summaryrefslogtreecommitdiff
path: root/lib/CodeGen/AggressiveAntiDepBreaker.cpp
blob: 0f38c644c714fbbffaa5a53404a38cc68788dd75 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
//===----- AggressiveAntiDepBreaker.cpp - Anti-dep breaker ----------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the AggressiveAntiDepBreaker class, which
// implements register anti-dependence breaking during post-RA
// scheduling. It attempts to break all anti-dependencies within a
// block.
//
//===----------------------------------------------------------------------===//

#include "AggressiveAntiDepBreaker.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/RegisterClassInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
using namespace llvm;

#define DEBUG_TYPE "post-RA-sched"

// If DebugDiv > 0 then only break antidep with (ID % DebugDiv) == DebugMod
static cl::opt<int>
DebugDiv("agg-antidep-debugdiv",
         cl::desc("Debug control for aggressive anti-dep breaker"),
         cl::init(0), cl::Hidden);
static cl::opt<int>
DebugMod("agg-antidep-debugmod",
         cl::desc("Debug control for aggressive anti-dep breaker"),
         cl::init(0), cl::Hidden);

AggressiveAntiDepState::AggressiveAntiDepState(const unsigned TargetRegs,
                                               MachineBasicBlock *BB) :
  NumTargetRegs(TargetRegs), GroupNodes(TargetRegs, 0),
  GroupNodeIndices(TargetRegs, 0),
  KillIndices(TargetRegs, 0),
  DefIndices(TargetRegs, 0)
{
  const unsigned BBSize = BB->size();
  for (unsigned i = 0; i < NumTargetRegs; ++i) {
    // Initialize all registers to be in their own group. Initially we
    // assign the register to the same-indexed GroupNode.
    GroupNodeIndices[i] = i;
    // Initialize the indices to indicate that no registers are live.
    KillIndices[i] = ~0u;
    DefIndices[i] = BBSize;
  }
}

unsigned AggressiveAntiDepState::GetGroup(unsigned Reg) {
  unsigned Node = GroupNodeIndices[Reg];
  while (GroupNodes[Node] != Node)
    Node = GroupNodes[Node];

  return Node;
}

void AggressiveAntiDepState::GetGroupRegs(
  unsigned Group,
  std::vector<unsigned> &Regs,
  std::multimap<unsigned, AggressiveAntiDepState::RegisterReference> *RegRefs)
{
  for (unsigned Reg = 0; Reg != NumTargetRegs; ++Reg) {
    if ((GetGroup(Reg) == Group) && (RegRefs->count(Reg) > 0))
      Regs.push_back(Reg);
  }
}

unsigned AggressiveAntiDepState::UnionGroups(unsigned Reg1, unsigned Reg2)
{
  assert(GroupNodes[0] == 0 && "GroupNode 0 not parent!");
  assert(GroupNodeIndices[0] == 0 && "Reg 0 not in Group 0!");

  // find group for each register
  unsigned Group1 = GetGroup(Reg1);
  unsigned Group2 = GetGroup(Reg2);

  // if either group is 0, then that must become the parent
  unsigned Parent = (Group1 == 0) ? Group1 : Group2;
  unsigned Other = (Parent == Group1) ? Group2 : Group1;
  GroupNodes.at(Other) = Parent;
  return Parent;
}

unsigned AggressiveAntiDepState::LeaveGroup(unsigned Reg)
{
  // Create a new GroupNode for Reg. Reg's existing GroupNode must
  // stay as is because there could be other GroupNodes referring to
  // it.
  unsigned idx = GroupNodes.size();
  GroupNodes.push_back(idx);
  GroupNodeIndices[Reg] = idx;
  return idx;
}

bool AggressiveAntiDepState::IsLive(unsigned Reg)
{
  // KillIndex must be defined and DefIndex not defined for a register
  // to be live.
  return((KillIndices[Reg] != ~0u) && (DefIndices[Reg] == ~0u));
}



AggressiveAntiDepBreaker::
AggressiveAntiDepBreaker(MachineFunction& MFi,
                         const RegisterClassInfo &RCI,
                         TargetSubtargetInfo::RegClassVector& CriticalPathRCs) :
  AntiDepBreaker(), MF(MFi),
  MRI(MF.getRegInfo()),
  TII(MF.getTarget().getInstrInfo()),
  TRI(MF.getTarget().getRegisterInfo()),
  RegClassInfo(RCI),
  State(nullptr) {
  /* Collect a bitset of all registers that are only broken if they
     are on the critical path. */
  for (unsigned i = 0, e = CriticalPathRCs.size(); i < e; ++i) {
    BitVector CPSet = TRI->getAllocatableSet(MF, CriticalPathRCs[i]);
    if (CriticalPathSet.none())
      CriticalPathSet = CPSet;
    else
      CriticalPathSet |= CPSet;
   }

