summaryrefslogtreecommitdiff
path: root/lib/CodeGen/MachineSSAUpdater.cpp
blob: bca3ffad583dcf2a8a8d5d5968ca40e5019b14bd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
//===- MachineSSAUpdater.cpp - Unstructured SSA Update Tool ---------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the MachineSSAUpdater class. It's based on SSAUpdater
// class in lib/Transforms/Utils.
//
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/MachineSSAUpdater.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;

typedef DenseMap<MachineBasicBlock*, unsigned> AvailableValsTy;
typedef std::vector<std::pair<MachineBasicBlock*, unsigned> >
                IncomingPredInfoTy;

static AvailableValsTy &getAvailableVals(void *AV) {
  return *static_cast<AvailableValsTy*>(AV);
}

static IncomingPredInfoTy &getIncomingPredInfo(void *IPI) {
  return *static_cast<IncomingPredInfoTy*>(IPI);
}


MachineSSAUpdater::MachineSSAUpdater(MachineFunction &MF,
                                     SmallVectorImpl<MachineInstr*> *NewPHI)
  : AV(0), IPI(0), InsertedPHIs(NewPHI) {
  TII = MF.getTarget().getInstrInfo();
  MRI = &MF.getRegInfo();
}

MachineSSAUpdater::~MachineSSAUpdater() {
  delete &getAvailableVals(AV);
  delete &getIncomingPredInfo(IPI);
}

/// Initialize - Reset this object to get ready for a new set of SSA
/// updates.  ProtoValue is the value used to name PHI nodes.
void MachineSSAUpdater::Initialize(unsigned V) {
  if (AV == 0)
    AV = new AvailableValsTy();
  else
    getAvailableVals(AV).clear();

  if (IPI == 0)
    IPI = new IncomingPredInfoTy();
  else
    getIncomingPredInfo(IPI).clear();

  VR = V;
  VRC = MRI->getRegClass(VR);
}

/// HasValueForBlock - Return true if the MachineSSAUpdater already has a value for
/// the specified block.
bool MachineSSAUpdater::HasValueForBlock(MachineBasicBlock *BB) const {
  return getAvailableVals(AV).count(BB);
}

/// AddAvailableValue - Indicate that a rewritten value is available in the
/// specified block with the specified value.
void MachineSSAUpdater::AddAvailableValue(MachineBasicBlock *BB, unsigned V) {
  getAvailableVals(AV)[BB] = V;
}

/// GetValueAtEndOfBlock - Construct SSA form, materializing a value that is
/// live at the end of the specified block.
unsigned MachineSSAUpdater::GetValueAtEndOfBlock(MachineBasicBlock *BB) {
  return GetValueAtEndOfBlockInternal(BB);
}

/// InsertNewPHI - Insert an empty PHI instruction which define a value of the
/// given register class at the start of the specified basic block. It returns
/// the virtual register defined by the PHI instruction.
static
MachineInstr *InsertNewPHI(MachineBasicBlock *BB, const TargetRegisterClass *RC,
                         MachineRegisterInfo *MRI, const TargetInstrInfo *TII) {
  unsigned NewVR = MRI->createVirtualRegister(RC);
  return BuildMI(*BB, BB->front(), BB->front().getDebugLoc(),
                 TII->get(TargetInstrInfo::PHI), NewVR);
}
                          

/// GetValueInMiddleOfBlock - Construct SSA form, materializing a value that
/// is live in the middle of the specified block.
///
/// GetValueInMiddleOfBlock is the same as GetValueAtEndOfBlock except in one
/// important case: if there is a definition of the rewritten value after the
/// 'use' in BB.  Consider code like this:
///
///      X1 = ...
///   SomeBB:
///      use(X)
///      X2 = ...
///      br Cond, SomeBB, OutBB
///
/// In this case, there are two values (X1 and X2) added to the AvailableVals
/// set by the client of the rewriter, and those values are both live out of
/// their respective blocks.  However, the use of X happens in the *middle* of
/// a block.  Because of this, we need to insert a new PHI node in SomeBB to
/// merge the appropriate values, and this value isn't live out of the block.
///
unsigned MachineSSAUpdater::GetValueInMiddleOfBlock(MachineBasicBlock *BB) {
  // If there is no definition of the renamed variable in this block, just use
  // GetValueAtEndOfBlock to do our work.
  if (!getAvailableVals(AV).count(BB))
    return GetValueAtEndOfBlock(BB);

  if (BB->pred_empty())
    llvm_unreachable("Unreachable block!");

