summaryrefslogtreecommitdiff
path: root/lib/CodeGen/LiveInterval.cpp
blob: ce8ce962417bed5b258a30ad1af8e4832f5780ca (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
//===-- LiveInterval.cpp - Live Interval Representation -------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the LiveRange and LiveInterval classes.  Given some
// numbering of each the machine instructions an interval [i, j) is said to be a
// live range for register v if there is no instruction with number j' >= j
// such that v is live at j' and there is no instruction with number i' < i such
// that v is live at i'. In this implementation ranges can have holes,
// i.e. a range might look like [1,20), [50,65), [1000,1001).  Each
// individual segment is represented as an instance of LiveRange::Segment,
// and the whole range is represented as an instance of LiveRange.
//
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/LiveInterval.h"
#include "RegisterCoalescer.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include <algorithm>
using namespace llvm;

LiveRange::iterator LiveRange::find(SlotIndex Pos) {
  // This algorithm is basically std::upper_bound.
  // Unfortunately, std::upper_bound cannot be used with mixed types until we
  // adopt C++0x. Many libraries can do it, but not all.
  if (empty() || Pos >= endIndex())
    return end();
  iterator I = begin();
  size_t Len = size();
  do {
    size_t Mid = Len >> 1;
    if (Pos < I[Mid].end)
      Len = Mid;
    else
      I += Mid + 1, Len -= Mid + 1;
  } while (Len);
  return I;
}

VNInfo *LiveRange::createDeadDef(SlotIndex Def,
                                  VNInfo::Allocator &VNInfoAllocator) {
  assert(!Def.isDead() && "Cannot define a value at the dead slot");
  iterator I = find(Def);
  if (I == end()) {
    VNInfo *VNI = getNextValue(Def, VNInfoAllocator);
    segments.push_back(Segment(Def, Def.getDeadSlot(), VNI));
    return VNI;
  }
  if (SlotIndex::isSameInstr(Def, I->start)) {
    assert(I->valno->def == I->start && "Inconsistent existing value def");

    // It is possible to have both normal and early-clobber defs of the same
    // register on an instruction. It doesn't make a lot of sense, but it is
    // possible to specify in inline assembly.
    //
    // Just convert everything to early-clobber.
    Def = std::min(Def, I->start);
    if (Def != I->start)
      I->start = I->valno->def = Def;
    return I->valno;
  }
  assert(SlotIndex::isEarlierInstr(Def, I->start) && "Already live at def");
  VNInfo *VNI = getNextValue(Def, VNInfoAllocator);
  segments.insert(I, Segment(Def, Def.getDeadSlot(), VNI));
  return VNI;
}

// overlaps - Return true if the intersection of the two live ranges is
// not empty.
//
// An example for overlaps():
//
// 0: A = ...
// 4: B = ...
// 8: C = A + B ;; last use of A
//
// The live ranges should look like:
//
// A = [3, 11)
// B = [7, x)
// C = [11, y)
//
// A->overlaps(C) should return false since we want to be able to join
// A and C.
//
bool LiveRange::overlapsFrom(const LiveRange& other,
                             const_iterator StartPos) const {
  assert(!empty() && "empty range");
  const_iterator i = begin();
  const_iterator ie = end();
  const_iterator j = StartPos;
  const_iterator je = other.end();

  assert((StartPos->start <= i->start || StartPos == other.begin()) &&
         StartPos != other.end() && "Bogus start position hint!");

  if (i->start < j->start) {
    i = std::upper_bound(i, ie, j->start);
    if (i != begin()) --i;
  } else if (j->start < i->start) {
    ++StartPos;
    if (StartPos != other.end() && StartPos->start <= i->start) {
      assert(StartPos < other.end() && i < end());
      j = std::upper_bound(j, je, i->start);
      if (j != other.begin()) --j;
    }
  } else {
    return true;
  }

  if (j == je) return false;

  while (i != ie) {
    if (i->start > j->start) {
      std::swap(i, j);
      std::swap(ie, je);
    }

    if (i->end > j->start)
      return true;
    ++i;
  }

  return false;
}

bool LiveRange::overlaps(const LiveRange &Other, const CoalescerPair &CP,
                         const SlotIndexes &Indexes) const {
  assert(!empty() && "empty range");
  if (Other.empty())
    return false;

