summaryrefslogtreecommitdiff
path: root/lib/CodeGen/MachineTraceMetrics.cpp
blob: 1bbf0ade6a5805fb09b2a303379968471966599f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
//===- lib/CodeGen/MachineTraceMetrics.cpp ----------------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/MachineTraceMetrics.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SparseSet.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetSubtargetInfo.h"

using namespace llvm;

#define DEBUG_TYPE "machine-trace-metrics"

char MachineTraceMetrics::ID = 0;
char &llvm::MachineTraceMetricsID = MachineTraceMetrics::ID;

INITIALIZE_PASS_BEGIN(MachineTraceMetrics,
                  "machine-trace-metrics", "Machine Trace Metrics", false, true)
INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
INITIALIZE_PASS_END(MachineTraceMetrics,
                  "machine-trace-metrics", "Machine Trace Metrics", false, true)

MachineTraceMetrics::MachineTraceMetrics()
  : MachineFunctionPass(ID), MF(nullptr), TII(nullptr), TRI(nullptr),
    MRI(nullptr), Loops(nullptr) {
  std::fill(std::begin(Ensembles), std::end(Ensembles), nullptr);
}

void MachineTraceMetrics::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesAll();
  AU.addRequired<MachineBranchProbabilityInfo>();
  AU.addRequired<MachineLoopInfo>();
  MachineFunctionPass::getAnalysisUsage(AU);
}

bool MachineTraceMetrics::runOnMachineFunction(MachineFunction &Func) {
  MF = &Func;
  TII = MF->getTarget().getInstrInfo();
  TRI = MF->getTarget().getRegisterInfo();
  MRI = &MF->getRegInfo();
  Loops = &getAnalysis<MachineLoopInfo>();
  const TargetSubtargetInfo &ST =
    MF->getTarget().getSubtarget<TargetSubtargetInfo>();
  SchedModel.init(*ST.getSchedModel(), &ST, TII);
  BlockInfo.resize(MF->getNumBlockIDs());
  ProcResourceCycles.resize(MF->getNumBlockIDs() *
                            SchedModel.getNumProcResourceKinds());
  return false;
}

void MachineTraceMetrics::releaseMemory() {
  MF = nullptr;
  BlockInfo.clear();
  for (unsigned i = 0; i != TS_NumStrategies; ++i) {
    delete Ensembles[i];
    Ensembles[i] = nullptr;
  }
}

//===----------------------------------------------------------------------===//
//                          Fixed block information
//===----------------------------------------------------------------------===//
//
// The number of instructions in a basic block and the CPU resources used by
// those instructions don't depend on any given trace strategy.

/// Compute the resource usage in basic block MBB.
const MachineTraceMetrics::FixedBlockInfo*
MachineTraceMetrics::getResources(const MachineBasicBlock *MBB) {
  assert(MBB && "No basic block");
  FixedBlockInfo *FBI = &BlockInfo[MBB->getNumber()];
  if (FBI->hasResources())
    return FBI;

  // Compute resource usage in the block.
  FBI->HasCalls = false;
  unsigned InstrCount = 0;

  // Add up per-processor resource cycles as well.
  unsigned PRKinds = SchedModel.getNumProcResourceKinds();
  SmallVector<unsigned, 32> PRCycles(PRKinds);

  for (const auto &MI : *MBB) {
    if (MI.isTransient())
      continue;
    ++InstrCount;
    if (MI.isCall())
      FBI->HasCalls = true;

    // Count processor resources used.
    if (!SchedModel.hasInstrSchedModel())
      continue;
    const MCSchedClassDesc *SC = SchedModel.resolveSchedClass(&MI);
    if (!SC->isValid())
      continue;

    for (TargetSchedModel::ProcResIter
         PI = SchedModel.getWriteProcResBegin(SC),
         PE = SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) {
      assert(PI->ProcResourceIdx < PRKinds && "Bad processor resource kind");
      PRCycles[PI->ProcResourceIdx] += PI->Cycles;
    }
  }
  FBI->InstrCount = InstrCount;

  // Scale the resource cycles so they are comparable.
  unsigned PROffset = MBB->getNumber() * PRKinds;
  for (unsigned K = 0; K != PRKinds; ++K)
    ProcResourceCycles[PROffset + K] =
      PRCycles[K] * SchedModel.getResourceFactor(K);

  return FBI;
}

ArrayRef<unsigned>
MachineTraceMetrics::getProcResourceCycles(unsigned MBBNum) const {
  assert(BlockInfo[MBBNum].hasResources() &&
         "getResources() must be called before getProcResourceCycles()");
  unsigned PRKinds = SchedModel.getNumProcResourceKinds();
  assert((MBBNum+1) * PRKinds <= ProcResourceCycles.size());
  return ArrayRef<unsigned>(ProcResourceCycles.data() + MBBNum * PRKinds,
                            PRKinds);
}


//===----------------------------------------------------------------------===//
//                         Ensemble utility functions
//===----------------------------------------------------------------------===//

MachineTraceMetrics::Ensemble::Ensemble(MachineTraceMetrics *ct)
  : MTM(*ct) {
  BlockInfo.resize(MTM.BlockInfo.size());
  unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds();
  ProcResourceDepths.resize(MTM.BlockInfo.size() * PRKinds);
  ProcResourceHeights.resize(MTM.BlockInfo.size() * PRKinds);
}

// Virtual destructor serves as an anchor.
MachineTraceMetrics::Ensemble::~Ensemble() {}

const MachineLoop*
MachineTraceMetrics::Ensemble::getLoopFor(const MachineBasicBlock *MBB) const {
  return MTM.Loops->getLoopFor(MBB);
}

// Update resource-related information in the TraceBlockInfo for MBB.
// Only update resources related to the trace above MBB.
void MachineTraceMetrics::Ensemble::
computeDepthResources(const MachineBasicBlock *MBB) {
  TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()];
  unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds();
  unsigned PROffset = MBB->getNumber() * PRKinds;

  // Compute resources from trace above. The top block is simple.
  if (!TBI->Pred) {
    TBI->InstrDepth = 0;
    TBI->Head = MBB->getNumber();
    std::fill(ProcResourceDepths.begin() + PROffset,
              ProcResourceDepths.begin() + PROffset + PRKinds, 0);
    return;
  }

  // Compute from the block above. A post-order traversal ensures the
  // predecessor is always computed first.
  unsigned PredNum = TBI->Pred->getNumber();
  TraceBlockInfo *PredTBI = &BlockInfo[PredNum];
  assert(PredTBI->hasValidDepth() && "Trace above has not been computed yet");
  const FixedBlockInfo *PredFBI = MTM.getResources(TBI->Pred);
  TBI->InstrDepth = PredTBI->InstrDepth + PredFBI->InstrCount;
  TBI->Head = PredTBI->Head;