  // Otherwise, we have the hard case.  Get the live-in values for each
  // predecessor.
  SmallVector<std::pair<MachineBasicBlock*, unsigned>, 8> PredValues;
  unsigned SingularValue = 0;

  bool isFirstPred = true;
  for (MachineBasicBlock::pred_iterator PI = BB->pred_begin(),
         E = BB->pred_end(); PI != E; ++PI) {
    MachineBasicBlock *PredBB = *PI;
    unsigned PredVal = GetValueAtEndOfBlockInternal(PredBB);
    PredValues.push_back(std::make_pair(PredBB, PredVal));

    // Compute SingularValue.
    if (isFirstPred) {
      SingularValue = PredVal;
      isFirstPred = false;
    } else if (PredVal != SingularValue)
      SingularValue = 0;
  }

  // Otherwise, if all the merged values are the same, just use it.
  if (SingularValue != 0)
    return SingularValue;

  // Otherwise, we do need a PHI: insert one now.
  MachineInstr *InsertedPHI = InsertNewPHI(BB, VRC, MRI, TII);

  // Fill in all the predecessors of the PHI.
  MachineInstrBuilder MIB(InsertedPHI);
  for (unsigned i = 0, e = PredValues.size(); i != e; ++i)
    MIB.addReg(PredValues[i].second).addMBB(PredValues[i].first);

  // See if the PHI node can be merged to a single value.  This can happen in
  // loop cases when we get a PHI of itself and one other value.
  if (unsigned ConstVal = InsertedPHI->isConstantValuePHI()) {
    InsertedPHI->eraseFromParent();
    return ConstVal;
  }

  // If the client wants to know about all new instructions, tell it.
  if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);

  DEBUG(errs() << "  Inserted PHI: " << *InsertedPHI << "\n");
  return InsertedPHI->getOperand(0).getReg();
}

static
MachineBasicBlock *findCorrespondingPred(const MachineInstr *MI,
                                         MachineOperand *U) {
  for (unsigned i = 1, e = MI->getNumOperands(); i != e; i += 2) {
    if (&MI->getOperand(i) == U)
      return MI->getOperand(i+1).getMBB();
  }

  llvm_unreachable("MachineOperand::getParent() failure?");
  return 0;
}

/// RewriteUse - Rewrite a use of the symbolic value.  This handles PHI nodes,
/// which use their value in the corresponding predecessor.
void MachineSSAUpdater::RewriteUse(MachineOperand &U) {
  MachineInstr *UseMI = U.getParent();
  unsigned NewVR = 0;
  if (UseMI->getOpcode() == TargetInstrInfo::PHI) {
    MachineBasicBlock *SourceBB = findCorrespondingPred(UseMI, &U);
    NewVR = GetValueAtEndOfBlock(SourceBB);
  } else {
    NewVR = GetValueInMiddleOfBlock(UseMI->getParent());
  }

  U.setReg(NewVR);
}

/// GetValueAtEndOfBlockInternal - Check to see if AvailableVals has an entry
/// for the specified BB and if so, return it.  If not, construct SSA form by
/// walking predecessors inserting PHI nodes as needed until we get to a block
/// where the value is available.
///
unsigned MachineSSAUpdater::GetValueAtEndOfBlockInternal(MachineBasicBlock *BB){
  AvailableValsTy &AvailableVals = getAvailableVals(AV);

  // Query AvailableVals by doing an insertion of null.
  std::pair<AvailableValsTy::iterator, bool> InsertRes =
    AvailableVals.insert(std::make_pair(BB, 0));

  // Handle the case when the insertion fails because we have already seen BB.
  if (!InsertRes.second) {
    // If the insertion failed, there are two cases.  The first case is that the
    // value is already available for the specified block.  If we get this, just
    // return the value.
    if (InsertRes.first->second != 0)
      return InsertRes.first->second;

    // Otherwise, if the value we find is null, then this is the value is not
    // known but it is being computed elsewhere in our recursion.  This means
    // that we have a cycle.  Handle this by inserting a PHI node and returning
    // it.  When we get back to the first instance of the recursion we will fill
    // in the PHI node.
    MachineInstr *NewPHI = InsertNewPHI(BB, VRC, MRI, TII);
    unsigned NewVR = NewPHI->getOperand(0).getReg();
    InsertRes.first->second = NewVR;
    return NewVR;
  }

  if (BB->pred_empty())
    llvm_unreachable("Unreachable block!");