  // Use binary searches to find initial positions.
  const_iterator I = find(Other.beginIndex());
  const_iterator IE = end();
  if (I == IE)
    return false;
  const_iterator J = Other.find(I->start);
  const_iterator JE = Other.end();
  if (J == JE)
    return false;

  for (;;) {
    // J has just been advanced to satisfy:
    assert(J->end >= I->start);
    // Check for an overlap.
    if (J->start < I->end) {
      // I and J are overlapping. Find the later start.
      SlotIndex Def = std::max(I->start, J->start);
      // Allow the overlap if Def is a coalescable copy.
      if (Def.isBlock() ||
          !CP.isCoalescable(Indexes.getInstructionFromIndex(Def)))
        return true;
    }
    // Advance the iterator that ends first to check for more overlaps.
    if (J->end > I->end) {
      std::swap(I, J);
      std::swap(IE, JE);
    }
    // Advance J until J->end >= I->start.
    do
      if (++J == JE)
        return false;
    while (J->end < I->start);
  }
}

/// overlaps - Return true if the live range overlaps an interval specified
/// by [Start, End).
bool LiveRange::overlaps(SlotIndex Start, SlotIndex End) const {
  assert(Start < End && "Invalid range");
  const_iterator I = std::lower_bound(begin(), end(), End);
  return I != begin() && (--I)->end > Start;
}


/// ValNo is dead, remove it.  If it is the largest value number, just nuke it
/// (and any other deleted values neighboring it), otherwise mark it as ~1U so
/// it can be nuked later.
void LiveRange::markValNoForDeletion(VNInfo *ValNo) {
  if (ValNo->id == getNumValNums()-1) {
    do {
      valnos.pop_back();
    } while (!valnos.empty() && valnos.back()->isUnused());
  } else {
    ValNo->markUnused();
  }
}

/// RenumberValues - Renumber all values in order of appearance and delete the
/// remaining unused values.
void LiveRange::RenumberValues() {
  SmallPtrSet<VNInfo*, 8> Seen;
  valnos.clear();
  for (const_iterator I = begin(), E = end(); I != E; ++I) {
    VNInfo *VNI = I->valno;
    if (!Seen.insert(VNI))
      continue;
    assert(!VNI->isUnused() && "Unused valno used by live segment");
    VNI->id = (unsigned)valnos.size();
    valnos.push_back(VNI);
  }
}

/// This method is used when we want to extend the segment specified by I to end
/// at the specified endpoint.  To do this, we should merge and eliminate all
/// segments that this will overlap with.  The iterator is not invalidated.
void LiveRange::extendSegmentEndTo(iterator I, SlotIndex NewEnd) {
  assert(I != end() && "Not a valid segment!");
  VNInfo *ValNo = I->valno;

  // Search for the first segment that we can't merge with.
  iterator MergeTo = std::next(I);
  for (; MergeTo != end() && NewEnd >= MergeTo->end; ++MergeTo) {
    assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
  }

  // If NewEnd was in the middle of a segment, make sure to get its endpoint.
  I->end = std::max(NewEnd, std::prev(MergeTo)->end);

  // If the newly formed segment now touches the segment after it and if they
  // have the same value number, merge the two segments into one segment.
  if (MergeTo != end() && MergeTo->start <= I->end &&
      MergeTo->valno == ValNo) {
    I->end = MergeTo->end;
    ++MergeTo;
  }

  // Erase any dead segments.
  segments.erase(std::next(I), MergeTo);
}


/// This method is used when we want to extend the segment specified by I to
/// start at the specified endpoint.  To do this, we should merge and eliminate
/// all segments that this will overlap with.
LiveRange::iterator
LiveRange::extendSegmentStartTo(iterator I, SlotIndex NewStart) {
  assert(I != end() && "Not a valid segment!");
  VNInfo *ValNo = I->valno;