  // Compute per-resource depths.
  ArrayRef<unsigned> PredPRDepths = getProcResourceDepths(PredNum);
  ArrayRef<unsigned> PredPRCycles = MTM.getProcResourceCycles(PredNum);
  for (unsigned K = 0; K != PRKinds; ++K)
    ProcResourceDepths[PROffset + K] = PredPRDepths[K] + PredPRCycles[K];
}

// Update resource-related information in the TraceBlockInfo for MBB.
// Only update resources related to the trace below MBB.
void MachineTraceMetrics::Ensemble::
computeHeightResources(const MachineBasicBlock *MBB) {
  TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()];
  unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds();
  unsigned PROffset = MBB->getNumber() * PRKinds;

  // Compute resources for the current block.
  TBI->InstrHeight = MTM.getResources(MBB)->InstrCount;
  ArrayRef<unsigned> PRCycles = MTM.getProcResourceCycles(MBB->getNumber());

  // The trace tail is done.
  if (!TBI->Succ) {
    TBI->Tail = MBB->getNumber();
    std::copy(PRCycles.begin(), PRCycles.end(),
              ProcResourceHeights.begin() + PROffset);
    return;
  }

  // Compute from the block below. A post-order traversal ensures the
  // predecessor is always computed first.
  unsigned SuccNum = TBI->Succ->getNumber();
  TraceBlockInfo *SuccTBI = &BlockInfo[SuccNum];
  assert(SuccTBI->hasValidHeight() && "Trace below has not been computed yet");
  TBI->InstrHeight += SuccTBI->InstrHeight;
  TBI->Tail = SuccTBI->Tail;

  // Compute per-resource heights.
  ArrayRef<unsigned> SuccPRHeights = getProcResourceHeights(SuccNum);
  for (unsigned K = 0; K != PRKinds; ++K)
    ProcResourceHeights[PROffset + K] = SuccPRHeights[K] + PRCycles[K];
}

// Check if depth resources for MBB are valid and return the TBI.
// Return NULL if the resources have been invalidated.
const MachineTraceMetrics::TraceBlockInfo*
MachineTraceMetrics::Ensemble::
getDepthResources(const MachineBasicBlock *MBB) const {
  const TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()];
  return TBI->hasValidDepth() ? TBI : nullptr;
}

// Check if height resources for MBB are valid and return the TBI.
// Return NULL if the resources have been invalidated.
const MachineTraceMetrics::TraceBlockInfo*
MachineTraceMetrics::Ensemble::
getHeightResources(const MachineBasicBlock *MBB) const {
  const TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()];
  return TBI->hasValidHeight() ? TBI : nullptr;
}

/// Get an array of processor resource depths for MBB. Indexed by processor
/// resource kind, this array contains the scaled processor resources consumed
/// by all blocks preceding MBB in its trace. It does not include instructions
/// in MBB.
///
/// Compare TraceBlockInfo::InstrDepth.
ArrayRef<unsigned>
MachineTraceMetrics::Ensemble::
getProcResourceDepths(unsigned MBBNum) const {
  unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds();
  assert((MBBNum+1) * PRKinds <= ProcResourceDepths.size());
  return ArrayRef<unsigned>(ProcResourceDepths.data() + MBBNum * PRKinds,
                            PRKinds);
}

/// Get an array of processor resource heights for MBB. Indexed by processor
/// resource kind, this array contains the scaled processor resources consumed
/// by this block and all blocks following it in its trace.
///
/// Compare TraceBlockInfo::InstrHeight.
ArrayRef<unsigned>
MachineTraceMetrics::Ensemble::
getProcResourceHeights(unsigned MBBNum) const {
  unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds();
  assert((MBBNum+1) * PRKinds <= ProcResourceHeights.size());
  return ArrayRef<unsigned>(ProcResourceHeights.data() + MBBNum * PRKinds,
                            PRKinds);
}

//===----------------------------------------------------------------------===//
//                         Trace Selection Strategies
//===----------------------------------------------------------------------===//
//
// A trace selection strategy is implemented as a sub-class of Ensemble. The
// trace through a block B is computed by two DFS traversals of the CFG
// starting from B. One upwards, and one downwards. During the upwards DFS,
// pickTracePred() is called on the post-ordered blocks. During the downwards
// DFS, pickTraceSucc() is called in a post-order.
//

// We never allow traces that leave loops, but we do allow traces to enter
// nested loops. We also never allow traces to contain back-edges.
//
// This means that a loop header can never appear above the center block of a
// trace, except as the trace head. Below the center block, loop exiting edges
// are banned.
//
// Return true if an edge from the From loop to the To loop is leaving a loop.
// Either of To and From can be null.
static bool isExitingLoop(const MachineLoop *From, const MachineLoop *To) {
  return From && !From->contains(To);
}

// MinInstrCountEnsemble - Pick the trace that executes the least number of
// instructions.
namespace {
class MinInstrCountEnsemble : public MachineTraceMetrics::Ensemble {
  const char *getName() const override { return "MinInstr"; }
  const MachineBasicBlock *pickTracePred(const MachineBasicBlock*) override;
  const MachineBasicBlock *pickTraceSucc(const MachineBasicBlock*) override;

public:
  MinInstrCountEnsemble(MachineTraceMetrics *mtm)
    : MachineTraceMetrics::Ensemble(mtm) {}
};
}

// Select the preferred predecessor for MBB.
const MachineBasicBlock*
MinInstrCountEnsemble::pickTracePred(const MachineBasicBlock *MBB) {
  if (MBB->pred_empty())
    return nullptr;
  const MachineLoop *CurLoop = getLoopFor(MBB);
  // Don't leave loops, and never follow back-edges.
  if (CurLoop && MBB == CurLoop->getHeader())
    return nullptr;
  unsigned CurCount = MTM.getResources(MBB)->InstrCount;
  const MachineBasicBlock *Best = nullptr;
  unsigned BestDepth = 0;
  for (MachineBasicBlock::const_pred_iterator
       I = MBB->pred_begin(), E = MBB->pred_end(); I != E; ++I) {
    const MachineBasicBlock *Pred = *I;
    const MachineTraceMetrics::TraceBlockInfo *PredTBI =
      getDepthResources(Pred);
    // Ignore cycles that aren't natural loops.
    if (!PredTBI)
      continue;
    // Pick the predecessor that would give this block the smallest InstrDepth.
    unsigned Depth = PredTBI->InstrDepth + CurCount;
    if (!Best || Depth < BestDepth)
      Best = Pred, BestDepth = Depth;
  }
  return Best;
}