  DEBUG(dbgs() << "AntiDep Critical-Path Registers:");
  DEBUG(for (int r = CriticalPathSet.find_first(); r != -1;
             r = CriticalPathSet.find_next(r))
          dbgs() << " " << TRI->getName(r));
  DEBUG(dbgs() << '\n');
}

AggressiveAntiDepBreaker::~AggressiveAntiDepBreaker() {
  delete State;
}

void AggressiveAntiDepBreaker::StartBlock(MachineBasicBlock *BB) {
  assert(!State);
  State = new AggressiveAntiDepState(TRI->getNumRegs(), BB);

  bool IsReturnBlock = (!BB->empty() && BB->back().isReturn());
  std::vector<unsigned> &KillIndices = State->GetKillIndices();
  std::vector<unsigned> &DefIndices = State->GetDefIndices();

  // Examine the live-in regs of all successors.
  for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
         SE = BB->succ_end(); SI != SE; ++SI)
    for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
           E = (*SI)->livein_end(); I != E; ++I) {
      for (MCRegAliasIterator AI(*I, TRI, true); AI.isValid(); ++AI) {
        unsigned Reg = *AI;
        State->UnionGroups(Reg, 0);
        KillIndices[Reg] = BB->size();
        DefIndices[Reg] = ~0u;
      }
    }

  // Mark live-out callee-saved registers. In a return block this is
  // all callee-saved registers. In non-return this is any
  // callee-saved register that is not saved in the prolog.
  const MachineFrameInfo *MFI = MF.getFrameInfo();
  BitVector Pristine = MFI->getPristineRegs(BB);
  for (const MCPhysReg *I = TRI->getCalleeSavedRegs(&MF); *I; ++I) {
    unsigned Reg = *I;
    if (!IsReturnBlock && !Pristine.test(Reg)) continue;
    for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
      unsigned AliasReg = *AI;
      State->UnionGroups(AliasReg, 0);
      KillIndices[AliasReg] = BB->size();
      DefIndices[AliasReg] = ~0u;
    }
  }
}

void AggressiveAntiDepBreaker::FinishBlock() {
  delete State;
  State = nullptr;
}

void AggressiveAntiDepBreaker::Observe(MachineInstr *MI, unsigned Count,
                                       unsigned InsertPosIndex) {
  assert(Count < InsertPosIndex && "Instruction index out of expected range!");

  std::set<unsigned> PassthruRegs;
  GetPassthruRegs(MI, PassthruRegs);
  PrescanInstruction(MI, Count, PassthruRegs);
  ScanInstruction(MI, Count);

  DEBUG(dbgs() << "Observe: ");
  DEBUG(MI->dump());
  DEBUG(dbgs() << "\tRegs:");

  std::vector<unsigned> &DefIndices = State->GetDefIndices();
  for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg) {
    // If Reg is current live, then mark that it can't be renamed as
    // we don't know the extent of its live-range anymore (now that it
    // has been scheduled). If it is not live but was defined in the
    // previous schedule region, then set its def index to the most
    // conservative location (i.e. the beginning of the previous
    // schedule region).
    if (State->IsLive(Reg)) {
      DEBUG(if (State->GetGroup(Reg) != 0)
              dbgs() << " " << TRI->getName(Reg) << "=g" <<
                State->GetGroup(Reg) << "->g0(region live-out)");
      State->UnionGroups(Reg, 0);
    } else if ((DefIndices[Reg] < InsertPosIndex)
               && (DefIndices[Reg] >= Count)) {
      DefIndices[Reg] = Count;
    }
  }
  DEBUG(dbgs() << '\n');
}

bool AggressiveAntiDepBreaker::IsImplicitDefUse(MachineInstr *MI,
                                                MachineOperand& MO)
{
  if (!MO.isReg() || !MO.isImplicit())
    return false;

  unsigned Reg = MO.getReg();
  if (Reg == 0)
    return false;

  MachineOperand *Op = nullptr;
  if (MO.isDef())
    Op = MI->findRegisterUseOperand(Reg, true);
  else
    Op = MI->findRegisterDefOperand(Reg);

  return(Op && Op->isImplicit());
}

void AggressiveAntiDepBreaker::GetPassthruRegs(MachineInstr *MI,
                                           std::set<unsigned>& PassthruRegs) {
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    MachineOperand &MO = MI->getOperand(i);
    if (!MO.isReg()) continue;
    if ((MO.isDef() && MI->isRegTiedToUseOperand(i)) ||
        IsImplicitDefUse(MI, MO)) {
      const unsigned Reg = MO.getReg();
      for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
           SubRegs.isValid(); ++SubRegs)
        PassthruRegs.insert(*SubRegs);
    }
  }
}