  // Search for the first segment that we can't merge with.
  iterator MergeTo = I;
  do {
    if (MergeTo == begin()) {
      I->start = NewStart;
      segments.erase(MergeTo, I);
      return I;
    }
    assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
    --MergeTo;
  } while (NewStart <= MergeTo->start);

  // If we start in the middle of another segment, just delete a range and
  // extend that segment.
  if (MergeTo->end >= NewStart && MergeTo->valno == ValNo) {
    MergeTo->end = I->end;
  } else {
    // Otherwise, extend the segment right after.
    ++MergeTo;
    MergeTo->start = NewStart;
    MergeTo->end = I->end;
  }

  segments.erase(std::next(MergeTo), std::next(I));
  return MergeTo;
}

LiveRange::iterator LiveRange::addSegmentFrom(Segment S, iterator From) {
  SlotIndex Start = S.start, End = S.end;
  iterator it = std::upper_bound(From, end(), Start);

  // If the inserted segment starts in the middle or right at the end of
  // another segment, just extend that segment to contain the segment of S.
  if (it != begin()) {
    iterator B = std::prev(it);
    if (S.valno == B->valno) {
      if (B->start <= Start && B->end >= Start) {
        extendSegmentEndTo(B, End);
        return B;
      }
    } else {
      // Check to make sure that we are not overlapping two live segments with
      // different valno's.
      assert(B->end <= Start &&
             "Cannot overlap two segments with differing ValID's"
             " (did you def the same reg twice in a MachineInstr?)");
    }
  }

  // Otherwise, if this segment ends in the middle of, or right next to, another
  // segment, merge it into that segment.
  if (it != end()) {
    if (S.valno == it->valno) {
      if (it->start <= End) {
        it = extendSegmentStartTo(it, Start);

        // If S is a complete superset of a segment, we may need to grow its
        // endpoint as well.
        if (End > it->end)
          extendSegmentEndTo(it, End);
        return it;
      }
    } else {
      // Check to make sure that we are not overlapping two live segments with
      // different valno's.
      assert(it->start >= End &&
             "Cannot overlap two segments with differing ValID's");
    }
  }

  // Otherwise, this is just a new segment that doesn't interact with anything.
  // Insert it.
  return segments.insert(it, S);
}

/// extendInBlock - If this range is live before Kill in the basic
/// block that starts at StartIdx, extend it to be live up to Kill and return
/// the value. If there is no live range before Kill, return NULL.
VNInfo *LiveRange::extendInBlock(SlotIndex StartIdx, SlotIndex Kill) {
  if (empty())
    return nullptr;
  iterator I = std::upper_bound(begin(), end(), Kill.getPrevSlot());
  if (I == begin())
    return nullptr;
  --I;
  if (I->end <= StartIdx)
    return nullptr;
  if (I->end < Kill)
    extendSegmentEndTo(I, Kill);
  return I->valno;
}

/// Remove the specified segment from this range.  Note that the segment must
/// be in a single Segment in its entirety.
void LiveRange::removeSegment(SlotIndex Start, SlotIndex End,
                              bool RemoveDeadValNo) {
  // Find the Segment containing this span.
  iterator I = find(Start);
  assert(I != end() && "Segment is not in range!");
  assert(I->containsInterval(Start, End)
         && "Segment is not entirely in range!");

  // If the span we are removing is at the start of the Segment, adjust it.
  VNInfo *ValNo = I->valno;
  if (I->start == Start) {
    if (I->end == End) {
      if (RemoveDeadValNo) {
        // Check if val# is dead.
        bool isDead = true;
        for (const_iterator II = begin(), EE = end(); II != EE; ++II)
          if (II != I && II->valno == ValNo) {
            isDead = false;
            break;
          }
        if (isDead) {
          // Now that ValNo is dead, remove it.
          markValNoForDeletion(ValNo);
        }
      }

      segments.erase(I);  // Removed the whole Segment.
    } else
      I->start = End;
    return;
  }

  // Otherwise if the span we are removing is at the end of the Segment,
  // adjust the other way.
  if (I->end == End) {
    I->end = Start;
    return;
  }

  // Otherwise, we are splitting the Segment into two pieces.
  SlotIndex OldEnd = I->end;
  I->end = Start;   // Trim the old segment.