  // Okay, the value isn't in the map and we just inserted a null in the entry
  // to indicate that we're processing the block.  Since we have no idea what
  // value is in this block, we have to recurse through our predecessors.
  //
  // While we're walking our predecessors, we keep track of them in a vector,
  // then insert a PHI node in the end if we actually need one.  We could use a
  // smallvector here, but that would take a lot of stack space for every level
  // of the recursion, just use IncomingPredInfo as an explicit stack.
  IncomingPredInfoTy &IncomingPredInfo = getIncomingPredInfo(IPI);
  unsigned FirstPredInfoEntry = IncomingPredInfo.size();

  // As we're walking the predecessors, keep track of whether they are all
  // producing the same value.  If so, this value will capture it, if not, it
  // will get reset to null.  We distinguish the no-predecessor case explicitly
  // below.
  unsigned SingularValue = 0;
  bool isFirstPred = true;
  for (MachineBasicBlock::pred_iterator PI = BB->pred_begin(),
         E = BB->pred_end(); PI != E; ++PI) {
    MachineBasicBlock *PredBB = *PI;
    unsigned PredVal = GetValueAtEndOfBlockInternal(PredBB);
    IncomingPredInfo.push_back(std::make_pair(PredBB, PredVal));

    // Compute SingularValue.
    if (isFirstPred) {
      SingularValue = PredVal;
      isFirstPred = false;
    } else if (PredVal != SingularValue)
      SingularValue = 0;
  }

  /// Look up BB's entry in AvailableVals.  'InsertRes' may be invalidated.  If
  /// this block is involved in a loop, a no-entry PHI node will have been
  /// inserted as InsertedVal.  Otherwise, we'll still have the null we inserted
  /// above.
  unsigned InsertedVal = AvailableVals[BB];

  // If all the predecessor values are the same then we don't need to insert a
  // PHI.  This is the simple and common case.
  if (SingularValue) {
    // If a PHI node got inserted, replace it with the singlar value and delete
    // it.
    if (InsertedVal) {
      MachineInstr *OldVal = MRI->getVRegDef(InsertedVal);
      // Be careful about dead loops.  These RAUW's also update InsertedVal.
      assert(InsertedVal != SingularValue && "Dead loop?");
      MRI->replaceRegWith(InsertedVal, SingularValue);
      OldVal->eraseFromParent();
    } else {
      InsertedVal = SingularValue;
    }

    // Drop the entries we added in IncomingPredInfo to restore the stack.
    IncomingPredInfo.erase(IncomingPredInfo.begin()+FirstPredInfoEntry,
                           IncomingPredInfo.end());
    return InsertedVal;
  }


  // Otherwise, we do need a PHI: insert one now if we don't already have one.
  MachineInstr *InsertedPHI;
  if (InsertedVal == 0) {
    InsertedPHI = InsertNewPHI(BB, VRC, MRI, TII);
    InsertedVal = InsertedPHI->getOperand(0).getReg();
  } else {
    InsertedPHI = MRI->getVRegDef(InsertedVal);
  }

  // Fill in all the predecessors of the PHI.
  MachineInstrBuilder MIB(InsertedPHI);
  for (IncomingPredInfoTy::iterator I =
         IncomingPredInfo.begin()+FirstPredInfoEntry,
         E = IncomingPredInfo.end(); I != E; ++I)
    MIB.addReg(I->second).addMBB(I->first);

  // Drop the entries we added in IncomingPredInfo to restore the stack.
  IncomingPredInfo.erase(IncomingPredInfo.begin()+FirstPredInfoEntry,
                         IncomingPredInfo.end());

  // See if the PHI node can be merged to a single value.  This can happen in
  // loop cases when we get a PHI of itself and one other value.
  if (unsigned ConstVal = InsertedPHI->isConstantValuePHI()) {
    MRI->replaceRegWith(InsertedVal, ConstVal);
    InsertedPHI->eraseFromParent();
    InsertedVal = ConstVal;
  } else {
    DEBUG(errs() << "  Inserted PHI: " << *InsertedPHI << "\n");

    // If the client wants to know about all new instructions, tell it.
    if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
  }

  return InsertedVal;

}