summaryrefslogtreecommitdiff
path: root/lib/CodeGen/LiveIntervalAnalysis.cpp
blob: 5e69852f4a15493fd890bf02c2fe95261bdeb776 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
//===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the LiveInterval analysis pass which is used
// by the Linear Scan Register allocator. This pass linearizes the
// basic blocks of the function in DFS order and uses the
// LiveVariables pass to conservatively compute live intervals for
// each virtual and physical register.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "liveintervals"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "VirtRegMap.h"
#include "llvm/Value.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/Target/MRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
#include <algorithm>
#include <cmath>
using namespace llvm;

STATISTIC(numIntervals, "Number of original intervals");
STATISTIC(numIntervalsAfter, "Number of intervals after coalescing");
STATISTIC(numJoins    , "Number of interval joins performed");
STATISTIC(numPeep     , "Number of identity moves eliminated after coalescing");
STATISTIC(numFolded   , "Number of loads/stores folded into instructions");
STATISTIC(numAborts   , "Number of times interval joining aborted");

const char LiveIntervals::ID = 0;
namespace {
  RegisterPass<LiveIntervals> X("liveintervals", "Live Interval Analysis");

  static cl::opt<bool>
  EnableJoining("join-liveintervals",
                cl::desc("Coallesce copies (default=true)"),
                cl::init(true));
}

void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.addRequired<LiveVariables>();
  AU.addPreservedID(PHIEliminationID);
  AU.addRequiredID(PHIEliminationID);
  AU.addRequiredID(TwoAddressInstructionPassID);
  AU.addRequired<LoopInfo>();
  MachineFunctionPass::getAnalysisUsage(AU);
}

void LiveIntervals::releaseMemory() {
  mi2iMap_.clear();
  i2miMap_.clear();
  r2iMap_.clear();
  r2rMap_.clear();
  JoinedLIs.clear();
}


static bool isZeroLengthInterval(LiveInterval *li) {
  for (LiveInterval::Ranges::const_iterator
         i = li->ranges.begin(), e = li->ranges.end(); i != e; ++i)
    if (i->end - i->start > LiveIntervals::InstrSlots::NUM)
      return false;
  return true;
}


/// runOnMachineFunction - Register allocate the whole function
///
bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
  mf_ = &fn;
  tm_ = &fn.getTarget();
  mri_ = tm_->getRegisterInfo();
  tii_ = tm_->getInstrInfo();
  lv_ = &getAnalysis<LiveVariables>();
  r2rMap_.grow(mf_->getSSARegMap()->getLastVirtReg());
  allocatableRegs_ = mri_->getAllocatableSet(fn);
  for (MRegisterInfo::regclass_iterator I = mri_->regclass_begin(),
         E = mri_->regclass_end(); I != E; ++I)
    allocatableRCRegs_.insert(std::make_pair(*I,mri_->getAllocatableSet(fn, *I)));

  // Number MachineInstrs and MachineBasicBlocks.
  // Initialize MBB indexes to a sentinal.
  MBB2IdxMap.resize(mf_->getNumBlockIDs(), ~0U);
  
  unsigned MIIndex = 0;
  for (MachineFunction::iterator MBB = mf_->begin(), E = mf_->end();
       MBB != E; ++MBB) {
    // Set the MBB2IdxMap entry for this MBB.
    MBB2IdxMap[MBB->getNumber()] = MIIndex;

    for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
         I != E; ++I) {
      bool inserted = mi2iMap_.insert(std::make_pair(I, MIIndex)).second;
      assert(inserted && "multiple MachineInstr -> index mappings");
      i2miMap_.push_back(I);
      MIIndex += InstrSlots::NUM;
    }
  }

  computeIntervals();

  numIntervals += getNumIntervals();

  DOUT << "********** INTERVALS **********\n";
  for (iterator I = begin(), E = end(); I != E; ++I) {
    I->second.print(DOUT, mri_);
    DOUT << "\n";
  }

  // Join (coallesce) intervals if requested.
  if (EnableJoining) {
    joinIntervals();
    DOUT << "********** INTERVALS POST JOINING **********\n";
    for (iterator I = begin(), E = end(); I != E; ++I) {
      I->second.print(DOUT, mri_);
      DOUT << "\n";
    }
  }

  numIntervalsAfter += getNumIntervals();

  // perform a final pass over the instructions and compute spill
  // weights, coalesce virtual registers and remove identity moves.
  const LoopInfo &loopInfo = getAnalysis<LoopInfo>();

  for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
       mbbi != mbbe; ++mbbi) {
    MachineBasicBlock* mbb = mbbi;
    unsigned loopDepth = loopInfo.getLoopDepth(mbb->getBasicBlock());

    for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end();
         mii != mie; ) {
      // if the move will be an identity move delete it
      unsigned srcReg, dstReg, RegRep;
      if (tii_->isMoveInstr(*mii, srcReg, dstReg) &&
          (RegRep = rep(srcReg)) == rep(dstReg)) {
        // remove from def list
        LiveInterval &RegInt = getOrCreateInterval(RegRep);
        MachineOperand *MO = mii->findRegisterDefOperand(dstReg);
        // If def of this move instruction is dead, remove its live range from
        // the dstination register's live interval.
        if (MO->isDead()) {
          unsigned MoveIdx = getDefIndex(getInstructionIndex(mii));
          LiveInterval::iterator MLR = RegInt.FindLiveRangeContaining(MoveIdx);
          RegInt.removeRange(MLR->start, MoveIdx+1);
          if (RegInt.empty())
            removeInterval(RegRep);
        }
        RemoveMachineInstrFromMaps(mii);
        mii = mbbi->erase(mii);
        ++numPeep;
      } else {
        SmallSet<unsigned, 4> UniqueUses;
        for (unsigned i = 0, e = mii->getNumOperands(); i != e; ++i) {
          const MachineOperand &mop = mii->getOperand(i);
          if (mop.isRegister() && mop.getReg() &&
              MRegisterInfo::isVirtualRegister(mop.getReg())) {
            // replace register with representative register
            unsigned reg = rep(mop.getReg());
            mii->getOperand(i).setReg(reg);

            // Multiple uses of reg by the same instruction. It should not
            // contribute to spill weight again.
            if (UniqueUses.count(reg) != 0)
              continue;
            LiveInterval &RegInt = getInterval(reg);
            float w = (mop.isUse()+mop.isDef()) * powf(10.0F, (float)loopDepth);
            // If the definition instruction is re-materializable, its spill
            // weight is half of what it would have been normally unless it's
            // a load from fixed stack slot.
            int Dummy;
            if (RegInt.remat && !tii_->isLoadFromStackSlot(RegInt.remat, Dummy))
              w /= 2;
            RegInt.weight += w;
            UniqueUses.insert(reg);
          }
        }
        ++mii;
      }
    }
  }

  for (iterator I = begin(), E = end(); I != E; ++I) {
    LiveInterval &LI = I->second;
    if (MRegisterInfo::isVirtualRegister(LI.reg)) {
      // If the live interval length is essentially zero, i.e. in every live
      // range the use follows def immediately, it doesn't make sense to spill
      // it and hope it will be easier to allocate for this li.
      if (isZeroLengthInterval(&LI))
        LI.weight = HUGE_VALF;

      // Slightly prefer live interval that has been assigned a preferred reg.
      if (LI.preference)
        LI.weight *= 1.01F;

      // Divide the weight of the interval by its size.  This encourages 
      // spilling of intervals that are large and have few uses, and
      // discourages spilling of small intervals with many uses.
      LI.weight /= LI.getSize();
    }
  }

  DEBUG(dump());
  return true;
}

/// print - Implement the dump method.
void LiveIntervals::print(std::ostream &O, const Module* ) const {
  O << "********** INTERVALS **********\n";
  for (const_iterator I = begin(), E = end(); I != E; ++I) {
    I->second.print(DOUT, mri_);
    DOUT << "\n";
  }

  O << "********** MACHINEINSTRS **********\n";
  for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
       mbbi != mbbe; ++mbbi) {
    O << ((Value*)mbbi->getBasicBlock())->getName() << ":\n";
    for (MachineBasicBlock::iterator mii = mbbi->begin(),
           mie = mbbi->end(); mii != mie; ++mii) {
      O << getInstructionIndex(mii) << '\t' << *mii;
    }
  }
}

/// CreateNewLiveInterval - Create a new live interval with the given live
/// ranges. The new live interval will have an infinite spill weight.
LiveInterval&
LiveIntervals::CreateNewLiveInterval(const LiveInterval *LI,
                                     const std::vector<LiveRange> &LRs) {
  const TargetRegisterClass *RC = mf_->getSSARegMap()->getRegClass(LI->reg);