  // Insert the new one.
  segments.insert(std::next(I), Segment(End, OldEnd, ValNo));
}

/// removeValNo - Remove all the segments defined by the specified value#.
/// Also remove the value# from value# list.
void LiveRange::removeValNo(VNInfo *ValNo) {
  if (empty()) return;
  iterator I = end();
  iterator E = begin();
  do {
    --I;
    if (I->valno == ValNo)
      segments.erase(I);
  } while (I != E);
  // Now that ValNo is dead, remove it.
  markValNoForDeletion(ValNo);
}

void LiveRange::join(LiveRange &Other,
                     const int *LHSValNoAssignments,
                     const int *RHSValNoAssignments,
                     SmallVectorImpl<VNInfo *> &NewVNInfo) {
  verify();

  // Determine if any of our values are mapped.  This is uncommon, so we want
  // to avoid the range scan if not.
  bool MustMapCurValNos = false;
  unsigned NumVals = getNumValNums();
  unsigned NumNewVals = NewVNInfo.size();
  for (unsigned i = 0; i != NumVals; ++i) {
    unsigned LHSValID = LHSValNoAssignments[i];
    if (i != LHSValID ||
        (NewVNInfo[LHSValID] && NewVNInfo[LHSValID] != getValNumInfo(i))) {
      MustMapCurValNos = true;
      break;
    }
  }

  // If we have to apply a mapping to our base range assignment, rewrite it now.
  if (MustMapCurValNos && !empty()) {
    // Map the first live range.

    iterator OutIt = begin();
    OutIt->valno = NewVNInfo[LHSValNoAssignments[OutIt->valno->id]];
    for (iterator I = std::next(OutIt), E = end(); I != E; ++I) {
      VNInfo* nextValNo = NewVNInfo[LHSValNoAssignments[I->valno->id]];
      assert(nextValNo && "Huh?");

      // If this live range has the same value # as its immediate predecessor,
      // and if they are neighbors, remove one Segment.  This happens when we
      // have [0,4:0)[4,7:1) and map 0/1 onto the same value #.
      if (OutIt->valno == nextValNo && OutIt->end == I->start) {
        OutIt->end = I->end;
      } else {
        // Didn't merge. Move OutIt to the next segment,
        ++OutIt;
        OutIt->valno = nextValNo;
        if (OutIt != I) {
          OutIt->start = I->start;
          OutIt->end = I->end;
        }
      }
    }
    // If we merge some segments, chop off the end.
    ++OutIt;
    segments.erase(OutIt, end());
  }

  // Rewrite Other values before changing the VNInfo ids.
  // This can leave Other in an invalid state because we're not coalescing
  // touching segments that now have identical values. That's OK since Other is
  // not supposed to be valid after calling join();
  for (iterator I = Other.begin(), E = Other.end(); I != E; ++I)
    I->valno = NewVNInfo[RHSValNoAssignments[I->valno->id]];

  // Update val# info. Renumber them and make sure they all belong to this
  // LiveRange now. Also remove dead val#'s.
  unsigned NumValNos = 0;
  for (unsigned i = 0; i < NumNewVals; ++i) {
    VNInfo *VNI = NewVNInfo[i];
    if (VNI) {
      if (NumValNos >= NumVals)
        valnos.push_back(VNI);
      else
        valnos[NumValNos] = VNI;
      VNI->id = NumValNos++;  // Renumber val#.
    }
  }
  if (NumNewVals < NumVals)
    valnos.resize(NumNewVals);  // shrinkify

  // Okay, now insert the RHS live segments into the LHS.
  LiveRangeUpdater Updater(this);
  for (iterator I = Other.begin(), E = Other.end(); I != E; ++I)
    Updater.add(*I);
}