// Select the preferred successor for MBB.
const MachineBasicBlock*
MinInstrCountEnsemble::pickTraceSucc(const MachineBasicBlock *MBB) {
  if (MBB->pred_empty())
    return nullptr;
  const MachineLoop *CurLoop = getLoopFor(MBB);
  const MachineBasicBlock *Best = nullptr;
  unsigned BestHeight = 0;
  for (MachineBasicBlock::const_succ_iterator
       I = MBB->succ_begin(), E = MBB->succ_end(); I != E; ++I) {
    const MachineBasicBlock *Succ = *I;
    // Don't consider back-edges.
    if (CurLoop && Succ == CurLoop->getHeader())
      continue;
    // Don't consider successors exiting CurLoop.
    if (isExitingLoop(CurLoop, getLoopFor(Succ)))
      continue;
    const MachineTraceMetrics::TraceBlockInfo *SuccTBI =
      getHeightResources(Succ);
    // Ignore cycles that aren't natural loops.
    if (!SuccTBI)
      continue;
    // Pick the successor that would give this block the smallest InstrHeight.
    unsigned Height = SuccTBI->InstrHeight;
    if (!Best || Height < BestHeight)
      Best = Succ, BestHeight = Height;
  }
  return Best;
}

// Get an Ensemble sub-class for the requested trace strategy.
MachineTraceMetrics::Ensemble *
MachineTraceMetrics::getEnsemble(MachineTraceMetrics::Strategy strategy) {
  assert(strategy < TS_NumStrategies && "Invalid trace strategy enum");
  Ensemble *&E = Ensembles[strategy];
  if (E)
    return E;

  // Allocate new Ensemble on demand.
  switch (strategy) {
  case TS_MinInstrCount: return (E = new MinInstrCountEnsemble(this));
  default: llvm_unreachable("Invalid trace strategy enum");
  }
}

void MachineTraceMetrics::invalidate(const MachineBasicBlock *MBB) {
  DEBUG(dbgs() << "Invalidate traces through BB#" << MBB->getNumber() << '\n');
  BlockInfo[MBB->getNumber()].invalidate();
  for (unsigned i = 0; i != TS_NumStrategies; ++i)
    if (Ensembles[i])
      Ensembles[i]->invalidate(MBB);
}

void MachineTraceMetrics::verifyAnalysis() const {
  if (!MF)
    return;
#ifndef NDEBUG
  assert(BlockInfo.size() == MF->getNumBlockIDs() && "Outdated BlockInfo size");
  for (unsigned i = 0; i != TS_NumStrategies; ++i)
    if (Ensembles[i])
      Ensembles[i]->verify();
#endif
}

//===----------------------------------------------------------------------===//
//                               Trace building
//===----------------------------------------------------------------------===//
//
// Traces are built by two CFG traversals. To avoid recomputing too much, use a
// set abstraction that confines the search to the current loop, and doesn't
// revisit blocks.

namespace {
struct LoopBounds {
  MutableArrayRef<MachineTraceMetrics::TraceBlockInfo> Blocks;
  SmallPtrSet<const MachineBasicBlock*, 8> Visited;
  const MachineLoopInfo *Loops;
  bool Downward;
  LoopBounds(MutableArrayRef<MachineTraceMetrics::TraceBlockInfo> blocks,
             const MachineLoopInfo *loops)
    : Blocks(blocks), Loops(loops), Downward(false) {}
};
}

// Specialize po_iterator_storage in order to prune the post-order traversal so
// it is limited to the current loop and doesn't traverse the loop back edges.
namespace llvm {
template<>
class po_iterator_storage<LoopBounds, true> {
  LoopBounds &LB;
public:
  po_iterator_storage(LoopBounds &lb) : LB(lb) {}
  void finishPostorder(const MachineBasicBlock*) {}

  bool insertEdge(const MachineBasicBlock *From, const MachineBasicBlock *To) {
    // Skip already visited To blocks.
    MachineTraceMetrics::TraceBlockInfo &TBI = LB.Blocks[To->getNumber()];
    if (LB.Downward ? TBI.hasValidHeight() : TBI.hasValidDepth())
      return false;
    // From is null once when To is the trace center block.
    if (From) {
      if (const MachineLoop *FromLoop = LB.Loops->getLoopFor(From)) {
        // Don't follow backedges, don't leave FromLoop when going upwards.
        if ((LB.Downward ? To : From) == FromLoop->getHeader())
          return false;
        // Don't leave FromLoop.
        if (isExitingLoop(FromLoop, LB.Loops->getLoopFor(To)))
          return false;
      }
    }
    // To is a new block. Mark the block as visited in case the CFG has cycles
    // that MachineLoopInfo didn't recognize as a natural loop.
    return LB.Visited.insert(To);
  }
};
}

/// Compute the trace through MBB.
void MachineTraceMetrics::Ensemble::computeTrace(const MachineBasicBlock *MBB) {
  DEBUG(dbgs() << "Computing " << getName() << " trace through BB#"
               << MBB->getNumber() << '\n');
  // Set up loop bounds for the backwards post-order traversal.
  LoopBounds Bounds(BlockInfo, MTM.Loops);

  // Run an upwards post-order search for the trace start.
  Bounds.Downward = false;
  Bounds.Visited.clear();
  typedef ipo_ext_iterator<const MachineBasicBlock*, LoopBounds> UpwardPO;
  for (UpwardPO I = ipo_ext_begin(MBB, Bounds), E = ipo_ext_end(MBB, Bounds);
       I != E; ++I) {
    DEBUG(dbgs() << "  pred for BB#" << I->getNumber() << ": ");
    TraceBlockInfo &TBI = BlockInfo[I->getNumber()];
    // All the predecessors have been visited, pick the preferred one.
    TBI.Pred = pickTracePred(*I);
    DEBUG({
      if (TBI.Pred)
        dbgs() << "BB#" << TBI.Pred->getNumber() << '\n';
      else
        dbgs() << "null\n";
    });
    // The trace leading to I is now known, compute the depth resources.
    computeDepthResources(*I);
  }