  // Create a new virtual register for the spill interval.
  unsigned NewVReg = mf_->getSSARegMap()->createVirtualRegister(RC);

  // Replace the old virtual registers in the machine operands with the shiny
  // new one.
  for (std::vector<LiveRange>::const_iterator
         I = LRs.begin(), E = LRs.end(); I != E; ++I) {
    unsigned Index = getBaseIndex(I->start);
    unsigned End = getBaseIndex(I->end - 1) + InstrSlots::NUM;

    for (; Index != End; Index += InstrSlots::NUM) {
      // Skip deleted instructions
      while (Index != End && !getInstructionFromIndex(Index))
        Index += InstrSlots::NUM;

      if (Index == End) break;

      MachineInstr *MI = getInstructionFromIndex(Index);

      for (unsigned J = 0, e = MI->getNumOperands(); J != e; ++J) {
        MachineOperand &MOp = MI->getOperand(J);
        if (MOp.isRegister() && rep(MOp.getReg()) == LI->reg)
          MOp.setReg(NewVReg);
      }
    }
  }

  LiveInterval &NewLI = getOrCreateInterval(NewVReg);

  // The spill weight is now infinity as it cannot be spilled again
  NewLI.weight = float(HUGE_VAL);

  for (std::vector<LiveRange>::const_iterator
         I = LRs.begin(), E = LRs.end(); I != E; ++I) {
    DOUT << "  Adding live range " << *I << " to new interval\n";
    NewLI.addRange(*I);
  }
            
  DOUT << "Created new live interval " << NewLI << "\n";
  return NewLI;
}

std::vector<LiveInterval*> LiveIntervals::
addIntervalsForSpills(const LiveInterval &li, VirtRegMap &vrm, int slot) {
  // since this is called after the analysis is done we don't know if
  // LiveVariables is available
  lv_ = getAnalysisToUpdate<LiveVariables>();

  std::vector<LiveInterval*> added;

  assert(li.weight != HUGE_VALF &&
         "attempt to spill already spilled interval!");

  DOUT << "\t\t\t\tadding intervals for spills for interval: ";
  li.print(DOUT, mri_);
  DOUT << '\n';

  const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(li.reg);

  for (LiveInterval::Ranges::const_iterator
         i = li.ranges.begin(), e = li.ranges.end(); i != e; ++i) {
    unsigned index = getBaseIndex(i->start);
    unsigned end = getBaseIndex(i->end-1) + InstrSlots::NUM;
    for (; index != end; index += InstrSlots::NUM) {
      // skip deleted instructions
      while (index != end && !getInstructionFromIndex(index))
        index += InstrSlots::NUM;
      if (index == end) break;

      MachineInstr *MI = getInstructionFromIndex(index);

    RestartInstruction:
      for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
        MachineOperand& mop = MI->getOperand(i);
        if (mop.isRegister() && mop.getReg() == li.reg) {
          MachineInstr *fmi = li.remat ? NULL
            : mri_->foldMemoryOperand(MI, i, slot);
          if (fmi) {
            // Attempt to fold the memory reference into the instruction.  If we
            // can do this, we don't need to insert spill code.
            if (lv_)
              lv_->instructionChanged(MI, fmi);
            MachineBasicBlock &MBB = *MI->getParent();
            vrm.virtFolded(li.reg, MI, i, fmi);
            mi2iMap_.erase(MI);
            i2miMap_[index/InstrSlots::NUM] = fmi;
            mi2iMap_[fmi] = index;
            MI = MBB.insert(MBB.erase(MI), fmi);
            ++numFolded;
            // Folding the load/store can completely change the instruction in
            // unpredictable ways, rescan it from the beginning.
            goto RestartInstruction;
          } else {
            // Create a new virtual register for the spill interval.
            unsigned NewVReg = mf_->getSSARegMap()->createVirtualRegister(rc);
            
            // Scan all of the operands of this instruction rewriting operands
            // to use NewVReg instead of li.reg as appropriate.  We do this for
            // two reasons:
            //
            //   1. If the instr reads the same spilled vreg multiple times, we
            //      want to reuse the NewVReg.
            //   2. If the instr is a two-addr instruction, we are required to
            //      keep the src/dst regs pinned.
            //
            // Keep track of whether we replace a use and/or def so that we can
            // create the spill interval with the appropriate range. 
            mop.setReg(NewVReg);
            
            bool HasUse = mop.isUse();
            bool HasDef = mop.isDef();
            for (unsigned j = i+1, e = MI->getNumOperands(); j != e; ++j) {
              if (MI->getOperand(j).isReg() &&
                  MI->getOperand(j).getReg() == li.reg) {
                MI->getOperand(j).setReg(NewVReg);
                HasUse |= MI->getOperand(j).isUse();
                HasDef |= MI->getOperand(j).isDef();
              }
            }

            // create a new register for this spill
            vrm.grow();
            if (li.remat)
              vrm.setVirtIsReMaterialized(NewVReg, li.remat);
            vrm.assignVirt2StackSlot(NewVReg, slot);
            LiveInterval &nI = getOrCreateInterval(NewVReg);
            nI.remat = li.remat;
            assert(nI.empty());

            // the spill weight is now infinity as it
            // cannot be spilled again
            nI.weight = HUGE_VALF;

            if (HasUse) {
              LiveRange LR(getLoadIndex(index), getUseIndex(index),
                           nI.getNextValue(~0U, 0));
              DOUT << " +" << LR;
              nI.addRange(LR);
            }
            if (HasDef) {
              LiveRange LR(getDefIndex(index), getStoreIndex(index),
                           nI.getNextValue(~0U, 0));
              DOUT << " +" << LR;
              nI.addRange(LR);
            }
            
            added.push_back(&nI);

            // update live variables if it is available
            if (lv_)
              lv_->addVirtualRegisterKilled(NewVReg, MI);
            
            DOUT << "\t\t\t\tadded new interval: ";
            nI.print(DOUT, mri_);
            DOUT << '\n';
          }
        }
      }
    }
  }

  return added;
}

void LiveIntervals::printRegName(unsigned reg) const {
  if (MRegisterInfo::isPhysicalRegister(reg))
    cerr << mri_->getName(reg);
  else
    cerr << "%reg" << reg;
}

/// isReDefinedByTwoAddr - Returns true if the Reg re-definition is due to
/// two addr elimination.
static bool isReDefinedByTwoAddr(MachineInstr *MI, unsigned Reg,
                                const TargetInstrInfo *TII) {
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    MachineOperand &MO1 = MI->getOperand(i);
    if (MO1.isRegister() && MO1.isDef() && MO1.getReg() == Reg) {
      for (unsigned j = i+1; j < e; ++j) {
        MachineOperand &MO2 = MI->getOperand(j);
        if (MO2.isRegister() && MO2.isUse() && MO2.getReg() == Reg &&
            MI->getInstrDescriptor()->
            getOperandConstraint(j, TOI::TIED_TO) == (int)i)
          return true;
      }
    }
  }
  return false;
}

void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
                                             MachineBasicBlock::iterator mi,
                                             unsigned MIIdx,
                                             LiveInterval &interval) {
  DOUT << "\t\tregister: "; DEBUG(printRegName(interval.reg));
  LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg);

  // Virtual registers may be defined multiple times (due to phi
  // elimination and 2-addr elimination).  Much of what we do only has to be
  // done once for the vreg.  We use an empty interval to detect the first
  // time we see a vreg.
  if (interval.empty()) {
    // Remember if the definition can be rematerialized. All load's from fixed
    // stack slots are re-materializable.
    int FrameIdx = 0;
    if (vi.DefInst &&
        (tii_->isReMaterializable(vi.DefInst->getOpcode()) ||
         (tii_->isLoadFromStackSlot(vi.DefInst, FrameIdx) &&
          mf_->getFrameInfo()->isFixedObjectIndex(FrameIdx))))
      interval.remat = vi.DefInst;

    // Get the Idx of the defining instructions.
    unsigned defIndex = getDefIndex(MIIdx);

    unsigned ValNum;
    unsigned SrcReg, DstReg;
    if (!tii_->isMoveInstr(*mi, SrcReg, DstReg))
      ValNum = interval.getNextValue(~0U, 0);
    else
      ValNum = interval.getNextValue(defIndex, SrcReg);
    
    assert(ValNum == 0 && "First value in interval is not 0?");
    ValNum = 0;  // Clue in the optimizer.