/// Merge all of the segments in RHS into this live range as the specified
/// value number.  The segments in RHS are allowed to overlap with segments in
/// the current range, but only if the overlapping segments have the
/// specified value number.
void LiveRange::MergeSegmentsInAsValue(const LiveRange &RHS,
                                       VNInfo *LHSValNo) {
  LiveRangeUpdater Updater(this);
  for (const_iterator I = RHS.begin(), E = RHS.end(); I != E; ++I)
    Updater.add(I->start, I->end, LHSValNo);
}

/// MergeValueInAsValue - Merge all of the live segments of a specific val#
/// in RHS into this live range as the specified value number.
/// The segments in RHS are allowed to overlap with segments in the
/// current range, it will replace the value numbers of the overlaped
/// segments with the specified value number.
void LiveRange::MergeValueInAsValue(const LiveRange &RHS,
                                    const VNInfo *RHSValNo,
                                    VNInfo *LHSValNo) {
  LiveRangeUpdater Updater(this);
  for (const_iterator I = RHS.begin(), E = RHS.end(); I != E; ++I)
    if (I->valno == RHSValNo)
      Updater.add(I->start, I->end, LHSValNo);
}

/// MergeValueNumberInto - This method is called when two value nubmers
/// are found to be equivalent.  This eliminates V1, replacing all
/// segments with the V1 value number with the V2 value number.  This can
/// cause merging of V1/V2 values numbers and compaction of the value space.
VNInfo *LiveRange::MergeValueNumberInto(VNInfo *V1, VNInfo *V2) {
  assert(V1 != V2 && "Identical value#'s are always equivalent!");

  // This code actually merges the (numerically) larger value number into the
  // smaller value number, which is likely to allow us to compactify the value
  // space.  The only thing we have to be careful of is to preserve the
  // instruction that defines the result value.

  // Make sure V2 is smaller than V1.
  if (V1->id < V2->id) {
    V1->copyFrom(*V2);
    std::swap(V1, V2);
  }

  // Merge V1 segments into V2.
  for (iterator I = begin(); I != end(); ) {
    iterator S = I++;
    if (S->valno != V1) continue;  // Not a V1 Segment.

    // Okay, we found a V1 live range.  If it had a previous, touching, V2 live
    // range, extend it.
    if (S != begin()) {
      iterator Prev = S-1;
      if (Prev->valno == V2 && Prev->end == S->start) {
        Prev->end = S->end;

        // Erase this live-range.
        segments.erase(S);
        I = Prev+1;
        S = Prev;
      }
    }

    // Okay, now we have a V1 or V2 live range that is maximally merged forward.
    // Ensure that it is a V2 live-range.
    S->valno = V2;

    // If we can merge it into later V2 segments, do so now.  We ignore any
    // following V1 segments, as they will be merged in subsequent iterations
    // of the loop.
    if (I != end()) {
      if (I->start == S->end && I->valno == V2) {
        S->end = I->end;
        segments.erase(I);
        I = S+1;
      }
    }
  }

  // Now that V1 is dead, remove it.
  markValNoForDeletion(V1);

  return V2;
}

unsigned LiveInterval::getSize() const {
  unsigned Sum = 0;
  for (const_iterator I = begin(), E = end(); I != E; ++I)
    Sum += I->start.distance(I->end);
  return Sum;
}

raw_ostream& llvm::operator<<(raw_ostream& os, const LiveRange::Segment &S) {
  return os << '[' << S.start << ',' << S.end << ':' << S.valno->id << ")";
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void LiveRange::Segment::dump() const {
  dbgs() << *this << "\n";
}
#endif

void LiveRange::print(raw_ostream &OS) const {
  if (empty())
    OS << "EMPTY";
  else {
    for (const_iterator I = begin(), E = end(); I != E; ++I) {
      OS << *I;
      assert(I->valno == getValNumInfo(I->valno->id) && "Bad VNInfo");
    }
  }