/// AntiDepEdges - Return in Edges the anti- and output- dependencies
/// in SU that we want to consider for breaking.
static void AntiDepEdges(const SUnit *SU, std::vector<const SDep*>& Edges) {
  SmallSet<unsigned, 4> RegSet;
  for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
       P != PE; ++P) {
    if ((P->getKind() == SDep::Anti) || (P->getKind() == SDep::Output)) {
      unsigned Reg = P->getReg();
      if (RegSet.count(Reg) == 0) {
        Edges.push_back(&*P);
        RegSet.insert(Reg);
      }
    }
  }
}

/// CriticalPathStep - Return the next SUnit after SU on the bottom-up
/// critical path.
static const SUnit *CriticalPathStep(const SUnit *SU) {
  const SDep *Next = nullptr;
  unsigned NextDepth = 0;
  // Find the predecessor edge with the greatest depth.
  if (SU) {
    for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
         P != PE; ++P) {
      const SUnit *PredSU = P->getSUnit();
      unsigned PredLatency = P->getLatency();
      unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
      // In the case of a latency tie, prefer an anti-dependency edge over
      // other types of edges.
      if (NextDepth < PredTotalLatency ||
          (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) {
        NextDepth = PredTotalLatency;
        Next = &*P;
      }
    }
  }

  return (Next) ? Next->getSUnit() : nullptr;
}

void AggressiveAntiDepBreaker::HandleLastUse(unsigned Reg, unsigned KillIdx,
                                             const char *tag,
                                             const char *header,
                                             const char *footer) {
  std::vector<unsigned> &KillIndices = State->GetKillIndices();
  std::vector<unsigned> &DefIndices = State->GetDefIndices();
  std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>&
    RegRefs = State->GetRegRefs();

  if (!State->IsLive(Reg)) {
    KillIndices[Reg] = KillIdx;
    DefIndices[Reg] = ~0u;
    RegRefs.erase(Reg);
    State->LeaveGroup(Reg);
    DEBUG(if (header) {
        dbgs() << header << TRI->getName(Reg); header = nullptr; });
    DEBUG(dbgs() << "->g" << State->GetGroup(Reg) << tag);
  }
  // Repeat for subregisters.
  for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
    unsigned SubregReg = *SubRegs;
    if (!State->IsLive(SubregReg)) {
      KillIndices[SubregReg] = KillIdx;
      DefIndices[SubregReg] = ~0u;
      RegRefs.erase(SubregReg);
      State->LeaveGroup(SubregReg);
      DEBUG(if (header) {
          dbgs() << header << TRI->getName(Reg); header = nullptr; });
      DEBUG(dbgs() << " " << TRI->getName(SubregReg) << "->g" <<
            State->GetGroup(SubregReg) << tag);
    }
  }

  DEBUG(if (!header && footer) dbgs() << footer);
}

void AggressiveAntiDepBreaker::PrescanInstruction(MachineInstr *MI,
                                                  unsigned Count,
                                             std::set<unsigned>& PassthruRegs) {
  std::vector<unsigned> &DefIndices = State->GetDefIndices();
  std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>&
    RegRefs = State->GetRegRefs();

  // Handle dead defs by simulating a last-use of the register just
  // after the def. A dead def can occur because the def is truly
  // dead, or because only a subregister is live at the def. If we
  // don't do this the dead def will be incorrectly merged into the
  // previous def.
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    MachineOperand &MO = MI->getOperand(i);
    if (!MO.isReg() || !MO.isDef()) continue;
    unsigned Reg = MO.getReg();
    if (Reg == 0) continue;

    HandleLastUse(Reg, Count + 1, "", "\tDead Def: ", "\n");
  }

  DEBUG(dbgs() << "\tDef Groups:");
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    MachineOperand &MO = MI->getOperand(i);
    if (!MO.isReg() || !MO.isDef()) continue;
    unsigned Reg = MO.getReg();
    if (Reg == 0) continue;

    DEBUG(dbgs() << " " << TRI->getName(Reg) << "=g" << State->GetGroup(Reg));