    // Loop over all of the blocks that the vreg is defined in.  There are
    // two cases we have to handle here.  The most common case is a vreg
    // whose lifetime is contained within a basic block.  In this case there
    // will be a single kill, in MBB, which comes after the definition.
    if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) {
      // FIXME: what about dead vars?
      unsigned killIdx;
      if (vi.Kills[0] != mi)
        killIdx = getUseIndex(getInstructionIndex(vi.Kills[0]))+1;
      else
        killIdx = defIndex+1;

      // If the kill happens after the definition, we have an intra-block
      // live range.
      if (killIdx > defIndex) {
        assert(vi.AliveBlocks.none() &&
               "Shouldn't be alive across any blocks!");
        LiveRange LR(defIndex, killIdx, ValNum);
        interval.addRange(LR);
        DOUT << " +" << LR << "\n";
        return;
      }
    }

    // The other case we handle is when a virtual register lives to the end
    // of the defining block, potentially live across some blocks, then is
    // live into some number of blocks, but gets killed.  Start by adding a
    // range that goes from this definition to the end of the defining block.
    LiveRange NewLR(defIndex,
                    getInstructionIndex(&mbb->back()) + InstrSlots::NUM,
                    ValNum);
    DOUT << " +" << NewLR;
    interval.addRange(NewLR);

    // Iterate over all of the blocks that the variable is completely
    // live in, adding [insrtIndex(begin), instrIndex(end)+4) to the
    // live interval.
    for (unsigned i = 0, e = vi.AliveBlocks.size(); i != e; ++i) {
      if (vi.AliveBlocks[i]) {
        MachineBasicBlock *MBB = mf_->getBlockNumbered(i);
        if (!MBB->empty()) {
          LiveRange LR(getMBBStartIdx(i),
                       getInstructionIndex(&MBB->back()) + InstrSlots::NUM,
                       ValNum);
          interval.addRange(LR);
          DOUT << " +" << LR;
        }
      }
    }

    // Finally, this virtual register is live from the start of any killing
    // block to the 'use' slot of the killing instruction.
    for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) {
      MachineInstr *Kill = vi.Kills[i];
      LiveRange LR(getMBBStartIdx(Kill->getParent()),
                   getUseIndex(getInstructionIndex(Kill))+1,
                   ValNum);
      interval.addRange(LR);
      DOUT << " +" << LR;
    }

  } else {
    // Can no longer safely assume definition is rematerializable.
    interval.remat = NULL;

    // If this is the second time we see a virtual register definition, it
    // must be due to phi elimination or two addr elimination.  If this is
    // the result of two address elimination, then the vreg is one of the
    // def-and-use register operand.
    if (isReDefinedByTwoAddr(mi, interval.reg, tii_)) {
      // If this is a two-address definition, then we have already processed
      // the live range.  The only problem is that we didn't realize there
      // are actually two values in the live interval.  Because of this we
      // need to take the LiveRegion that defines this register and split it
      // into two values.
      unsigned DefIndex = getDefIndex(getInstructionIndex(vi.DefInst));
      unsigned RedefIndex = getDefIndex(MIIdx);

      // Delete the initial value, which should be short and continuous,
      // because the 2-addr copy must be in the same MBB as the redef.
      interval.removeRange(DefIndex, RedefIndex);

      // Two-address vregs should always only be redefined once.  This means
      // that at this point, there should be exactly one value number in it.
      assert(interval.containsOneValue() && "Unexpected 2-addr liveint!");

      // The new value number (#1) is defined by the instruction we claimed
      // defined value #0.
      unsigned ValNo = interval.getNextValue(0, 0);
      interval.setValueNumberInfo(1, interval.getValNumInfo(0));
      
      // Value#0 is now defined by the 2-addr instruction.
      interval.setValueNumberInfo(0, std::make_pair(~0U, 0U));
      
      // Add the new live interval which replaces the range for the input copy.
      LiveRange LR(DefIndex, RedefIndex, ValNo);
      DOUT << " replace range with " << LR;
      interval.addRange(LR);

      // If this redefinition is dead, we need to add a dummy unit live
      // range covering the def slot.
      if (lv_->RegisterDefIsDead(mi, interval.reg))
        interval.addRange(LiveRange(RedefIndex, RedefIndex+1, 0));

      DOUT << " RESULT: ";
      interval.print(DOUT, mri_);

    } else {
      // Otherwise, this must be because of phi elimination.  If this is the
      // first redefinition of the vreg that we have seen, go back and change
      // the live range in the PHI block to be a different value number.
      if (interval.containsOneValue()) {
        assert(vi.Kills.size() == 1 &&
               "PHI elimination vreg should have one kill, the PHI itself!");

        // Remove the old range that we now know has an incorrect number.
        MachineInstr *Killer = vi.Kills[0];
        unsigned Start = getMBBStartIdx(Killer->getParent());
        unsigned End = getUseIndex(getInstructionIndex(Killer))+1;
        DOUT << " Removing [" << Start << "," << End << "] from: ";
        interval.print(DOUT, mri_); DOUT << "\n";
        interval.removeRange(Start, End);
        DOUT << " RESULT: "; interval.print(DOUT, mri_);

        // Replace the interval with one of a NEW value number.  Note that this
        // value number isn't actually defined by an instruction, weird huh? :)
        LiveRange LR(Start, End, interval.getNextValue(~0U, 0));
        DOUT << " replace range with " << LR;
        interval.addRange(LR);
        DOUT << " RESULT: "; interval.print(DOUT, mri_);
      }

      // In the case of PHI elimination, each variable definition is only
      // live until the end of the block.  We've already taken care of the
      // rest of the live range.
      unsigned defIndex = getDefIndex(MIIdx);
      
      unsigned ValNum;
      unsigned SrcReg, DstReg;
      if (!tii_->isMoveInstr(*mi, SrcReg, DstReg))
        ValNum = interval.getNextValue(~0U, 0);
      else
        ValNum = interval.getNextValue(defIndex, SrcReg);
      
      LiveRange LR(defIndex,
                   getInstructionIndex(&mbb->back()) + InstrSlots::NUM, ValNum);
      interval.addRange(LR);
      DOUT << " +" << LR;
    }
  }

  DOUT << '\n';
}

void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB,
                                              MachineBasicBlock::iterator mi,
                                              unsigned MIIdx,
                                              LiveInterval &interval,
                                              unsigned SrcReg) {
  // A physical register cannot be live across basic block, so its
  // lifetime must end somewhere in its defining basic block.
  DOUT << "\t\tregister: "; DEBUG(printRegName(interval.reg));

  unsigned baseIndex = MIIdx;
  unsigned start = getDefIndex(baseIndex);
  unsigned end = start;

  // If it is not used after definition, it is considered dead at
  // the instruction defining it. Hence its interval is:
  // [defSlot(def), defSlot(def)+1)
  if (lv_->RegisterDefIsDead(mi, interval.reg)) {
    DOUT << " dead";
    end = getDefIndex(start) + 1;
    goto exit;
  }

  // If it is not dead on definition, it must be killed by a
  // subsequent instruction. Hence its interval is:
  // [defSlot(def), useSlot(kill)+1)
  while (++mi != MBB->end()) {
    baseIndex += InstrSlots::NUM;
    if (lv_->KillsRegister(mi, interval.reg)) {
      DOUT << " killed";
      end = getUseIndex(baseIndex) + 1;
      goto exit;
    } else if (lv_->ModifiesRegister(mi, interval.reg)) {
      // Another instruction redefines the register before it is ever read.
      // Then the register is essentially dead at the instruction that defines
      // it. Hence its interval is:
      // [defSlot(def), defSlot(def)+1)
      DOUT << " dead";
      end = getDefIndex(start) + 1;
      goto exit;
    }
  }
  
  // The only case we should have a dead physreg here without a killing or
  // instruction where we know it's dead is if it is live-in to the function
  // and never used.
  assert(!SrcReg && "physreg was not killed in defining block!");
  end = getDefIndex(start) + 1;  // It's dead.

exit:
  assert(start < end && "did not find end of interval?");