  // Run a downwards post-order search for the trace end.
  Bounds.Downward = true;
  Bounds.Visited.clear();
  typedef po_ext_iterator<const MachineBasicBlock*, LoopBounds> DownwardPO;
  for (DownwardPO I = po_ext_begin(MBB, Bounds), E = po_ext_end(MBB, Bounds);
       I != E; ++I) {
    DEBUG(dbgs() << "  succ for BB#" << I->getNumber() << ": ");
    TraceBlockInfo &TBI = BlockInfo[I->getNumber()];
    // All the successors have been visited, pick the preferred one.
    TBI.Succ = pickTraceSucc(*I);
    DEBUG({
      if (TBI.Succ)
        dbgs() << "BB#" << TBI.Succ->getNumber() << '\n';
      else
        dbgs() << "null\n";
    });
    // The trace leaving I is now known, compute the height resources.
    computeHeightResources(*I);
  }
}

/// Invalidate traces through BadMBB.
void
MachineTraceMetrics::Ensemble::invalidate(const MachineBasicBlock *BadMBB) {
  SmallVector<const MachineBasicBlock*, 16> WorkList;
  TraceBlockInfo &BadTBI = BlockInfo[BadMBB->getNumber()];

  // Invalidate height resources of blocks above MBB.
  if (BadTBI.hasValidHeight()) {
    BadTBI.invalidateHeight();
    WorkList.push_back(BadMBB);
    do {
      const MachineBasicBlock *MBB = WorkList.pop_back_val();
      DEBUG(dbgs() << "Invalidate BB#" << MBB->getNumber() << ' ' << getName()
            << " height.\n");
      // Find any MBB predecessors that have MBB as their preferred successor.
      // They are the only ones that need to be invalidated.
      for (MachineBasicBlock::const_pred_iterator
           I = MBB->pred_begin(), E = MBB->pred_end(); I != E; ++I) {
        TraceBlockInfo &TBI = BlockInfo[(*I)->getNumber()];
        if (!TBI.hasValidHeight())
          continue;
        if (TBI.Succ == MBB) {
          TBI.invalidateHeight();
          WorkList.push_back(*I);
          continue;
        }
        // Verify that TBI.Succ is actually a *I successor.
        assert((!TBI.Succ || (*I)->isSuccessor(TBI.Succ)) && "CFG changed");
      }
    } while (!WorkList.empty());
  }

  // Invalidate depth resources of blocks below MBB.
  if (BadTBI.hasValidDepth()) {
    BadTBI.invalidateDepth();
    WorkList.push_back(BadMBB);
    do {
      const MachineBasicBlock *MBB = WorkList.pop_back_val();
      DEBUG(dbgs() << "Invalidate BB#" << MBB->getNumber() << ' ' << getName()
            << " depth.\n");
      // Find any MBB successors that have MBB as their preferred predecessor.
      // They are the only ones that need to be invalidated.
      for (MachineBasicBlock::const_succ_iterator
           I = MBB->succ_begin(), E = MBB->succ_end(); I != E; ++I) {
        TraceBlockInfo &TBI = BlockInfo[(*I)->getNumber()];
        if (!TBI.hasValidDepth())
          continue;
        if (TBI.Pred == MBB) {
          TBI.invalidateDepth();
          WorkList.push_back(*I);
          continue;
        }
        // Verify that TBI.Pred is actually a *I predecessor.
        assert((!TBI.Pred || (*I)->isPredecessor(TBI.Pred)) && "CFG changed");
      }
    } while (!WorkList.empty());
  }

  // Clear any per-instruction data. We only have to do this for BadMBB itself
  // because the instructions in that block may change. Other blocks may be
  // invalidated, but their instructions will stay the same, so there is no
  // need to erase the Cycle entries. They will be overwritten when we
  // recompute.
  for (const auto &I : *BadMBB)
    Cycles.erase(&I);
}

void MachineTraceMetrics::Ensemble::verify() const {
#ifndef NDEBUG
  assert(BlockInfo.size() == MTM.MF->getNumBlockIDs() &&
         "Outdated BlockInfo size");
  for (unsigned Num = 0, e = BlockInfo.size(); Num != e; ++Num) {
    const TraceBlockInfo &TBI = BlockInfo[Num];
    if (TBI.hasValidDepth() && TBI.Pred) {
      const MachineBasicBlock *MBB = MTM.MF->getBlockNumbered(Num);
      assert(MBB->isPredecessor(TBI.Pred) && "CFG doesn't match trace");
      assert(BlockInfo[TBI.Pred->getNumber()].hasValidDepth() &&
             "Trace is broken, depth should have been invalidated.");
      const MachineLoop *Loop = getLoopFor(MBB);
      assert(!(Loop && MBB == Loop->getHeader()) && "Trace contains backedge");
    }
    if (TBI.hasValidHeight() && TBI.Succ) {
      const MachineBasicBlock *MBB = MTM.MF->getBlockNumbered(Num);
      assert(MBB->isSuccessor(TBI.Succ) && "CFG doesn't match trace");
      assert(BlockInfo[TBI.Succ->getNumber()].hasValidHeight() &&
             "Trace is broken, height should have been invalidated.");
      const MachineLoop *Loop = getLoopFor(MBB);
      const MachineLoop *SuccLoop = getLoopFor(TBI.Succ);
      assert(!(Loop && Loop == SuccLoop && TBI.Succ == Loop->getHeader()) &&
             "Trace contains backedge");
    }
  }
#endif
}

//===----------------------------------------------------------------------===//
//                             Data Dependencies
//===----------------------------------------------------------------------===//
//
// Compute the depth and height of each instruction based on data dependencies
// and instruction latencies. These cycle numbers assume that the CPU can issue
// an infinite number of instructions per cycle as long as their dependencies
// are ready.

// A data dependency is represented as a defining MI and operand numbers on the
// defining and using MI.
namespace {
struct DataDep {
  const MachineInstr *DefMI;
  unsigned DefOp;
  unsigned UseOp;

  DataDep(const MachineInstr *DefMI, unsigned DefOp, unsigned UseOp)
    : DefMI(DefMI), DefOp(DefOp), UseOp(UseOp) {}

  /// Create a DataDep from an SSA form virtual register.
  DataDep(const MachineRegisterInfo *MRI, unsigned VirtReg, unsigned UseOp)
    : UseOp(UseOp) {
    assert(TargetRegisterInfo::isVirtualRegister(VirtReg));
    MachineRegisterInfo::def_iterator DefI = MRI->def_begin(VirtReg);
    assert(!DefI.atEnd() && "Register has no defs");
    DefMI = DefI->getParent();
    DefOp = DefI.getOperandNo();
    assert((++DefI).atEnd() && "Register has multiple defs");
  }
};
}