    // If MI's defs have a special allocation requirement, don't allow
    // any def registers to be changed. Also assume all registers
    // defined in a call must not be changed (ABI).
    if (MI->isCall() || MI->hasExtraDefRegAllocReq() ||
        TII->isPredicated(MI)) {
      DEBUG(if (State->GetGroup(Reg) != 0) dbgs() << "->g0(alloc-req)");
      State->UnionGroups(Reg, 0);
    }

    // Any aliased that are live at this point are completely or
    // partially defined here, so group those aliases with Reg.
    for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) {
      unsigned AliasReg = *AI;
      if (State->IsLive(AliasReg)) {
        State->UnionGroups(Reg, AliasReg);
        DEBUG(dbgs() << "->g" << State->GetGroup(Reg) << "(via " <<
              TRI->getName(AliasReg) << ")");
      }
    }

    // Note register reference...
    const TargetRegisterClass *RC = nullptr;
    if (i < MI->getDesc().getNumOperands())
      RC = TII->getRegClass(MI->getDesc(), i, TRI, MF);
    AggressiveAntiDepState::RegisterReference RR = { &MO, RC };
    RegRefs.insert(std::make_pair(Reg, RR));
  }

  DEBUG(dbgs() << '\n');

  // Scan the register defs for this instruction and update
  // live-ranges.
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    MachineOperand &MO = MI->getOperand(i);
    if (!MO.isReg() || !MO.isDef()) continue;
    unsigned Reg = MO.getReg();
    if (Reg == 0) continue;
    // Ignore KILLs and passthru registers for liveness...
    if (MI->isKill() || (PassthruRegs.count(Reg) != 0))
      continue;

    // Update def for Reg and aliases.
    for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
      // We need to be careful here not to define already-live super registers.
      // If the super register is already live, then this definition is not
      // a definition of the whole super register (just a partial insertion
      // into it). Earlier subregister definitions (which we've not yet visited
      // because we're iterating bottom-up) need to be linked to the same group
      // as this definition.
      if (TRI->isSuperRegister(Reg, *AI) && State->IsLive(*AI))
        continue;

      DefIndices[*AI] = Count;
    }
  }
}

void AggressiveAntiDepBreaker::ScanInstruction(MachineInstr *MI,
                                               unsigned Count) {
  DEBUG(dbgs() << "\tUse Groups:");
  std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>&
    RegRefs = State->GetRegRefs();

  // If MI's uses have special allocation requirement, don't allow
  // any use registers to be changed. Also assume all registers
  // used in a call must not be changed (ABI).
  // FIXME: The issue with predicated instruction is more complex. We are being
  // conservatively here because the kill markers cannot be trusted after
  // if-conversion:
  // %R6<def> = LDR %SP, %reg0, 92, pred:14, pred:%reg0; mem:LD4[FixedStack14]
  // ...
  // STR %R0, %R6<kill>, %reg0, 0, pred:0, pred:%CPSR; mem:ST4[%395]
  // %R6<def> = LDR %SP, %reg0, 100, pred:0, pred:%CPSR; mem:LD4[FixedStack12]
  // STR %R0, %R6<kill>, %reg0, 0, pred:14, pred:%reg0; mem:ST4[%396](align=8)
  //
  // The first R6 kill is not really a kill since it's killed by a predicated
  // instruction which may not be executed. The second R6 def may or may not
  // re-define R6 so it's not safe to change it since the last R6 use cannot be
  // changed.
  bool Special = MI->isCall() ||
    MI->hasExtraSrcRegAllocReq() ||
    TII->isPredicated(MI);

  // Scan the register uses for this instruction and update
  // live-ranges, groups and RegRefs.
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    MachineOperand &MO = MI->getOperand(i);
    if (!MO.isReg() || !MO.isUse()) continue;
    unsigned Reg = MO.getReg();
    if (Reg == 0) continue;

    DEBUG(dbgs() << " " << TRI->getName(Reg) << "=g" <<
          State->GetGroup(Reg));

    // It wasn't previously live but now it is, this is a kill. Forget
    // the previous live-range information and start a new live-range
    // for the register.
    HandleLastUse(Reg, Count, "(last-use)");

    if (Special) {
      DEBUG(if (State->GetGroup(Reg) != 0) dbgs() << "->g0(alloc-req)");
      State->UnionGroups(Reg, 0);
    }

    // Note register reference...
    const TargetRegisterClass *RC = nullptr;
    if (i < MI->getDesc().getNumOperands())
      RC = TII->getRegClass(MI->getDesc(), i, TRI, MF);
    AggressiveAntiDepState::RegisterReference RR = { &MO, RC };
    RegRefs.insert(std::make_pair(Reg, RR));
  }

  DEBUG(dbgs() << '\n');