  // Already exists? Extend old live interval.
  LiveInterval::iterator OldLR = interval.FindLiveRangeContaining(start);
  unsigned Id = (OldLR != interval.end())
    ? OldLR->ValId
    : interval.getNextValue(SrcReg != 0 ? start : ~0U, SrcReg);
  LiveRange LR(start, end, Id);
  interval.addRange(LR);
  DOUT << " +" << LR << '\n';
}

void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB,
                                      MachineBasicBlock::iterator MI,
                                      unsigned MIIdx,
                                      unsigned reg) {
  if (MRegisterInfo::isVirtualRegister(reg))
    handleVirtualRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(reg));
  else if (allocatableRegs_[reg]) {
    unsigned SrcReg, DstReg;
    if (!tii_->isMoveInstr(*MI, SrcReg, DstReg))
      SrcReg = 0;
    handlePhysicalRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(reg), SrcReg);
    // Def of a register also defines its sub-registers.
    for (const unsigned* AS = mri_->getSubRegisters(reg); *AS; ++AS)
      // Avoid processing some defs more than once.
      if (!MI->findRegisterDefOperand(*AS))
        handlePhysicalRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(*AS), 0);
  }
}

void LiveIntervals::handleLiveInRegister(MachineBasicBlock *MBB,
                                         unsigned MIIdx,
                                         LiveInterval &interval, bool isAlias) {
  DOUT << "\t\tlivein register: "; DEBUG(printRegName(interval.reg));

  // Look for kills, if it reaches a def before it's killed, then it shouldn't
  // be considered a livein.
  MachineBasicBlock::iterator mi = MBB->begin();
  unsigned baseIndex = MIIdx;
  unsigned start = baseIndex;
  unsigned end = start;
  while (mi != MBB->end()) {
    if (lv_->KillsRegister(mi, interval.reg)) {
      DOUT << " killed";
      end = getUseIndex(baseIndex) + 1;
      goto exit;
    } else if (lv_->ModifiesRegister(mi, interval.reg)) {
      // Another instruction redefines the register before it is ever read.
      // Then the register is essentially dead at the instruction that defines
      // it. Hence its interval is:
      // [defSlot(def), defSlot(def)+1)
      DOUT << " dead";
      end = getDefIndex(start) + 1;
      goto exit;
    }

    baseIndex += InstrSlots::NUM;
    ++mi;
  }

exit:
  // Alias of a live-in register might not be used at all.
  if (isAlias && end == 0) {
    DOUT << " dead";
    end = getDefIndex(start) + 1;
  }

  assert(start < end && "did not find end of interval?");

  LiveRange LR(start, end, interval.getNextValue(~0U, 0));
  DOUT << " +" << LR << '\n';
  interval.addRange(LR);
}

/// computeIntervals - computes the live intervals for virtual
/// registers. for some ordering of the machine instructions [1,N] a
/// live interval is an interval [i, j) where 1 <= i <= j < N for
/// which a variable is live
void LiveIntervals::computeIntervals() {
  DOUT << "********** COMPUTING LIVE INTERVALS **********\n"
       << "********** Function: "
       << ((Value*)mf_->getFunction())->getName() << '\n';
  // Track the index of the current machine instr.
  unsigned MIIndex = 0;
  for (MachineFunction::iterator MBBI = mf_->begin(), E = mf_->end();
       MBBI != E; ++MBBI) {
    MachineBasicBlock *MBB = MBBI;
    DOUT << ((Value*)MBB->getBasicBlock())->getName() << ":\n";

    MachineBasicBlock::iterator MI = MBB->begin(), miEnd = MBB->end();

    if (MBB->livein_begin() != MBB->livein_end()) {
      // Create intervals for live-ins to this BB first.
      for (MachineBasicBlock::const_livein_iterator LI = MBB->livein_begin(),
             LE = MBB->livein_end(); LI != LE; ++LI) {
        handleLiveInRegister(MBB, MIIndex, getOrCreateInterval(*LI));
        // Multiple live-ins can alias the same register.
        for (const unsigned* AS = mri_->getSubRegisters(*LI); *AS; ++AS)
          if (!hasInterval(*AS))
            handleLiveInRegister(MBB, MIIndex, getOrCreateInterval(*AS), true);
      }
    }
    
    for (; MI != miEnd; ++MI) {
      DOUT << MIIndex << "\t" << *MI;

      // Handle defs.
      for (int i = MI->getNumOperands() - 1; i >= 0; --i) {
        MachineOperand &MO = MI->getOperand(i);
        // handle register defs - build intervals
        if (MO.isRegister() && MO.getReg() && MO.isDef())
          handleRegisterDef(MBB, MI, MIIndex, MO.getReg());
      }
      
      MIIndex += InstrSlots::NUM;
    }
  }
}

/// AdjustCopiesBackFrom - We found a non-trivially-coallescable copy with IntA
/// being the source and IntB being the dest, thus this defines a value number
/// in IntB.  If the source value number (in IntA) is defined by a copy from B,
/// see if we can merge these two pieces of B into a single value number,
/// eliminating a copy.  For example:
///
///  A3 = B0
///    ...
///  B1 = A3      <- this copy
///
/// In this case, B0 can be extended to where the B1 copy lives, allowing the B1
/// value number to be replaced with B0 (which simplifies the B liveinterval).
///
/// This returns true if an interval was modified.
///
bool LiveIntervals::AdjustCopiesBackFrom(LiveInterval &IntA, LiveInterval &IntB,
                                         MachineInstr *CopyMI) {
  unsigned CopyIdx = getDefIndex(getInstructionIndex(CopyMI));

  // BValNo is a value number in B that is defined by a copy from A.  'B3' in
  // the example above.
  LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
  unsigned BValNo = BLR->ValId;
  
  // Get the location that B is defined at.  Two options: either this value has
  // an unknown definition point or it is defined at CopyIdx.  If unknown, we 
  // can't process it.
  unsigned BValNoDefIdx = IntB.getInstForValNum(BValNo);
  if (BValNoDefIdx == ~0U) return false;
  assert(BValNoDefIdx == CopyIdx &&
         "Copy doesn't define the value?");
  
  // AValNo is the value number in A that defines the copy, A0 in the example.
  LiveInterval::iterator AValLR = IntA.FindLiveRangeContaining(CopyIdx-1);
  unsigned AValNo = AValLR->ValId;
  
  // If AValNo is defined as a copy from IntB, we can potentially process this.
  
  // Get the instruction that defines this value number.
  unsigned SrcReg = IntA.getSrcRegForValNum(AValNo);
  if (!SrcReg) return false;  // Not defined by a copy.
    
  // If the value number is not defined by a copy instruction, ignore it.
    
  // If the source register comes from an interval other than IntB, we can't
  // handle this.
  if (rep(SrcReg) != IntB.reg) return false;
  
  // Get the LiveRange in IntB that this value number starts with.
  unsigned AValNoInstIdx = IntA.getInstForValNum(AValNo);
  LiveInterval::iterator ValLR = IntB.FindLiveRangeContaining(AValNoInstIdx-1);
  
  // Make sure that the end of the live range is inside the same block as
  // CopyMI.
  MachineInstr *ValLREndInst = getInstructionFromIndex(ValLR->end-1);
  if (!ValLREndInst || 
      ValLREndInst->getParent() != CopyMI->getParent()) return false;

  // Okay, we now know that ValLR ends in the same block that the CopyMI
  // live-range starts.  If there are no intervening live ranges between them in
  // IntB, we can merge them.
  if (ValLR+1 != BLR) return false;
  
  DOUT << "\nExtending: "; IntB.print(DOUT, mri_);
  
  // We are about to delete CopyMI, so need to remove it as the 'instruction
  // that defines this value #'.
  IntB.setValueNumberInfo(BValNo, std::make_pair(~0U, 0));
  
  // Okay, we can merge them.  We need to insert a new liverange:
  // [ValLR.end, BLR.begin) of either value number, then we merge the
  // two value numbers.
  unsigned FillerStart = ValLR->end, FillerEnd = BLR->start;
  IntB.addRange(LiveRange(FillerStart, FillerEnd, BValNo));

  // If the IntB live range is assigned to a physical register, and if that
  // physreg has aliases, 
  if (MRegisterInfo::isPhysicalRegister(IntB.reg)) {
    // Update the liveintervals of sub-registers.
    for (const unsigned *AS = mri_->getSubRegisters(IntB.reg); *AS; ++AS) {
      LiveInterval &AliasLI = getInterval(*AS);
      AliasLI.addRange(LiveRange(FillerStart, FillerEnd,
                                 AliasLI.getNextValue(~0U, 0)));
    }
  }

  // Okay, merge "B1" into the same value number as "B0".
  if (BValNo != ValLR->ValId)
    IntB.MergeValueNumberInto(BValNo, ValLR->ValId);
  DOUT << "   result = "; IntB.print(DOUT, mri_);
  DOUT << "\n";

  // If the source instruction was killing the source register before the
  // merge, unset the isKill marker given the live range has been extended.
  int UIdx = ValLREndInst->findRegisterUseOperandIdx(IntB.reg, true);
  if (UIdx != -1)
    ValLREndInst->getOperand(UIdx).unsetIsKill();
  
  // Finally, delete the copy instruction.
  RemoveMachineInstrFromMaps(CopyMI);
  CopyMI->eraseFromParent();
  ++numPeep;
  return true;
}


/// JoinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
/// which are the src/dst of the copy instruction CopyMI.  This returns true
/// if the copy was successfully coallesced away, or if it is never possible
/// to coallesce this copy, due to register constraints.  It returns
/// false if it is not currently possible to coallesce this interval, but
/// it may be possible if other things get coallesced.
bool LiveIntervals::JoinCopy(MachineInstr *CopyMI,
                             unsigned SrcReg, unsigned DstReg, bool PhysOnly) {
  DOUT << getInstructionIndex(CopyMI) << '\t' << *CopyMI;

  // Get representative registers.
  unsigned repSrcReg = rep(SrcReg);
  unsigned repDstReg = rep(DstReg);
  
  // If they are already joined we continue.
  if (repSrcReg == repDstReg) {
    DOUT << "\tCopy already coallesced.\n";
    return true;  // Not coallescable.
  }
  
  bool SrcIsPhys = MRegisterInfo::isPhysicalRegister(repSrcReg);
  bool DstIsPhys = MRegisterInfo::isPhysicalRegister(repDstReg);
  if (PhysOnly && !SrcIsPhys && !DstIsPhys)
    // Only joining physical registers with virtual registers in this round.
    return true;

  // If they are both physical registers, we cannot join them.
  if (SrcIsPhys && DstIsPhys) {
    DOUT << "\tCan not coallesce physregs.\n";
    return true;  // Not coallescable.
  }
  
  // We only join virtual registers with allocatable physical registers.
  if (SrcIsPhys && !allocatableRegs_[repSrcReg]) {
    DOUT << "\tSrc reg is unallocatable physreg.\n";
    return true;  // Not coallescable.
  }
  if (DstIsPhys && !allocatableRegs_[repDstReg]) {
    DOUT << "\tDst reg is unallocatable physreg.\n";
    return true;  // Not coallescable.
  }
  
  // If they are not of the same register class, we cannot join them.
  if (differingRegisterClasses(repSrcReg, repDstReg)) {
    DOUT << "\tSrc/Dest are different register classes.\n";
    return true;  // Not coallescable.
  }
  
  LiveInterval &SrcInt = getInterval(repSrcReg);
  LiveInterval &DstInt = getInterval(repDstReg);
  assert(SrcInt.reg == repSrcReg && DstInt.reg == repDstReg &&
         "Register mapping is horribly broken!");

  DOUT << "\t\tInspecting "; SrcInt.print(DOUT, mri_);
  DOUT << " and "; DstInt.print(DOUT, mri_);
  DOUT << ": ";

  // Check if it is necessary to propagate "isDead" property before intervals
  // are joined.
  MachineOperand *mopd = CopyMI->findRegisterDefOperand(DstReg);
  bool isDead = mopd->isDead();
  bool isShorten = false;
  unsigned SrcStart = 0, RemoveStart = 0;
  unsigned SrcEnd = 0, RemoveEnd = 0;
  if (isDead) {
    unsigned CopyIdx = getInstructionIndex(CopyMI);
    LiveInterval::iterator SrcLR =
      SrcInt.FindLiveRangeContaining(getUseIndex(CopyIdx));
    RemoveStart = SrcStart = SrcLR->start;
    RemoveEnd   = SrcEnd   = SrcLR->end;
    // The instruction which defines the src is only truly dead if there are
    // no intermediate uses and there isn't a use beyond the copy.
    // FIXME: find the last use, mark is kill and shorten the live range.
    if (SrcEnd > getDefIndex(CopyIdx)) {
      isDead = false;
    } else {
      MachineOperand *MOU;
      MachineInstr *LastUse= lastRegisterUse(repSrcReg, SrcStart, CopyIdx, MOU);
      if (LastUse) {
        // Shorten the liveinterval to the end of last use.
        MOU->setIsKill();
        isDead = false;
        isShorten = true;
        RemoveStart = getDefIndex(getInstructionIndex(LastUse));
        RemoveEnd   = SrcEnd;
      } else {
        MachineInstr *SrcMI = getInstructionFromIndex(SrcStart);
        if (SrcMI) {
          MachineOperand *mops = findDefOperand(SrcMI, repSrcReg);
          if (mops)
            // A dead def should have a single cycle interval.
            ++RemoveStart;
        }
      }
    }
  }

  // We need to be careful about coalescing a source physical register with a
  // virtual register. Once the coalescing is done, it cannot be broken and
  // these are not spillable! If the destination interval uses are far away,
  // think twice about coalescing them!
  if (!mopd->isDead() && (SrcIsPhys || DstIsPhys)) {
    LiveInterval &JoinVInt = SrcIsPhys ? DstInt : SrcInt;
    unsigned JoinVReg = SrcIsPhys ? repDstReg : repSrcReg;
    unsigned JoinPReg = SrcIsPhys ? repSrcReg : repDstReg;
    const TargetRegisterClass *RC = mf_->getSSARegMap()->getRegClass(JoinVReg);
    unsigned Threshold = allocatableRCRegs_[RC].count();

    // If the virtual register live interval is long has it has low use desity,
    // do not join them, instead mark the physical register as its allocation
    // preference.
    unsigned Length = JoinVInt.getSize() / InstrSlots::NUM;
    LiveVariables::VarInfo &vi = lv_->getVarInfo(JoinVReg);
    if (Length > Threshold &&
        (((float)vi.NumUses / Length) < (1.0 / Threshold))) {
      JoinVInt.preference = JoinPReg;
      ++numAborts;
      DOUT << "\tMay tie down a physical register, abort!\n";
      return false;
    }
  }

  // Okay, attempt to join these two intervals.  On failure, this returns false.
  // Otherwise, if one of the intervals being joined is a physreg, this method
  // always canonicalizes DstInt to be it.  The output "SrcInt" will not have
  // been modified, so we can use this information below to update aliases.
  if (JoinIntervals(DstInt, SrcInt)) {
    if (isDead) {
      // Result of the copy is dead. Propagate this property.
      if (SrcStart == 0) {
        assert(MRegisterInfo::isPhysicalRegister(repSrcReg) &&
               "Live-in must be a physical register!");
        // Live-in to the function but dead. Remove it from entry live-in set.
        // JoinIntervals may end up swapping the two intervals.
        mf_->begin()->removeLiveIn(repSrcReg);
      } else {
        MachineInstr *SrcMI = getInstructionFromIndex(SrcStart);
        if (SrcMI) {
          MachineOperand *mops = findDefOperand(SrcMI, repSrcReg);
          if (mops)
            mops->setIsDead();
        }
      }
    }

    if (isShorten || isDead) {
      // Shorten the live interval.
      LiveInterval &LiveInInt = (repSrcReg == DstInt.reg) ? DstInt : SrcInt;
      LiveInInt.removeRange(RemoveStart, RemoveEnd);
    }
  } else {
    // Coallescing failed.
    
    // If we can eliminate the copy without merging the live ranges, do so now.
    if (AdjustCopiesBackFrom(SrcInt, DstInt, CopyMI))
      return true;

    // Otherwise, we are unable to join the intervals.
    DOUT << "Interference!\n";
    return false;
  }

  bool Swapped = repSrcReg == DstInt.reg;
  if (Swapped)
    std::swap(repSrcReg, repDstReg);
  assert(MRegisterInfo::isVirtualRegister(repSrcReg) &&
         "LiveInterval::join didn't work right!");
                               
  // If we're about to merge live ranges into a physical register live range,
  // we have to update any aliased register's live ranges to indicate that they
  // have clobbered values for this range.
  if (MRegisterInfo::isPhysicalRegister(repDstReg)) {
    // Update the liveintervals of sub-registers.
    for (const unsigned *AS = mri_->getSubRegisters(repDstReg); *AS; ++AS)
        getInterval(*AS).MergeInClobberRanges(SrcInt);
  } else {
    // Merge use info if the destination is a virtual register.
    LiveVariables::VarInfo& dVI = lv_->getVarInfo(repDstReg);
    LiveVariables::VarInfo& sVI = lv_->getVarInfo(repSrcReg);
    dVI.NumUses += sVI.NumUses;
  }

  DOUT << "\n\t\tJoined.  Result = "; DstInt.print(DOUT, mri_);
  DOUT << "\n";

  // Remember these liveintervals have been joined.
  JoinedLIs.set(repSrcReg - MRegisterInfo::FirstVirtualRegister);
  if (MRegisterInfo::isVirtualRegister(repDstReg))
    JoinedLIs.set(repDstReg - MRegisterInfo::FirstVirtualRegister);