// Get the input data dependencies that must be ready before UseMI can issue.
// Return true if UseMI has any physreg operands.
static bool getDataDeps(const MachineInstr *UseMI,
                        SmallVectorImpl<DataDep> &Deps,
                        const MachineRegisterInfo *MRI) {
  bool HasPhysRegs = false;
  for (ConstMIOperands MO(UseMI); MO.isValid(); ++MO) {
    if (!MO->isReg())
      continue;
    unsigned Reg = MO->getReg();
    if (!Reg)
      continue;
    if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
      HasPhysRegs = true;
      continue;
    }
    // Collect virtual register reads.
    if (MO->readsReg())
      Deps.push_back(DataDep(MRI, Reg, MO.getOperandNo()));
  }
  return HasPhysRegs;
}

// Get the input data dependencies of a PHI instruction, using Pred as the
// preferred predecessor.
// This will add at most one dependency to Deps.
static void getPHIDeps(const MachineInstr *UseMI,
                       SmallVectorImpl<DataDep> &Deps,
                       const MachineBasicBlock *Pred,
                       const MachineRegisterInfo *MRI) {
  // No predecessor at the beginning of a trace. Ignore dependencies.
  if (!Pred)
    return;
  assert(UseMI->isPHI() && UseMI->getNumOperands() % 2 && "Bad PHI");
  for (unsigned i = 1; i != UseMI->getNumOperands(); i += 2) {
    if (UseMI->getOperand(i + 1).getMBB() == Pred) {
      unsigned Reg = UseMI->getOperand(i).getReg();
      Deps.push_back(DataDep(MRI, Reg, i));
      return;
    }
  }
}

// Keep track of physreg data dependencies by recording each live register unit.
// Associate each regunit with an instruction operand. Depending on the
// direction instructions are scanned, it could be the operand that defined the
// regunit, or the highest operand to read the regunit.
namespace {
struct LiveRegUnit {
  unsigned RegUnit;
  unsigned Cycle;
  const MachineInstr *MI;
  unsigned Op;

  unsigned getSparseSetIndex() const { return RegUnit; }

  LiveRegUnit(unsigned RU) : RegUnit(RU), Cycle(0), MI(nullptr), Op(0) {}
};
}

// Identify physreg dependencies for UseMI, and update the live regunit
// tracking set when scanning instructions downwards.
static void updatePhysDepsDownwards(const MachineInstr *UseMI,
                                    SmallVectorImpl<DataDep> &Deps,
                                    SparseSet<LiveRegUnit> &RegUnits,
                                    const TargetRegisterInfo *TRI) {
  SmallVector<unsigned, 8> Kills;
  SmallVector<unsigned, 8> LiveDefOps;

  for (ConstMIOperands MO(UseMI); MO.isValid(); ++MO) {
    if (!MO->isReg())
      continue;
    unsigned Reg = MO->getReg();
    if (!TargetRegisterInfo::isPhysicalRegister(Reg))
      continue;
    // Track live defs and kills for updating RegUnits.
    if (MO->isDef()) {
      if (MO->isDead())
        Kills.push_back(Reg);
      else
        LiveDefOps.push_back(MO.getOperandNo());
    } else if (MO->isKill())
      Kills.push_back(Reg);
    // Identify dependencies.
    if (!MO->readsReg())
      continue;
    for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
      SparseSet<LiveRegUnit>::iterator I = RegUnits.find(*Units);
      if (I == RegUnits.end())
        continue;
      Deps.push_back(DataDep(I->MI, I->Op, MO.getOperandNo()));
      break;
    }
  }

  // Update RegUnits to reflect live registers after UseMI.
  // First kills.
  for (unsigned i = 0, e = Kills.size(); i != e; ++i)
    for (MCRegUnitIterator Units(Kills[i], TRI); Units.isValid(); ++Units)
      RegUnits.erase(*Units);

  // Second, live defs.
  for (unsigned i = 0, e = LiveDefOps.size(); i != e; ++i) {
    unsigned DefOp = LiveDefOps[i];
    for (MCRegUnitIterator Units(UseMI->getOperand(DefOp).getReg(), TRI);
         Units.isValid(); ++Units) {
      LiveRegUnit &LRU = RegUnits[*Units];
      LRU.MI = UseMI;
      LRU.Op = DefOp;
    }
  }
}

/// The length of the critical path through a trace is the maximum of two path
/// lengths:
///
/// 1. The maximum height+depth over all instructions in the trace center block.
///
/// 2. The longest cross-block dependency chain. For small blocks, it is
///    possible that the critical path through the trace doesn't include any
///    instructions in the block.
///
/// This function computes the second number from the live-in list of the
/// center block.
unsigned MachineTraceMetrics::Ensemble::
computeCrossBlockCriticalPath(const TraceBlockInfo &TBI) {
  assert(TBI.HasValidInstrDepths && "Missing depth info");
  assert(TBI.HasValidInstrHeights && "Missing height info");
  unsigned MaxLen = 0;
  for (unsigned i = 0, e = TBI.LiveIns.size(); i != e; ++i) {
    const LiveInReg &LIR = TBI.LiveIns[i];
    if (!TargetRegisterInfo::isVirtualRegister(LIR.Reg))
      continue;
    const MachineInstr *DefMI = MTM.MRI->getVRegDef(LIR.Reg);
    // Ignore dependencies outside the current trace.
    const TraceBlockInfo &DefTBI = BlockInfo[DefMI->getParent()->getNumber()];
    if (!DefTBI.isUsefulDominator(TBI))
      continue;
    unsigned Len = LIR.Height + Cycles[DefMI].Depth;
    MaxLen = std::max(MaxLen, Len);
  }
  return MaxLen;
}

/// Compute instruction depths for all instructions above or in MBB in its
/// trace. This assumes that the trace through MBB has already been computed.
void MachineTraceMetrics::Ensemble::
computeInstrDepths(const MachineBasicBlock *MBB) {
  // The top of the trace may already be computed, and HasValidInstrDepths
  // implies Head->HasValidInstrDepths, so we only need to start from the first
  // block in the trace that needs to be recomputed.
  SmallVector<const MachineBasicBlock*, 8> Stack;
  do {
    TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
    assert(TBI.hasValidDepth() && "Incomplete trace");
    if (TBI.HasValidInstrDepths)
      break;
    Stack.push_back(MBB);
    MBB = TBI.Pred;
  } while (MBB);