  // Form a group of all defs and uses of a KILL instruction to ensure
  // that all registers are renamed as a group.
  if (MI->isKill()) {
    DEBUG(dbgs() << "\tKill Group:");

    unsigned FirstReg = 0;
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
      MachineOperand &MO = MI->getOperand(i);
      if (!MO.isReg()) continue;
      unsigned Reg = MO.getReg();
      if (Reg == 0) continue;

      if (FirstReg != 0) {
        DEBUG(dbgs() << "=" << TRI->getName(Reg));
        State->UnionGroups(FirstReg, Reg);
      } else {
        DEBUG(dbgs() << " " << TRI->getName(Reg));
        FirstReg = Reg;
      }
    }

    DEBUG(dbgs() << "->g" << State->GetGroup(FirstReg) << '\n');
  }
}

BitVector AggressiveAntiDepBreaker::GetRenameRegisters(unsigned Reg) {
  BitVector BV(TRI->getNumRegs(), false);
  bool first = true;

  // Check all references that need rewriting for Reg. For each, use
  // the corresponding register class to narrow the set of registers
  // that are appropriate for renaming.
  std::pair<std::multimap<unsigned,
                     AggressiveAntiDepState::RegisterReference>::iterator,
            std::multimap<unsigned,
                     AggressiveAntiDepState::RegisterReference>::iterator>
    Range = State->GetRegRefs().equal_range(Reg);
  for (std::multimap<unsigned,
       AggressiveAntiDepState::RegisterReference>::iterator Q = Range.first,
       QE = Range.second; Q != QE; ++Q) {
    const TargetRegisterClass *RC = Q->second.RC;
    if (!RC) continue;

    BitVector RCBV = TRI->getAllocatableSet(MF, RC);
    if (first) {
      BV |= RCBV;
      first = false;
    } else {
      BV &= RCBV;
    }

    DEBUG(dbgs() << " " << RC->getName());
  }

  return BV;
}

bool AggressiveAntiDepBreaker::FindSuitableFreeRegisters(
                                unsigned AntiDepGroupIndex,
                                RenameOrderType& RenameOrder,
                                std::map<unsigned, unsigned> &RenameMap) {
  std::vector<unsigned> &KillIndices = State->GetKillIndices();
  std::vector<unsigned> &DefIndices = State->GetDefIndices();
  std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>&
    RegRefs = State->GetRegRefs();

  // Collect all referenced registers in the same group as
  // AntiDepReg. These all need to be renamed together if we are to
  // break the anti-dependence.
  std::vector<unsigned> Regs;
  State->GetGroupRegs(AntiDepGroupIndex, Regs, &RegRefs);
  assert(Regs.size() > 0 && "Empty register group!");
  if (Regs.size() == 0)
    return false;

  // Find the "superest" register in the group. At the same time,
  // collect the BitVector of registers that can be used to rename
  // each register.
  DEBUG(dbgs() << "\tRename Candidates for Group g" << AntiDepGroupIndex
        << ":\n");
  std::map<unsigned, BitVector> RenameRegisterMap;
  unsigned SuperReg = 0;
  for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
    unsigned Reg = Regs[i];
    if ((SuperReg == 0) || TRI->isSuperRegister(SuperReg, Reg))
      SuperReg = Reg;

    // If Reg has any references, then collect possible rename regs
    if (RegRefs.count(Reg) > 0) {
      DEBUG(dbgs() << "\t\t" << TRI->getName(Reg) << ":");

      BitVector BV = GetRenameRegisters(Reg);
      RenameRegisterMap.insert(std::pair<unsigned, BitVector>(Reg, BV));

      DEBUG(dbgs() << " ::");
      DEBUG(for (int r = BV.find_first(); r != -1; r = BV.find_next(r))
              dbgs() << " " << TRI->getName(r));
      DEBUG(dbgs() << "\n");
    }
  }

  // All group registers should be a subreg of SuperReg.
  for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
    unsigned Reg = Regs[i];
    if (Reg == SuperReg) continue;
    bool IsSub = TRI->isSubRegister(SuperReg, Reg);
    assert(IsSub && "Expecting group subregister");
    if (!IsSub)
      return false;
  }

#ifndef NDEBUG
  // If DebugDiv > 0 then only rename (renamecnt % DebugDiv) == DebugMod
  if (DebugDiv > 0) {
    static int renamecnt = 0;
    if (renamecnt++ % DebugDiv != DebugMod)
      return false;

    dbgs() << "*** Performing rename " << TRI->getName(SuperReg) <<
      " for debug ***\n";
  }
#endif

  // Check each possible rename register for SuperReg in round-robin
  // order. If that register is available, and the corresponding
  // registers are available for the other group subregisters, then we
  // can use those registers to rename.