  // Print value number info.
  if (getNumValNums()) {
    OS << "  ";
    unsigned vnum = 0;
    for (const_vni_iterator i = vni_begin(), e = vni_end(); i != e;
         ++i, ++vnum) {
      const VNInfo *vni = *i;
      if (vnum) OS << " ";
      OS << vnum << "@";
      if (vni->isUnused()) {
        OS << "x";
      } else {
        OS << vni->def;
        if (vni->isPHIDef())
          OS << "-phi";
      }
    }
  }
}

void LiveInterval::print(raw_ostream &OS) const {
  OS << PrintReg(reg) << ' ';
  super::print(OS);
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void LiveRange::dump() const {
  dbgs() << *this << "\n";
}

void LiveInterval::dump() const {
  dbgs() << *this << "\n";
}
#endif

#ifndef NDEBUG
void LiveRange::verify() const {
  for (const_iterator I = begin(), E = end(); I != E; ++I) {
    assert(I->start.isValid());
    assert(I->end.isValid());
    assert(I->start < I->end);
    assert(I->valno != nullptr);
    assert(I->valno->id < valnos.size());
    assert(I->valno == valnos[I->valno->id]);
    if (std::next(I) != E) {
      assert(I->end <= std::next(I)->start);
      if (I->end == std::next(I)->start)
        assert(I->valno != std::next(I)->valno);
    }
  }
}
#endif


//===----------------------------------------------------------------------===//
//                           LiveRangeUpdater class
//===----------------------------------------------------------------------===//
//
// The LiveRangeUpdater class always maintains these invariants:
//
// - When LastStart is invalid, Spills is empty and the iterators are invalid.
//   This is the initial state, and the state created by flush().
//   In this state, isDirty() returns false.
//
// Otherwise, segments are kept in three separate areas:
//
// 1. [begin; WriteI) at the front of LR.
// 2. [ReadI; end) at the back of LR.
// 3. Spills.
//
// - LR.begin() <= WriteI <= ReadI <= LR.end().
// - Segments in all three areas are fully ordered and coalesced.
// - Segments in area 1 precede and can't coalesce with segments in area 2.
// - Segments in Spills precede and can't coalesce with segments in area 2.
// - No coalescing is possible between segments in Spills and segments in area
//   1, and there are no overlapping segments.
//
// The segments in Spills are not ordered with respect to the segments in area
// 1. They need to be merged.
//
// When they exist, Spills.back().start <= LastStart,
//                 and WriteI[-1].start <= LastStart.

void LiveRangeUpdater::print(raw_ostream &OS) const {
  if (!isDirty()) {
    if (LR)
      OS << "Clean updater: " << *LR << '\n';
    else
      OS << "Null updater.\n";
    return;
  }
  assert(LR && "Can't have null LR in dirty updater.");
  OS << " updater with gap = " << (ReadI - WriteI)
     << ", last start = " << LastStart
     << ":\n  Area 1:";
  for (LiveRange::const_iterator I = LR->begin(); I != WriteI; ++I)
    OS << ' ' << *I;
  OS << "\n  Spills:";
  for (unsigned I = 0, E = Spills.size(); I != E; ++I)
    OS << ' ' << Spills[I];
  OS << "\n  Area 2:";
  for (LiveRange::const_iterator I = ReadI, E = LR->end(); I != E; ++I)
    OS << ' ' << *I;
  OS << '\n';
}

void LiveRangeUpdater::dump() const
{
  print(errs());
}

// Determine if A and B should be coalesced.
static inline bool coalescable(const LiveRange::Segment &A,
                               const LiveRange::Segment &B) {
  assert(A.start <= B.start && "Unordered live segments.");
  if (A.end == B.start)
    return A.valno == B.valno;
  if (A.end < B.start)
    return false;
  assert(A.valno == B.valno && "Cannot overlap different values");
  return true;
}

void LiveRangeUpdater::add(LiveRange::Segment Seg) {
  assert(LR && "Cannot add to a null destination");

  // Flush the state if Start moves backwards.
  if (!LastStart.isValid() || LastStart > Seg.start) {
    if (isDirty())
      flush();
    // This brings us to an uninitialized state. Reinitialize.
    assert(Spills.empty() && "Leftover spilled segments");
    WriteI = ReadI = LR->begin();
  }

  // Remember start for next time.
  LastStart = Seg.start;