  // FIXME: If MBB is non-null at this point, it is the last pre-computed block
  // in the trace. We should track any live-out physregs that were defined in
  // the trace. This is quite rare in SSA form, typically created by CSE
  // hoisting a compare.
  SparseSet<LiveRegUnit> RegUnits;
  RegUnits.setUniverse(MTM.TRI->getNumRegUnits());

  // Go through trace blocks in top-down order, stopping after the center block.
  SmallVector<DataDep, 8> Deps;
  while (!Stack.empty()) {
    MBB = Stack.pop_back_val();
    DEBUG(dbgs() << "\nDepths for BB#" << MBB->getNumber() << ":\n");
    TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
    TBI.HasValidInstrDepths = true;
    TBI.CriticalPath = 0;

    // Print out resource depths here as well.
    DEBUG({
      dbgs() << format("%7u Instructions\n", TBI.InstrDepth);
      ArrayRef<unsigned> PRDepths = getProcResourceDepths(MBB->getNumber());
      for (unsigned K = 0; K != PRDepths.size(); ++K)
        if (PRDepths[K]) {
          unsigned Factor = MTM.SchedModel.getResourceFactor(K);
          dbgs() << format("%6uc @ ", MTM.getCycles(PRDepths[K]))
                 << MTM.SchedModel.getProcResource(K)->Name << " ("
                 << PRDepths[K]/Factor << " ops x" << Factor << ")\n";
        }
    });

    // Also compute the critical path length through MBB when possible.
    if (TBI.HasValidInstrHeights)
      TBI.CriticalPath = computeCrossBlockCriticalPath(TBI);

    for (const auto &UseMI : *MBB) {
      // Collect all data dependencies.
      Deps.clear();
      if (UseMI.isPHI())
        getPHIDeps(&UseMI, Deps, TBI.Pred, MTM.MRI);
      else if (getDataDeps(&UseMI, Deps, MTM.MRI))
        updatePhysDepsDownwards(&UseMI, Deps, RegUnits, MTM.TRI);

      // Filter and process dependencies, computing the earliest issue cycle.
      unsigned Cycle = 0;
      for (unsigned i = 0, e = Deps.size(); i != e; ++i) {
        const DataDep &Dep = Deps[i];
        const TraceBlockInfo&DepTBI =
          BlockInfo[Dep.DefMI->getParent()->getNumber()];
        // Ignore dependencies from outside the current trace.
        if (!DepTBI.isUsefulDominator(TBI))
          continue;
        assert(DepTBI.HasValidInstrDepths && "Inconsistent dependency");
        unsigned DepCycle = Cycles.lookup(Dep.DefMI).Depth;
        // Add latency if DefMI is a real instruction. Transients get latency 0.
        if (!Dep.DefMI->isTransient())
          DepCycle += MTM.SchedModel
            .computeOperandLatency(Dep.DefMI, Dep.DefOp, &UseMI, Dep.UseOp);
        Cycle = std::max(Cycle, DepCycle);
      }
      // Remember the instruction depth.
      InstrCycles &MICycles = Cycles[&UseMI];
      MICycles.Depth = Cycle;

      if (!TBI.HasValidInstrHeights) {
        DEBUG(dbgs() << Cycle << '\t' << UseMI);
        continue;
      }
      // Update critical path length.
      TBI.CriticalPath = std::max(TBI.CriticalPath, Cycle + MICycles.Height);
      DEBUG(dbgs() << TBI.CriticalPath << '\t' << Cycle << '\t' << UseMI);
    }
  }
}

// Identify physreg dependencies for MI when scanning instructions upwards.
// Return the issue height of MI after considering any live regunits.
// Height is the issue height computed from virtual register dependencies alone.
static unsigned updatePhysDepsUpwards(const MachineInstr *MI, unsigned Height,
                                      SparseSet<LiveRegUnit> &RegUnits,
                                      const TargetSchedModel &SchedModel,
                                      const TargetInstrInfo *TII,
                                      const TargetRegisterInfo *TRI) {
  SmallVector<unsigned, 8> ReadOps;
  for (ConstMIOperands MO(MI); MO.isValid(); ++MO) {
    if (!MO->isReg())
      continue;
    unsigned Reg = MO->getReg();
    if (!TargetRegisterInfo::isPhysicalRegister(Reg))
      continue;
    if (MO->readsReg())
      ReadOps.push_back(MO.getOperandNo());
    if (!MO->isDef())
      continue;
    // This is a def of Reg. Remove corresponding entries from RegUnits, and
    // update MI Height to consider the physreg dependencies.
    for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
      SparseSet<LiveRegUnit>::iterator I = RegUnits.find(*Units);
      if (I == RegUnits.end())
        continue;
      unsigned DepHeight = I->Cycle;
      if (!MI->isTransient()) {
        // We may not know the UseMI of this dependency, if it came from the
        // live-in list. SchedModel can handle a NULL UseMI.
        DepHeight += SchedModel
          .computeOperandLatency(MI, MO.getOperandNo(), I->MI, I->Op);
      }
      Height = std::max(Height, DepHeight);
      // This regunit is dead above MI.
      RegUnits.erase(I);
    }
  }

  // Now we know the height of MI. Update any regunits read.
  for (unsigned i = 0, e = ReadOps.size(); i != e; ++i) {
    unsigned Reg = MI->getOperand(ReadOps[i]).getReg();
    for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
      LiveRegUnit &LRU = RegUnits[*Units];
      // Set the height to the highest reader of the unit.
      if (LRU.Cycle <= Height && LRU.MI != MI) {
        LRU.Cycle = Height;
        LRU.MI = MI;
        LRU.Op = ReadOps[i];
      }
    }
  }

  return Height;
}


typedef DenseMap<const MachineInstr *, unsigned> MIHeightMap;

// Push the height of DefMI upwards if required to match UseMI.
// Return true if this is the first time DefMI was seen.
static bool pushDepHeight(const DataDep &Dep,
                          const MachineInstr *UseMI, unsigned UseHeight,
                          MIHeightMap &Heights,
                          const TargetSchedModel &SchedModel,
                          const TargetInstrInfo *TII) {
  // Adjust height by Dep.DefMI latency.
  if (!Dep.DefMI->isTransient())
    UseHeight += SchedModel.computeOperandLatency(Dep.DefMI, Dep.DefOp,
                                                  UseMI, Dep.UseOp);

  // Update Heights[DefMI] to be the maximum height seen.
  MIHeightMap::iterator I;
  bool New;
  std::tie(I, New) = Heights.insert(std::make_pair(Dep.DefMI, UseHeight));
  if (New)
    return true;

  // DefMI has been pushed before. Give it the max height.
  if (I->second < UseHeight)
    I->second = UseHeight;
  return false;
}