  // FIXME: Using getMinimalPhysRegClass is very conservative. We should
  // check every use of the register and find the largest register class
  // that can be used in all of them.
  const TargetRegisterClass *SuperRC =
    TRI->getMinimalPhysRegClass(SuperReg, MVT::Other);

  ArrayRef<MCPhysReg> Order = RegClassInfo.getOrder(SuperRC);
  if (Order.empty()) {
    DEBUG(dbgs() << "\tEmpty Super Regclass!!\n");
    return false;
  }

  DEBUG(dbgs() << "\tFind Registers:");

  if (RenameOrder.count(SuperRC) == 0)
    RenameOrder.insert(RenameOrderType::value_type(SuperRC, Order.size()));

  unsigned OrigR = RenameOrder[SuperRC];
  unsigned EndR = ((OrigR == Order.size()) ? 0 : OrigR);
  unsigned R = OrigR;
  do {
    if (R == 0) R = Order.size();
    --R;
    const unsigned NewSuperReg = Order[R];
    // Don't consider non-allocatable registers
    if (!MRI.isAllocatable(NewSuperReg)) continue;
    // Don't replace a register with itself.
    if (NewSuperReg == SuperReg) continue;

    DEBUG(dbgs() << " [" << TRI->getName(NewSuperReg) << ':');
    RenameMap.clear();

    // For each referenced group register (which must be a SuperReg or
    // a subregister of SuperReg), find the corresponding subregister
    // of NewSuperReg and make sure it is free to be renamed.
    for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
      unsigned Reg = Regs[i];
      unsigned NewReg = 0;
      if (Reg == SuperReg) {
        NewReg = NewSuperReg;
      } else {
        unsigned NewSubRegIdx = TRI->getSubRegIndex(SuperReg, Reg);
        if (NewSubRegIdx != 0)
          NewReg = TRI->getSubReg(NewSuperReg, NewSubRegIdx);
      }

      DEBUG(dbgs() << " " << TRI->getName(NewReg));

      // Check if Reg can be renamed to NewReg.
      BitVector BV = RenameRegisterMap[Reg];
      if (!BV.test(NewReg)) {
        DEBUG(dbgs() << "(no rename)");
        goto next_super_reg;
      }

      // If NewReg is dead and NewReg's most recent def is not before
      // Regs's kill, it's safe to replace Reg with NewReg. We
      // must also check all aliases of NewReg, because we can't define a
      // register when any sub or super is already live.
      if (State->IsLive(NewReg) || (KillIndices[Reg] > DefIndices[NewReg])) {
        DEBUG(dbgs() << "(live)");
        goto next_super_reg;
      } else {
        bool found = false;
        for (MCRegAliasIterator AI(NewReg, TRI, false); AI.isValid(); ++AI) {
          unsigned AliasReg = *AI;
          if (State->IsLive(AliasReg) ||
              (KillIndices[Reg] > DefIndices[AliasReg])) {
            DEBUG(dbgs() << "(alias " << TRI->getName(AliasReg) << " live)");
            found = true;
            break;
          }
        }
        if (found)
          goto next_super_reg;
      }

      // Record that 'Reg' can be renamed to 'NewReg'.
      RenameMap.insert(std::pair<unsigned, unsigned>(Reg, NewReg));
    }

    // If we fall-out here, then every register in the group can be
    // renamed, as recorded in RenameMap.
    RenameOrder.erase(SuperRC);
    RenameOrder.insert(RenameOrderType::value_type(SuperRC, R));
    DEBUG(dbgs() << "]\n");
    return true;

  next_super_reg:
    DEBUG(dbgs() << ']');
  } while (R != EndR);

  DEBUG(dbgs() << '\n');

  // No registers are free and available!
  return false;
}

/// BreakAntiDependencies - Identifiy anti-dependencies within the
/// ScheduleDAG and break them by renaming registers.
///
unsigned AggressiveAntiDepBreaker::BreakAntiDependencies(
                              const std::vector<SUnit>& SUnits,
                              MachineBasicBlock::iterator Begin,
                              MachineBasicBlock::iterator End,
                              unsigned InsertPosIndex,
                              DbgValueVector &DbgValues) {

  std::vector<unsigned> &KillIndices = State->GetKillIndices();
  std::vector<unsigned> &DefIndices = State->GetDefIndices();
  std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>&
    RegRefs = State->GetRegRefs();

  // The code below assumes that there is at least one instruction,
  // so just duck out immediately if the block is empty.
  if (SUnits.empty()) return 0;