  // Advance ReadI until it ends after Seg.start.
  LiveRange::iterator E = LR->end();
  if (ReadI != E && ReadI->end <= Seg.start) {
    // First try to close the gap between WriteI and ReadI with spills.
    if (ReadI != WriteI)
      mergeSpills();
    // Then advance ReadI.
    if (ReadI == WriteI)
      ReadI = WriteI = LR->find(Seg.start);
    else
      while (ReadI != E && ReadI->end <= Seg.start)
        *WriteI++ = *ReadI++;
  }

  assert(ReadI == E || ReadI->end > Seg.start);

  // Check if the ReadI segment begins early.
  if (ReadI != E && ReadI->start <= Seg.start) {
    assert(ReadI->valno == Seg.valno && "Cannot overlap different values");
    // Bail if Seg is completely contained in ReadI.
    if (ReadI->end >= Seg.end)
      return;
    // Coalesce into Seg.
    Seg.start = ReadI->start;
    ++ReadI;
  }

  // Coalesce as much as possible from ReadI into Seg.
  while (ReadI != E && coalescable(Seg, *ReadI)) {
    Seg.end = std::max(Seg.end, ReadI->end);
    ++ReadI;
  }

  // Try coalescing Spills.back() into Seg.
  if (!Spills.empty() && coalescable(Spills.back(), Seg)) {
    Seg.start = Spills.back().start;
    Seg.end = std::max(Spills.back().end, Seg.end);
    Spills.pop_back();
  }

  // Try coalescing Seg into WriteI[-1].
  if (WriteI != LR->begin() && coalescable(WriteI[-1], Seg)) {
    WriteI[-1].end = std::max(WriteI[-1].end, Seg.end);
    return;
  }

  // Seg doesn't coalesce with anything, and needs to be inserted somewhere.
  if (WriteI != ReadI) {
    *WriteI++ = Seg;
    return;
  }

  // Finally, append to LR or Spills.
  if (WriteI == E) {
    LR->segments.push_back(Seg);
    WriteI = ReadI = LR->end();
  } else
    Spills.push_back(Seg);
}

// Merge as many spilled segments as possible into the gap between WriteI
// and ReadI. Advance WriteI to reflect the inserted instructions.
void LiveRangeUpdater::mergeSpills() {
  // Perform a backwards merge of Spills and [SpillI;WriteI).
  size_t GapSize = ReadI - WriteI;
  size_t NumMoved = std::min(Spills.size(), GapSize);
  LiveRange::iterator Src = WriteI;
  LiveRange::iterator Dst = Src + NumMoved;
  LiveRange::iterator SpillSrc = Spills.end();
  LiveRange::iterator B = LR->begin();

  // This is the new WriteI position after merging spills.
  WriteI = Dst;

  // Now merge Src and Spills backwards.
  while (Src != Dst) {
    if (Src != B && Src[-1].start > SpillSrc[-1].start)
      *--Dst = *--Src;
    else
      *--Dst = *--SpillSrc;
  }
  assert(NumMoved == size_t(Spills.end() - SpillSrc));
  Spills.erase(SpillSrc, Spills.end());
}

void LiveRangeUpdater::flush() {
  if (!isDirty())
    return;
  // Clear the dirty state.
  LastStart = SlotIndex();

  assert(LR && "Cannot add to a null destination");

  // Nothing to merge?
  if (Spills.empty()) {
    LR->segments.erase(WriteI, ReadI);
    LR->verify();
    return;
  }

  // Resize the WriteI - ReadI gap to match Spills.
  size_t GapSize = ReadI - WriteI;
  if (GapSize < Spills.size()) {
    // The gap is too small. Make some room.
    size_t WritePos = WriteI - LR->begin();
    LR->segments.insert(ReadI, Spills.size() - GapSize, LiveRange::Segment());
    // This also invalidated ReadI, but it is recomputed below.
    WriteI = LR->begin() + WritePos;
  } else {
    // Shrink the gap if necessary.
    LR->segments.erase(WriteI + Spills.size(), ReadI);
  }
  ReadI = WriteI + Spills.size();
  mergeSpills();
  LR->verify();
}

unsigned ConnectedVNInfoEqClasses::Classify(const LiveInterval *LI) {
  // Create initial equivalence classes.
  EqClass.clear();
  EqClass.grow(LI->getNumValNums());

  const VNInfo *used = nullptr, *unused = nullptr;