/// Assuming that the virtual register defined by DefMI:DefOp was used by
/// Trace.back(), add it to the live-in lists of all the blocks in Trace. Stop
/// when reaching the block that contains DefMI.
void MachineTraceMetrics::Ensemble::
addLiveIns(const MachineInstr *DefMI, unsigned DefOp,
           ArrayRef<const MachineBasicBlock*> Trace) {
  assert(!Trace.empty() && "Trace should contain at least one block");
  unsigned Reg = DefMI->getOperand(DefOp).getReg();
  assert(TargetRegisterInfo::isVirtualRegister(Reg));
  const MachineBasicBlock *DefMBB = DefMI->getParent();

  // Reg is live-in to all blocks in Trace that follow DefMBB.
  for (unsigned i = Trace.size(); i; --i) {
    const MachineBasicBlock *MBB = Trace[i-1];
    if (MBB == DefMBB)
      return;
    TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
    // Just add the register. The height will be updated later.
    TBI.LiveIns.push_back(Reg);
  }
}

/// Compute instruction heights in the trace through MBB. This updates MBB and
/// the blocks below it in the trace. It is assumed that the trace has already
/// been computed.
void MachineTraceMetrics::Ensemble::
computeInstrHeights(const MachineBasicBlock *MBB) {
  // The bottom of the trace may already be computed.
  // Find the blocks that need updating.
  SmallVector<const MachineBasicBlock*, 8> Stack;
  do {
    TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
    assert(TBI.hasValidHeight() && "Incomplete trace");
    if (TBI.HasValidInstrHeights)
      break;
    Stack.push_back(MBB);
    TBI.LiveIns.clear();
    MBB = TBI.Succ;
  } while (MBB);

  // As we move upwards in the trace, keep track of instructions that are
  // required by deeper trace instructions. Map MI -> height required so far.
  MIHeightMap Heights;

  // For physregs, the def isn't known when we see the use.
  // Instead, keep track of the highest use of each regunit.
  SparseSet<LiveRegUnit> RegUnits;
  RegUnits.setUniverse(MTM.TRI->getNumRegUnits());

  // If the bottom of the trace was already precomputed, initialize heights
  // from its live-in list.
  // MBB is the highest precomputed block in the trace.
  if (MBB) {
    TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
    for (unsigned i = 0, e = TBI.LiveIns.size(); i != e; ++i) {
      LiveInReg LI = TBI.LiveIns[i];
      if (TargetRegisterInfo::isVirtualRegister(LI.Reg)) {
        // For virtual registers, the def latency is included.
        unsigned &Height = Heights[MTM.MRI->getVRegDef(LI.Reg)];
        if (Height < LI.Height)
          Height = LI.Height;
      } else {
        // For register units, the def latency is not included because we don't
        // know the def yet.
        RegUnits[LI.Reg].Cycle = LI.Height;
      }
    }
  }

  // Go through the trace blocks in bottom-up order.
  SmallVector<DataDep, 8> Deps;
  for (;!Stack.empty(); Stack.pop_back()) {
    MBB = Stack.back();
    DEBUG(dbgs() << "Heights for BB#" << MBB->getNumber() << ":\n");
    TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
    TBI.HasValidInstrHeights = true;
    TBI.CriticalPath = 0;

    DEBUG({
      dbgs() << format("%7u Instructions\n", TBI.InstrHeight);
      ArrayRef<unsigned> PRHeights = getProcResourceHeights(MBB->getNumber());
      for (unsigned K = 0; K != PRHeights.size(); ++K)
        if (PRHeights[K]) {
          unsigned Factor = MTM.SchedModel.getResourceFactor(K);
          dbgs() << format("%6uc @ ", MTM.getCycles(PRHeights[K]))
                 << MTM.SchedModel.getProcResource(K)->Name << " ("
                 << PRHeights[K]/Factor << " ops x" << Factor << ")\n";
        }
    });

    // Get dependencies from PHIs in the trace successor.
    const MachineBasicBlock *Succ = TBI.Succ;
    // If MBB is the last block in the trace, and it has a back-edge to the
    // loop header, get loop-carried dependencies from PHIs in the header. For
    // that purpose, pretend that all the loop header PHIs have height 0.
    if (!Succ)
      if (const MachineLoop *Loop = getLoopFor(MBB))
        if (MBB->isSuccessor(Loop->getHeader()))
          Succ = Loop->getHeader();

    if (Succ) {
      for (const auto &PHI : *Succ) {
        if (!PHI.isPHI())
          break;
        Deps.clear();
        getPHIDeps(&PHI, Deps, MBB, MTM.MRI);
        if (!Deps.empty()) {
          // Loop header PHI heights are all 0.
          unsigned Height = TBI.Succ ? Cycles.lookup(&PHI).Height : 0;
          DEBUG(dbgs() << "pred\t" << Height << '\t' << PHI);
          if (pushDepHeight(Deps.front(), &PHI, Height,
                            Heights, MTM.SchedModel, MTM.TII))
            addLiveIns(Deps.front().DefMI, Deps.front().DefOp, Stack);
        }
      }
    }

    // Go through the block backwards.
    for (MachineBasicBlock::const_iterator BI = MBB->end(), BB = MBB->begin();
         BI != BB;) {
      const MachineInstr *MI = --BI;

      // Find the MI height as determined by virtual register uses in the
      // trace below.
      unsigned Cycle = 0;
      MIHeightMap::iterator HeightI = Heights.find(MI);
      if (HeightI != Heights.end()) {
        Cycle = HeightI->second;
        // We won't be seeing any more MI uses.
        Heights.erase(HeightI);
      }

      // Don't process PHI deps. They depend on the specific predecessor, and
      // we'll get them when visiting the predecessor.
      Deps.clear();
      bool HasPhysRegs = !MI->isPHI() && getDataDeps(MI, Deps, MTM.MRI);

      // There may also be regunit dependencies to include in the height.
      if (HasPhysRegs)
        Cycle = updatePhysDepsUpwards(MI, Cycle, RegUnits,
                                      MTM.SchedModel, MTM.TII, MTM.TRI);

      // Update the required height of any virtual registers read by MI.
      for (unsigned i = 0, e = Deps.size(); i != e; ++i)
        if (pushDepHeight(Deps[i], MI, Cycle, Heights, MTM.SchedModel, MTM.TII))
          addLiveIns(Deps[i].DefMI, Deps[i].DefOp, Stack);