  // For each regclass the next register to use for renaming.
  RenameOrderType RenameOrder;

  // ...need a map from MI to SUnit.
  std::map<MachineInstr *, const SUnit *> MISUnitMap;
  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
    const SUnit *SU = &SUnits[i];
    MISUnitMap.insert(std::pair<MachineInstr *, const SUnit *>(SU->getInstr(),
                                                               SU));
  }

  // Track progress along the critical path through the SUnit graph as
  // we walk the instructions. This is needed for regclasses that only
  // break critical-path anti-dependencies.
  const SUnit *CriticalPathSU = nullptr;
  MachineInstr *CriticalPathMI = nullptr;
  if (CriticalPathSet.any()) {
    for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
      const SUnit *SU = &SUnits[i];
      if (!CriticalPathSU ||
          ((SU->getDepth() + SU->Latency) >
           (CriticalPathSU->getDepth() + CriticalPathSU->Latency))) {
        CriticalPathSU = SU;
      }
    }

    CriticalPathMI = CriticalPathSU->getInstr();
  }

#ifndef NDEBUG
  DEBUG(dbgs() << "\n===== Aggressive anti-dependency breaking\n");
  DEBUG(dbgs() << "Available regs:");
  for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) {
    if (!State->IsLive(Reg))
      DEBUG(dbgs() << " " << TRI->getName(Reg));
  }
  DEBUG(dbgs() << '\n');
#endif

  // Attempt to break anti-dependence edges. Walk the instructions
  // from the bottom up, tracking information about liveness as we go
  // to help determine which registers are available.
  unsigned Broken = 0;
  unsigned Count = InsertPosIndex - 1;
  for (MachineBasicBlock::iterator I = End, E = Begin;
       I != E; --Count) {
    MachineInstr *MI = --I;

    if (MI->isDebugValue())
      continue;

    DEBUG(dbgs() << "Anti: ");
    DEBUG(MI->dump());

    std::set<unsigned> PassthruRegs;
    GetPassthruRegs(MI, PassthruRegs);

    // Process the defs in MI...
    PrescanInstruction(MI, Count, PassthruRegs);

    // The dependence edges that represent anti- and output-
    // dependencies that are candidates for breaking.
    std::vector<const SDep *> Edges;
    const SUnit *PathSU = MISUnitMap[MI];
    AntiDepEdges(PathSU, Edges);

    // If MI is not on the critical path, then we don't rename
    // registers in the CriticalPathSet.
    BitVector *ExcludeRegs = nullptr;
    if (MI == CriticalPathMI) {
      CriticalPathSU = CriticalPathStep(CriticalPathSU);
      CriticalPathMI = (CriticalPathSU) ? CriticalPathSU->getInstr() : nullptr;
    } else if (CriticalPathSet.any()) {
      ExcludeRegs = &CriticalPathSet;
    }

    // Ignore KILL instructions (they form a group in ScanInstruction
    // but don't cause any anti-dependence breaking themselves)
    if (!MI->isKill()) {
      // Attempt to break each anti-dependency...
      for (unsigned i = 0, e = Edges.size(); i != e; ++i) {
        const SDep *Edge = Edges[i];
        SUnit *NextSU = Edge->getSUnit();

        if ((Edge->getKind() != SDep::Anti) &&
            (Edge->getKind() != SDep::Output)) continue;

        unsigned AntiDepReg = Edge->getReg();
        DEBUG(dbgs() << "\tAntidep reg: " << TRI->getName(AntiDepReg));
        assert(AntiDepReg != 0 && "Anti-dependence on reg0?");

        if (!MRI.isAllocatable(AntiDepReg)) {
          // Don't break anti-dependencies on non-allocatable registers.
          DEBUG(dbgs() << " (non-allocatable)\n");
          continue;
        } else if (ExcludeRegs && ExcludeRegs->test(AntiDepReg)) {
          // Don't break anti-dependencies for critical path registers
          // if not on the critical path
          DEBUG(dbgs() << " (not critical-path)\n");
          continue;
        } else if (PassthruRegs.count(AntiDepReg) != 0) {
          // If the anti-dep register liveness "passes-thru", then
          // don't try to change it. It will be changed along with
          // the use if required to break an earlier antidep.
          DEBUG(dbgs() << " (passthru)\n");
          continue;
        } else {
          // No anti-dep breaking for implicit deps
          MachineOperand *AntiDepOp = MI->findRegisterDefOperand(AntiDepReg);
          assert(AntiDepOp && "Can't find index for defined register operand");
          if (!AntiDepOp || AntiDepOp->isImplicit()) {
            DEBUG(dbgs() << " (implicit)\n");
            continue;
          }