  // If the intervals were swapped by Join, swap them back so that the register
  // mapping (in the r2i map) is correct.
  if (Swapped) SrcInt.swap(DstInt);
  removeInterval(repSrcReg);
  r2rMap_[repSrcReg] = repDstReg;

  // Finally, delete the copy instruction.
  RemoveMachineInstrFromMaps(CopyMI);
  CopyMI->eraseFromParent();
  ++numPeep;
  ++numJoins;
  return true;
}

/// ComputeUltimateVN - Assuming we are going to join two live intervals,
/// compute what the resultant value numbers for each value in the input two
/// ranges will be.  This is complicated by copies between the two which can
/// and will commonly cause multiple value numbers to be merged into one.
///
/// VN is the value number that we're trying to resolve.  InstDefiningValue
/// keeps track of the new InstDefiningValue assignment for the result
/// LiveInterval.  ThisFromOther/OtherFromThis are sets that keep track of
/// whether a value in this or other is a copy from the opposite set.
/// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have
/// already been assigned.
///
/// ThisFromOther[x] - If x is defined as a copy from the other interval, this
/// contains the value number the copy is from.
///
static unsigned ComputeUltimateVN(unsigned VN,
                                  SmallVector<std::pair<unsigned,
                                                unsigned>, 16> &ValueNumberInfo,
                                  SmallVector<int, 16> &ThisFromOther,
                                  SmallVector<int, 16> &OtherFromThis,
                                  SmallVector<int, 16> &ThisValNoAssignments,
                                  SmallVector<int, 16> &OtherValNoAssignments,
                                  LiveInterval &ThisLI, LiveInterval &OtherLI) {
  // If the VN has already been computed, just return it.
  if (ThisValNoAssignments[VN] >= 0)
    return ThisValNoAssignments[VN];
//  assert(ThisValNoAssignments[VN] != -2 && "Cyclic case?");
  
  // If this val is not a copy from the other val, then it must be a new value
  // number in the destination.
  int OtherValNo = ThisFromOther[VN];
  if (OtherValNo == -1) {
    ValueNumberInfo.push_back(ThisLI.getValNumInfo(VN));
    return ThisValNoAssignments[VN] = ValueNumberInfo.size()-1;
  }

  // Otherwise, this *is* a copy from the RHS.  If the other side has already
  // been computed, return it.
  if (OtherValNoAssignments[OtherValNo] >= 0)
    return ThisValNoAssignments[VN] = OtherValNoAssignments[OtherValNo];
  
  // Mark this value number as currently being computed, then ask what the
  // ultimate value # of the other value is.
  ThisValNoAssignments[VN] = -2;
  unsigned UltimateVN =
    ComputeUltimateVN(OtherValNo, ValueNumberInfo,
                      OtherFromThis, ThisFromOther,
                      OtherValNoAssignments, ThisValNoAssignments,
                      OtherLI, ThisLI);
  return ThisValNoAssignments[VN] = UltimateVN;
}

static bool InVector(unsigned Val, const SmallVector<unsigned, 8> &V) {
  return std::find(V.begin(), V.end(), Val) != V.end();
}

/// SimpleJoin - Attempt to joint the specified interval into this one. The
/// caller of this method must guarantee that the RHS only contains a single
/// value number and that the RHS is not defined by a copy from this
/// interval.  This returns false if the intervals are not joinable, or it
/// joins them and returns true.
bool LiveIntervals::SimpleJoin(LiveInterval &LHS, LiveInterval &RHS) {
  assert(RHS.containsOneValue());
  
  // Some number (potentially more than one) value numbers in the current
  // interval may be defined as copies from the RHS.  Scan the overlapping
  // portions of the LHS and RHS, keeping track of this and looking for
  // overlapping live ranges that are NOT defined as copies.  If these exist, we
  // cannot coallesce.
  
  LiveInterval::iterator LHSIt = LHS.begin(), LHSEnd = LHS.end();
  LiveInterval::iterator RHSIt = RHS.begin(), RHSEnd = RHS.end();
  
  if (LHSIt->start < RHSIt->start) {
    LHSIt = std::upper_bound(LHSIt, LHSEnd, RHSIt->start);
    if (LHSIt != LHS.begin()) --LHSIt;
  } else if (RHSIt->start < LHSIt->start) {
    RHSIt = std::upper_bound(RHSIt, RHSEnd, LHSIt->start);
    if (RHSIt != RHS.begin()) --RHSIt;
  }
  
  SmallVector<unsigned, 8> EliminatedLHSVals;
  
  while (1) {
    // Determine if these live intervals overlap.
    bool Overlaps = false;
    if (LHSIt->start <= RHSIt->start)
      Overlaps = LHSIt->end > RHSIt->start;
    else
      Overlaps = RHSIt->end > LHSIt->start;
    
    // If the live intervals overlap, there are two interesting cases: if the
    // LHS interval is defined by a copy from the RHS, it's ok and we record
    // that the LHS value # is the same as the RHS.  If it's not, then we cannot
    // coallesce these live ranges and we bail out.
    if (Overlaps) {
      // If we haven't already recorded that this value # is safe, check it.
      if (!InVector(LHSIt->ValId, EliminatedLHSVals)) {
        // Copy from the RHS?
        unsigned SrcReg = LHS.getSrcRegForValNum(LHSIt->ValId);
        if (rep(SrcReg) != RHS.reg)
          return false;    // Nope, bail out.
        
        EliminatedLHSVals.push_back(LHSIt->ValId);
      }
      
      // We know this entire LHS live range is okay, so skip it now.
      if (++LHSIt == LHSEnd) break;
      continue;
    }
    
    if (LHSIt->end < RHSIt->end) {
      if (++LHSIt == LHSEnd) break;
    } else {
      // One interesting case to check here.  It's possible that we have
      // something like "X3 = Y" which defines a new value number in the LHS,
      // and is the last use of this liverange of the RHS.  In this case, we
      // want to notice this copy (so that it gets coallesced away) even though
      // the live ranges don't actually overlap.
      if (LHSIt->start == RHSIt->end) {
        if (InVector(LHSIt->ValId, EliminatedLHSVals)) {
          // We already know that this value number is going to be merged in
          // if coallescing succeeds.  Just skip the liverange.
          if (++LHSIt == LHSEnd) break;
        } else {
          // Otherwise, if this is a copy from the RHS, mark it as being merged
          // in.
          if (rep(LHS.getSrcRegForValNum(LHSIt->ValId)) == RHS.reg) {
            EliminatedLHSVals.push_back(LHSIt->ValId);

            // We know this entire LHS live range is okay, so skip it now.
            if (++LHSIt == LHSEnd) break;
          }
        }
      }
      
      if (++RHSIt == RHSEnd) break;
    }
  }
  
  // If we got here, we know that the coallescing will be successful and that
  // the value numbers in EliminatedLHSVals will all be merged together.  Since
  // the most common case is that EliminatedLHSVals has a single number, we
  // optimize for it: if there is more than one value, we merge them all into
  // the lowest numbered one, then handle the interval as if we were merging
  // with one value number.
  unsigned LHSValNo;
  if (EliminatedLHSVals.size() > 1) {
    // Loop through all the equal value numbers merging them into the smallest
    // one.
    unsigned Smallest = EliminatedLHSVals[0];
    for (unsigned i = 1, e = EliminatedLHSVals.size(); i != e; ++i) {
      if (EliminatedLHSVals[i] < Smallest) {
        // Merge the current notion of the smallest into the smaller one.
        LHS.MergeValueNumberInto(Smallest, EliminatedLHSVals[i]);
        Smallest = EliminatedLHSVals[i];
      } else {
        // Merge into the smallest.
        LHS.MergeValueNumberInto(EliminatedLHSVals[i], Smallest);
      }
    }
    LHSValNo = Smallest;
  } else {
    assert(!EliminatedLHSVals.empty() && "No copies from the RHS?");
    LHSValNo = EliminatedLHSVals[0];
  }
  
  // Okay, now that there is a single LHS value number that we're merging the
  // RHS into, update the value number info for the LHS to indicate that the
  // value number is defined where the RHS value number was.
  LHS.setValueNumberInfo(LHSValNo, RHS.getValNumInfo(0));
  