  // Determine connections.
  for (LiveInterval::const_vni_iterator I = LI->vni_begin(), E = LI->vni_end();
       I != E; ++I) {
    const VNInfo *VNI = *I;
    // Group all unused values into one class.
    if (VNI->isUnused()) {
      if (unused)
        EqClass.join(unused->id, VNI->id);
      unused = VNI;
      continue;
    }
    used = VNI;
    if (VNI->isPHIDef()) {
      const MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
      assert(MBB && "Phi-def has no defining MBB");
      // Connect to values live out of predecessors.
      for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
           PE = MBB->pred_end(); PI != PE; ++PI)
        if (const VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(*PI)))
          EqClass.join(VNI->id, PVNI->id);
    } else {
      // Normal value defined by an instruction. Check for two-addr redef.
      // FIXME: This could be coincidental. Should we really check for a tied
      // operand constraint?
      // Note that VNI->def may be a use slot for an early clobber def.
      if (const VNInfo *UVNI = LI->getVNInfoBefore(VNI->def))
        EqClass.join(VNI->id, UVNI->id);
    }
  }

  // Lump all the unused values in with the last used value.
  if (used && unused)
    EqClass.join(used->id, unused->id);

  EqClass.compress();
  return EqClass.getNumClasses();
}

void ConnectedVNInfoEqClasses::Distribute(LiveInterval *LIV[],
                                          MachineRegisterInfo &MRI) {
  assert(LIV[0] && "LIV[0] must be set");
  LiveInterval &LI = *LIV[0];

  // Rewrite instructions.
  for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LI.reg),
       RE = MRI.reg_end(); RI != RE;) {
    MachineOperand &MO = *RI;
    MachineInstr *MI = RI->getParent();
    ++RI;
    // DBG_VALUE instructions don't have slot indexes, so get the index of the
    // instruction before them.
    // Normally, DBG_VALUE instructions are removed before this function is
    // called, but it is not a requirement.
    SlotIndex Idx;
    if (MI->isDebugValue())
      Idx = LIS.getSlotIndexes()->getIndexBefore(MI);
    else
      Idx = LIS.getInstructionIndex(MI);
    LiveQueryResult LRQ = LI.Query(Idx);
    const VNInfo *VNI = MO.readsReg() ? LRQ.valueIn() : LRQ.valueDefined();
    // In the case of an <undef> use that isn't tied to any def, VNI will be
    // NULL. If the use is tied to a def, VNI will be the defined value.
    if (!VNI)
      continue;
    MO.setReg(LIV[getEqClass(VNI)]->reg);
  }

  // Move runs to new intervals.
  LiveInterval::iterator J = LI.begin(), E = LI.end();
  while (J != E && EqClass[J->valno->id] == 0)
    ++J;
  for (LiveInterval::iterator I = J; I != E; ++I) {
    if (unsigned eq = EqClass[I->valno->id]) {
      assert((LIV[eq]->empty() || LIV[eq]->expiredAt(I->start)) &&
             "New intervals should be empty");
      LIV[eq]->segments.push_back(*I);
    } else
      *J++ = *I;
  }
  LI.segments.erase(J, E);

  // Transfer VNInfos to their new owners and renumber them.
  unsigned j = 0, e = LI.getNumValNums();
  while (j != e && EqClass[j] == 0)
    ++j;
  for (unsigned i = j; i != e; ++i) {
    VNInfo *VNI = LI.getValNumInfo(i);
    if (unsigned eq = EqClass[i]) {
      VNI->id = LIV[eq]->getNumValNums();
      LIV[eq]->valnos.push_back(VNI);
    } else {
      VNI->id = j;
      LI.valnos[j++] = VNI;
    }
  }
  LI.valnos.resize(j);
}