          // If the SUnit has other dependencies on the SUnit that
          // it anti-depends on, don't bother breaking the
          // anti-dependency since those edges would prevent such
          // units from being scheduled past each other
          // regardless.
          //
          // Also, if there are dependencies on other SUnits with the
          // same register as the anti-dependency, don't attempt to
          // break it.
          for (SUnit::const_pred_iterator P = PathSU->Preds.begin(),
                 PE = PathSU->Preds.end(); P != PE; ++P) {
            if (P->getSUnit() == NextSU ?
                (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) :
                (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) {
              AntiDepReg = 0;
              break;
            }
          }
          for (SUnit::const_pred_iterator P = PathSU->Preds.begin(),
                 PE = PathSU->Preds.end(); P != PE; ++P) {
            if ((P->getSUnit() == NextSU) && (P->getKind() != SDep::Anti) &&
                (P->getKind() != SDep::Output)) {
              DEBUG(dbgs() << " (real dependency)\n");
              AntiDepReg = 0;
              break;
            } else if ((P->getSUnit() != NextSU) &&
                       (P->getKind() == SDep::Data) &&
                       (P->getReg() == AntiDepReg)) {
              DEBUG(dbgs() << " (other dependency)\n");
              AntiDepReg = 0;
              break;
            }
          }

          if (AntiDepReg == 0) continue;
        }

        assert(AntiDepReg != 0);
        if (AntiDepReg == 0) continue;

        // Determine AntiDepReg's register group.
        const unsigned GroupIndex = State->GetGroup(AntiDepReg);
        if (GroupIndex == 0) {
          DEBUG(dbgs() << " (zero group)\n");
          continue;
        }

        DEBUG(dbgs() << '\n');

        // Look for a suitable register to use to break the anti-dependence.
        std::map<unsigned, unsigned> RenameMap;
        if (FindSuitableFreeRegisters(GroupIndex, RenameOrder, RenameMap)) {
          DEBUG(dbgs() << "\tBreaking anti-dependence edge on "
                << TRI->getName(AntiDepReg) << ":");

          // Handle each group register...
          for (std::map<unsigned, unsigned>::iterator
                 S = RenameMap.begin(), E = RenameMap.end(); S != E; ++S) {
            unsigned CurrReg = S->first;
            unsigned NewReg = S->second;

            DEBUG(dbgs() << " " << TRI->getName(CurrReg) << "->" <<
                  TRI->getName(NewReg) << "(" <<
                  RegRefs.count(CurrReg) << " refs)");

            // Update the references to the old register CurrReg to
            // refer to the new register NewReg.
            std::pair<std::multimap<unsigned,
                           AggressiveAntiDepState::RegisterReference>::iterator,
                      std::multimap<unsigned,
                           AggressiveAntiDepState::RegisterReference>::iterator>
              Range = RegRefs.equal_range(CurrReg);
            for (std::multimap<unsigned,
                 AggressiveAntiDepState::RegisterReference>::iterator
                   Q = Range.first, QE = Range.second; Q != QE; ++Q) {
              Q->second.Operand->setReg(NewReg);
              // If the SU for the instruction being updated has debug
              // information related to the anti-dependency register, make
              // sure to update that as well.
              const SUnit *SU = MISUnitMap[Q->second.Operand->getParent()];
              if (!SU) continue;
              for (DbgValueVector::iterator DVI = DbgValues.begin(),
                     DVE = DbgValues.end(); DVI != DVE; ++DVI)
                if (DVI->second == Q->second.Operand->getParent())
                  UpdateDbgValue(DVI->first, AntiDepReg, NewReg);
            }

            // We just went back in time and modified history; the
            // liveness information for CurrReg is now inconsistent. Set
            // the state as if it were dead.
            State->UnionGroups(NewReg, 0);
            RegRefs.erase(NewReg);
            DefIndices[NewReg] = DefIndices[CurrReg];
            KillIndices[NewReg] = KillIndices[CurrReg];

            State->UnionGroups(CurrReg, 0);
            RegRefs.erase(CurrReg);
            DefIndices[CurrReg] = KillIndices[CurrReg];
            KillIndices[CurrReg] = ~0u;
            assert(((KillIndices[CurrReg] == ~0u) !=
                    (DefIndices[CurrReg] == ~0u)) &&
                   "Kill and Def maps aren't consistent for AntiDepReg!");
          }

          ++Broken;
          DEBUG(dbgs() << '\n');
        }
      }
    }

    ScanInstruction(MI, Count);
  }

  return Broken;
}