nodes[Roots[i]] = new ETNode(Roots[i]); // Add a node for the root

  // Iterate over all nodes in inverse depth first order.
  for (unsigned i = 0, e = Roots.size(); i != e; ++i)
    for (idf_iterator<BasicBlock*> I = idf_begin(Roots[i]),
           E = idf_end(Roots[i]); I != E; ++I) {
    BasicBlock *BB = *I;
    ETNode *&BBNode = Nodes[BB];
    if (!BBNode) {  
      ETNode *IDomNode =  NULL;
      PostDominatorTree::Node *node = DT.getNode(BB);
      if (node && node->getIDom())
        IDomNode = getNodeForBlock(node->getIDom()->getBlock());

      // Add a new ETNode for this BasicBlock, and set it's parent
      // to it's immediate dominator.
      BBNode = new ETNode(BB);
      if (IDomNode)          
        BBNode->setFather(IDomNode);
    }
  }

  int dfsnum = 0;
  // Iterate over all nodes in depth first order...
  for (unsigned i = 0, e = Roots.size(); i != e; ++i)
    for (idf_iterator<BasicBlock*> I = idf_begin(Roots[i]),
           E = idf_end(Roots[i]); I != E; ++I) {
        if (!getNodeForBlock(*I)->hasFather())
          getNodeForBlock(*I)->assignDFSNumber(dfsnum);
    }
  DFSInfoValid = true;
}

//===----------------------------------------------------------------------===//
//  PostDominanceFrontier Implementation
//===----------------------------------------------------------------------===//

static RegisterPass<PostDominanceFrontier>
H("postdomfrontier", "Post-Dominance Frontier Construction", true);

const DominanceFrontier::DomSetType &
PostDominanceFrontier::calculate(const PostDominatorTree &DT,
                                 const DominatorTree::Node *Node) {
  // Loop over CFG successors to calculate DFlocal[Node]
  BasicBlock *BB = Node->getBlock();
  DomSetType &S = Frontiers[BB];       // The new set to fill in...
  if (getRoots().empty()) return S;

  if (BB)
    for (pred_iterator SI = pred_begin(BB), SE = pred_end(BB);
         SI != SE; ++SI) {
      // Does Node immediately dominate this predecessor?
      DominatorTree::Node *SINode = DT[*SI];
      if (SINode && SINode->getIDom() != Node)
        S.insert(*SI);
    }

  // At this point, S is DFlocal.  Now we union in DFup's of our children...
  // Loop through and visit the nodes that Node immediately dominates (Node's
  // children in the IDomTree)
  //
  for (PostDominatorTree::Node::const_iterator
         NI = Node->begin(), NE = Node->end(); NI != NE; ++NI) {
    DominatorTree::Node *IDominee = *NI;
    const DomSetType &ChildDF = calculate(DT, IDominee);

    DomSetType::const_iterator CDFI = ChildDF.begin(), CDFE = ChildDF.end();
    for (; CDFI != CDFE; ++CDFI) {
      if (!Node->properlyDominates(DT[*CDFI]))
        S.insert(*CDFI);
    }
  }

  return S;
}

// Ensure that this .cpp file gets linked when PostDominators.h is used.
DEFINING_FILE_FOR(PostDominanceFrontier)