  // Okay, the final step is to loop over the RHS live intervals, adding them to
  // the LHS.
  LHS.MergeRangesInAsValue(RHS, LHSValNo);
  LHS.weight += RHS.weight;
  if (RHS.preference && !LHS.preference)
    LHS.preference = RHS.preference;
  
  return true;
}

/// JoinIntervals - Attempt to join these two intervals.  On failure, this
/// returns false.  Otherwise, if one of the intervals being joined is a
/// physreg, this method always canonicalizes LHS to be it.  The output
/// "RHS" will not have been modified, so we can use this information
/// below to update aliases.
bool LiveIntervals::JoinIntervals(LiveInterval &LHS, LiveInterval &RHS) {
  // Compute the final value assignment, assuming that the live ranges can be
  // coallesced.
  SmallVector<int, 16> LHSValNoAssignments;
  SmallVector<int, 16> RHSValNoAssignments;
  SmallVector<std::pair<unsigned,unsigned>, 16> ValueNumberInfo;

  // If a live interval is a physical register, conservatively check if any
  // of its sub-registers is overlapping the live interval of the virtual
  // register. If so, do not coalesce.
  if (MRegisterInfo::isPhysicalRegister(LHS.reg) &&
      *mri_->getSubRegisters(LHS.reg)) {
    for (const unsigned* SR = mri_->getSubRegisters(LHS.reg); *SR; ++SR)
      if (hasInterval(*SR) && RHS.overlaps(getInterval(*SR))) {
        DOUT << "Interfere with sub-register ";
        DEBUG(getInterval(*SR).print(DOUT, mri_));
        return false;
      }
  } else if (MRegisterInfo::isPhysicalRegister(RHS.reg) &&
             *mri_->getSubRegisters(RHS.reg)) {
    for (const unsigned* SR = mri_->getSubRegisters(RHS.reg); *SR; ++SR)
      if (hasInterval(*SR) && LHS.overlaps(getInterval(*SR))) {
        DOUT << "Interfere with sub-register ";
        DEBUG(getInterval(*SR).print(DOUT, mri_));
        return false;
      }
  }
                          
  // Compute ultimate value numbers for the LHS and RHS values.
  if (RHS.containsOneValue()) {
    // Copies from a liveinterval with a single value are simple to handle and
    // very common, handle the special case here.  This is important, because
    // often RHS is small and LHS is large (e.g. a physreg).
    
    // Find out if the RHS is defined as a copy from some value in the LHS.
    int RHSValID = -1;
    std::pair<unsigned,unsigned> RHSValNoInfo;
    unsigned RHSSrcReg = RHS.getSrcRegForValNum(0);
    if ((RHSSrcReg == 0 || rep(RHSSrcReg) != LHS.reg)) {
      // If RHS is not defined as a copy from the LHS, we can use simpler and
      // faster checks to see if the live ranges are coallescable.  This joiner
      // can't swap the LHS/RHS intervals though.
      if (!MRegisterInfo::isPhysicalRegister(RHS.reg)) {
        return SimpleJoin(LHS, RHS);
      } else {
        RHSValNoInfo = RHS.getValNumInfo(0);
      }
    } else {
      // It was defined as a copy from the LHS, find out what value # it is.
      unsigned ValInst = RHS.getInstForValNum(0);
      RHSValID = LHS.getLiveRangeContaining(ValInst-1)->ValId;
      RHSValNoInfo = LHS.getValNumInfo(RHSValID);
    }
    
    LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
    RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
    ValueNumberInfo.resize(LHS.getNumValNums());
    
    // Okay, *all* of the values in LHS that are defined as a copy from RHS
    // should now get updated.
    for (unsigned VN = 0, e = LHS.getNumValNums(); VN != e; ++VN) {
      if (unsigned LHSSrcReg = LHS.getSrcRegForValNum(VN)) {
        if (rep(LHSSrcReg) != RHS.reg) {
          // If this is not a copy from the RHS, its value number will be
          // unmodified by the coallescing.
          ValueNumberInfo[VN] = LHS.getValNumInfo(VN);
          LHSValNoAssignments[VN] = VN;
        } else if (RHSValID == -1) {
          // Otherwise, it is a copy from the RHS, and we don't already have a
          // value# for it.  Keep the current value number, but remember it.
          LHSValNoAssignments[VN] = RHSValID = VN;
          ValueNumberInfo[VN] = RHSValNoInfo;
        } else {
          // Otherwise, use the specified value #.
          LHSValNoAssignments[VN] = RHSValID;
          if (VN != (unsigned)RHSValID)
            ValueNumberInfo[VN].first = ~1U;
          else
            ValueNumberInfo[VN] = RHSValNoInfo;
        }
      } else {
        ValueNumberInfo[VN] = LHS.getValNumInfo(VN);
        LHSValNoAssignments[VN] = VN;
      }
    }
    
    assert(RHSValID != -1 && "Didn't find value #?");
    RHSValNoAssignments[0] = RHSValID;
    
  } else {
    // Loop over the value numbers of the LHS, seeing if any are defined from
    // the RHS.
    SmallVector<int, 16> LHSValsDefinedFromRHS;
    LHSValsDefinedFromRHS.resize(LHS.getNumValNums(), -1);
    for (unsigned VN = 0, e = LHS.getNumValNums(); VN != e; ++VN) {
      unsigned ValSrcReg = LHS.getSrcRegForValNum(VN);
      if (ValSrcReg == 0)  // Src not defined by a copy?
        continue;
      
      // DstReg is known to be a register in the LHS interval.  If the src is
      // from the RHS interval, we can use its value #.
      if (rep(ValSrcReg) != RHS.reg)
        continue;
      
      // Figure out the value # from the RHS.
      unsigned ValInst = LHS.getInstForValNum(VN);
      LHSValsDefinedFromRHS[VN] = RHS.getLiveRangeContaining(ValInst-1)->ValId;
    }
    
    // Loop over the value numbers of the RHS, seeing if any are defined from
    // the LHS.
    SmallVector<int, 16> RHSValsDefinedFromLHS;
    RHSValsDefinedFromLHS.resize(RHS.getNumValNums(), -1);
    for (unsigned VN = 0, e = RHS.getNumValNums(); VN != e; ++VN) {
      unsigned ValSrcReg = RHS.getSrcRegForValNum(VN);
      if (ValSrcReg == 0)  // Src not defined by a copy?
        continue;
      
      // DstReg is known to be a register in the RHS interval.  If the src is
      // from the LHS interval, we can use its value #.
      if (rep(ValSrcReg) != LHS.reg)
        continue;
      
      // Figure out the value # from the LHS.
      unsigned ValInst = RHS.getInstForValNum(VN);
      RHSValsDefinedFromLHS[VN] = LHS.getLiveRangeContaining(ValInst-1)->ValId;
    }
    
    LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
    RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
    ValueNumberInfo.reserve(LHS.getNumValNums() + RHS.getNumValNums());
    
    for (unsigned VN = 0, e = LHS.getNumValNums(); VN != e; ++VN) {
      if (LHSValNoAssignments[VN] >= 0 || LHS.getInstForValNum(VN) == ~2U) 
        continue;
      ComputeUltimateVN(VN, ValueNumberInfo,
                        LHSValsDefinedFromRHS, RHSValsDefinedFromLHS,
                        LHSValNoAssignments, RHSValNoAssignments, LHS, RHS);
    }
    for (unsigned VN = 0, e = RHS.getNumValNums(); VN != e; ++VN) {
      if (RHSValNoAssignments[VN] >= 0 || RHS.getInstForValNum(VN) == ~2U)
        continue;
      // If this value number isn't a copy from the LHS, it's a new number.
      if (RHSValsDefinedFromLHS[VN] == -1) {
        ValueNumberInfo.push_back(RHS.getValNumInfo(VN));
        RHSValNoAssignments[VN] = ValueNumberInfo.size()-1;
        continue;
      }
      
      ComputeUltimateVN(VN, ValueNumberInfo,
                        RHSValsDefinedFromLHS, LHSValsDefinedFromRHS,
                        RHSValNoAssignments, LHSValNoAssignments, RHS, LHS);
    }
  }
  
  // Armed with the mappings of LHS/RHS values to ultimate values, walk the
  // interval lists to see if these intervals are coallescable.
  LiveInterval::const_iterator I = LHS.begin();
  LiveInterval::const_iterator IE = LHS.end();
  LiveInterval::const_iterator J = RHS.begin();
  LiveInterval::const_iterator JE = RHS.end();
  
  // Skip ahead until the first place of potential sharing.
  if (I->start < J->start) {
    I = std::upper_bound(I, IE, J->start);
    if (I != LHS.begin()) --I;
  } else if (J->start < I->start) {
    J = std::upper_bound(J, JE, I->start);
    if (J != RHS.begin()) --J;
  }
  
  while (1) {
    // Determine if these two live ranges overlap.
    bool Overlaps;
    if (I->start < J->start) {
      Overlaps = I->end > J->start;
    } else {
      Overlaps = J->end > I->start;
    }

    // If so, check value # info to determine if they are really different.
    if (Overlaps) {
      // If the live range overlap will map to the same value number in the
      // result liverange, we can still coallesce them.  If not, we can't.
      if (LHSValNoAssignments[I->ValId] != RHSValNoAssignments[J->ValId])
        return false;
    }
    
    if (I->end < J->end) {
      ++I;
      if (I == IE) break;
    } else {
      ++J;
      if (J == JE) break;
    }
  }

  // If we get here, we know that we can coallesce the live ranges.  Ask the
  // intervals to coallesce themselves now.
  LHS.join(RHS, &LHSValNoAssignments[0], &RHSValNoAssignments[0],
           ValueNumberInfo);
  return true;
}


namespace {
  // DepthMBBCompare - Comparison predicate that sort first based on the loop
  // depth of the basic block (the unsigned), and then on the MBB number.
  struct DepthMBBCompare {
    typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair;
    bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const {
      if (LHS.first > RHS.first) return true;   // Deeper loops first
      return LHS.first == RHS.first &&
        LHS.second->getNumber() < RHS.second->getNumber();
    }
  };
}


void LiveIntervals::CopyCoallesceInMBB(MachineBasicBlock *MBB,
                                std::vector<CopyRec> *TryAgain, bool PhysOnly) {
  DOUT << ((Value*)MBB->getBasicBlock())->getName() << ":\n";
  
  for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
       MII != E;) {
    MachineInstr *Inst = MII++;
    
    // If this isn't a copy, we can't join intervals.
    unsigned SrcReg, DstReg;
    if (!tii_->isMoveInstr(*Inst, SrcReg, DstReg)) continue;
    
    if (TryAgain && !JoinCopy(Inst, SrcReg, DstReg, PhysOnly))
      TryAgain->push_back(getCopyRec(Inst, SrcReg, DstReg));
  }
}


void LiveIntervals::joinIntervals() {
  DOUT << "********** JOINING INTERVALS ***********\n";

  JoinedLIs.resize(getNumIntervals());
  JoinedLIs.reset();

  std::vector<CopyRec> TryAgainList;
  const LoopInfo &LI = getAnalysis<LoopInfo>();
  if (LI.begin() == LI.end()) {
    // If there are no loops in the function, join intervals in function order.
    for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
         I != E; ++I)
      CopyCoallesceInMBB(I, &TryAgainList);
  } else {
    // Otherwise, join intervals in inner loops before other intervals.
    // Unfortunately we can't just iterate over loop hierarchy here because
    // there may be more MBB's than BB's.  Collect MBB's for sorting.

    // Join intervals in the function prolog first. We want to join physical
    // registers with virtual registers before the intervals got too long.
    std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs;
    for (MachineFunction::iterator I = mf_->begin(), E = mf_->end(); I != E;++I)
      MBBs.push_back(std::make_pair(LI.getLoopDepth(I->getBasicBlock()), I));

    // Sort by loop depth.
    std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare());

    // Finally, join intervals in loop nest order.
    for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
      CopyCoallesceInMBB(MBBs[i].second, NULL, true);
    for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
      CopyCoallesceInMBB(MBBs[i].second, &TryAgainList, false);
  }
  
  // Joining intervals can allow other intervals to be joined.  Iteratively join
  // until we make no progress.
  bool ProgressMade = true;
  while (ProgressMade) {
    ProgressMade = false;

    for (unsigned i = 0, e = TryAgainList.size(); i != e; ++i) {
      CopyRec &TheCopy = TryAgainList[i];
      if (TheCopy.MI &&
          JoinCopy(TheCopy.MI, TheCopy.SrcReg, TheCopy.DstReg)) {
        TheCopy.MI = 0;   // Mark this one as done.
        ProgressMade = true;
      }
    }
  }

  // Some live range has been lengthened due to colaescing, eliminate the
  // unnecessary kills.
  int RegNum = JoinedLIs.find_first();
  while (RegNum != -1) {
    unsigned Reg = RegNum + MRegisterInfo::FirstVirtualRegister;
    unsigned repReg = rep(Reg);
    LiveInterval &LI = getInterval(repReg);
    LiveVariables::VarInfo& svi = lv_->getVarInfo(Reg);
    for (unsigned i = 0, e = svi.Kills.size(); i != e; ++i) {
      MachineInstr *Kill = svi.Kills[i];
      // Suppose vr1 = op vr2, x
      // and vr1 and vr2 are coalesced. vr2 should still be marked kill
      // unless it is a two-address operand.
      if (isRemoved(Kill) || hasRegisterDef(Kill, repReg))
        continue;
      if (LI.liveAt(getInstructionIndex(Kill) + InstrSlots::NUM))
        unsetRegisterKill(Kill, repReg);
    }
    RegNum = JoinedLIs.find_next(RegNum);
  }
  
  DOUT << "*** Register mapping ***\n";
  for (int i = 0, e = r2rMap_.size(); i != e; ++i)
    if (r2rMap_[i]) {
      DOUT << "  reg " << i << " -> ";
      DEBUG(printRegName(r2rMap_[i]));
      DOUT << "\n";
    }
}

/// Return true if the two specified registers belong to different register
/// classes.  The registers may be either phys or virt regs.
bool LiveIntervals::differingRegisterClasses(unsigned RegA,
                                             unsigned RegB) const {

  // Get the register classes for the first reg.
  if (MRegisterInfo::isPhysicalRegister(RegA)) {
    assert(MRegisterInfo::isVirtualRegister(RegB) &&
           "Shouldn't consider two physregs!");
    return !mf_->getSSARegMap()->getRegClass(RegB)->contains(RegA);
  }

  // Compare against the regclass for the second reg.
  const TargetRegisterClass *RegClass = mf_->getSSARegMap()->getRegClass(RegA);
  if (MRegisterInfo::isVirtualRegister(RegB))
    return RegClass != mf_->getSSARegMap()->getRegClass(RegB);
  else
    return !RegClass->contains(RegB);
}

/// lastRegisterUse - Returns the last use of the specific register between
/// cycles Start and End. It also returns the use operand by reference. It
/// returns NULL if there are no uses.
MachineInstr *
LiveIntervals::lastRegisterUse(unsigned Reg, unsigned Start, unsigned End,
                               MachineOperand *&MOU) {
  int e = (End-1) / InstrSlots::NUM * InstrSlots::NUM;
  int s = Start;
  while (e >= s) {
    // Skip deleted instructions
    MachineInstr *MI = getInstructionFromIndex(e);
    while ((e - InstrSlots::NUM) >= s && !MI) {
      e -= InstrSlots::NUM;
      MI = getInstructionFromIndex(e);
    }
    if (e < s || MI == NULL)
      return NULL;

    for (unsigned i = 0, NumOps = MI->getNumOperands(); i != NumOps; ++i) {
      MachineOperand &MO = MI->getOperand(i);
      if (MO.isReg() && MO.isUse() && MO.getReg() &&
          mri_->regsOverlap(rep(MO.getReg()), Reg)) {
        MOU = &MO;
        return MI;
      }
    }

    e -= InstrSlots::NUM;
  }

  return NULL;
}


/// findDefOperand - Returns the MachineOperand that is a def of the specific
/// register. It returns NULL if the def is not found.
MachineOperand *LiveIntervals::findDefOperand(MachineInstr *MI, unsigned Reg) {
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    MachineOperand &MO = MI->getOperand(i);
    if (MO.isReg() && MO.isDef() &&
        mri_->regsOverlap(rep(MO.getReg()), Reg))
      return &MO;
  }
  return NULL;
}

/// unsetRegisterKill - Unset IsKill property of all uses of specific register
/// of the specific instruction.
void LiveIntervals::unsetRegisterKill(MachineInstr *MI, unsigned Reg) {
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    MachineOperand &MO = MI->getOperand(i);
    if (MO.isReg() && MO.isUse() && MO.isKill() && MO.getReg() &&
        mri_->regsOverlap(rep(MO.getReg()), Reg))
      MO.unsetIsKill();
  }
}

/// hasRegisterDef - True if the instruction defines the specific register.
///
bool LiveIntervals::hasRegisterDef(MachineInstr *MI, unsigned Reg) {
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    MachineOperand &MO = MI->getOperand(i);
    if (MO.isReg() && MO.isDef() &&
        mri_->regsOverlap(rep(MO.getReg()), Reg))
      return true;
  }
  return false;
}

LiveInterval LiveIntervals::createInterval(unsigned reg) {
  float Weight = MRegisterInfo::isPhysicalRegister(reg) ?
                       HUGE_VALF : 0.0F;
  return LiveInterval(reg, Weight);
}