      InstrCycles &MICycles = Cycles[MI];
      MICycles.Height = Cycle;
      if (!TBI.HasValidInstrDepths) {
        DEBUG(dbgs() << Cycle << '\t' << *MI);
        continue;
      }
      // Update critical path length.
      TBI.CriticalPath = std::max(TBI.CriticalPath, Cycle + MICycles.Depth);
      DEBUG(dbgs() << TBI.CriticalPath << '\t' << Cycle << '\t' << *MI);
    }

    // Update virtual live-in heights. They were added by addLiveIns() with a 0
    // height because the final height isn't known until now.
    DEBUG(dbgs() << "BB#" << MBB->getNumber() <<  " Live-ins:");
    for (unsigned i = 0, e = TBI.LiveIns.size(); i != e; ++i) {
      LiveInReg &LIR = TBI.LiveIns[i];
      const MachineInstr *DefMI = MTM.MRI->getVRegDef(LIR.Reg);
      LIR.Height = Heights.lookup(DefMI);
      DEBUG(dbgs() << ' ' << PrintReg(LIR.Reg) << '@' << LIR.Height);
    }

    // Transfer the live regunits to the live-in list.
    for (SparseSet<LiveRegUnit>::const_iterator
         RI = RegUnits.begin(), RE = RegUnits.end(); RI != RE; ++RI) {
      TBI.LiveIns.push_back(LiveInReg(RI->RegUnit, RI->Cycle));
      DEBUG(dbgs() << ' ' << PrintRegUnit(RI->RegUnit, MTM.TRI)
                   << '@' << RI->Cycle);
    }
    DEBUG(dbgs() << '\n');

    if (!TBI.HasValidInstrDepths)
      continue;
    // Add live-ins to the critical path length.
    TBI.CriticalPath = std::max(TBI.CriticalPath,
                                computeCrossBlockCriticalPath(TBI));
    DEBUG(dbgs() << "Critical path: " << TBI.CriticalPath << '\n');
  }
}

MachineTraceMetrics::Trace
MachineTraceMetrics::Ensemble::getTrace(const MachineBasicBlock *MBB) {
  // FIXME: Check cache tags, recompute as needed.
  computeTrace(MBB);
  computeInstrDepths(MBB);
  computeInstrHeights(MBB);
  return Trace(*this, BlockInfo[MBB->getNumber()]);
}

unsigned
MachineTraceMetrics::Trace::getInstrSlack(const MachineInstr *MI) const {
  assert(MI && "Not an instruction.");
  assert(getBlockNum() == unsigned(MI->getParent()->getNumber()) &&
         "MI must be in the trace center block");
  InstrCycles Cyc = getInstrCycles(MI);
  return getCriticalPath() - (Cyc.Depth + Cyc.Height);
}

unsigned
MachineTraceMetrics::Trace::getPHIDepth(const MachineInstr *PHI) const {
  const MachineBasicBlock *MBB = TE.MTM.MF->getBlockNumbered(getBlockNum());
  SmallVector<DataDep, 1> Deps;
  getPHIDeps(PHI, Deps, MBB, TE.MTM.MRI);
  assert(Deps.size() == 1 && "PHI doesn't have MBB as a predecessor");
  DataDep &Dep = Deps.front();
  unsigned DepCycle = getInstrCycles(Dep.DefMI).Depth;
  // Add latency if DefMI is a real instruction. Transients get latency 0.
  if (!Dep.DefMI->isTransient())
    DepCycle += TE.MTM.SchedModel
      .computeOperandLatency(Dep.DefMI, Dep.DefOp, PHI, Dep.UseOp);
  return DepCycle;
}

unsigned MachineTraceMetrics::Trace::getResourceDepth(bool Bottom) const {
  // Find the limiting processor resource.
  // Numbers have been pre-scaled to be comparable.
  unsigned PRMax = 0;
  ArrayRef<unsigned> PRDepths = TE.getProcResourceDepths(getBlockNum());
  if (Bottom) {
    ArrayRef<unsigned> PRCycles = TE.MTM.getProcResourceCycles(getBlockNum());
    for (unsigned K = 0; K != PRDepths.size(); ++K)
      PRMax = std::max(PRMax, PRDepths[K] + PRCycles[K]);
  } else {
    for (unsigned K = 0; K != PRDepths.size(); ++K)
      PRMax = std::max(PRMax, PRDepths[K]);
  }
  // Convert to cycle count.
  PRMax = TE.MTM.getCycles(PRMax);

  unsigned Instrs = TBI.InstrDepth;
  if (Bottom)
    Instrs += TE.MTM.BlockInfo[getBlockNum()].InstrCount;
  if (unsigned IW = TE.MTM.SchedModel.getIssueWidth())
    Instrs /= IW;
  // Assume issue width 1 without a schedule model.
  return std::max(Instrs, PRMax);
}


unsigned MachineTraceMetrics::Trace::
getResourceLength(ArrayRef<const MachineBasicBlock*> Extrablocks,
                  ArrayRef<const MCSchedClassDesc*> ExtraInstrs) const {
  // Add up resources above and below the center block.
  ArrayRef<unsigned> PRDepths = TE.getProcResourceDepths(getBlockNum());
  ArrayRef<unsigned> PRHeights = TE.getProcResourceHeights(getBlockNum());
  unsigned PRMax = 0;
  for (unsigned K = 0; K != PRDepths.size(); ++K) {
    unsigned PRCycles = PRDepths[K] + PRHeights[K];
    for (unsigned I = 0; I != Extrablocks.size(); ++I)
      PRCycles += TE.MTM.getProcResourceCycles(Extrablocks[I]->getNumber())[K];
    for (unsigned I = 0; I != ExtraInstrs.size(); ++I) {
      const MCSchedClassDesc* SC = ExtraInstrs[I];
      if (!SC->isValid())
        continue;
      for (TargetSchedModel::ProcResIter
             PI = TE.MTM.SchedModel.getWriteProcResBegin(SC),
             PE = TE.MTM.SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) {
        if (PI->ProcResourceIdx != K)
          continue;
        PRCycles += (PI->Cycles * TE.MTM.SchedModel.getResourceFactor(K));
      }
    }
    PRMax = std::max(PRMax, PRCycles);
  }
  // Convert to cycle count.
  PRMax = TE.MTM.getCycles(PRMax);

  unsigned Instrs = TBI.InstrDepth + TBI.InstrHeight;
  for (unsigned i = 0, e = Extrablocks.size(); i != e; ++i)
    Instrs += TE.MTM.getResources(Extrablocks[i])->InstrCount;
  if (unsigned IW = TE.MTM.SchedModel.getIssueWidth())
    Instrs /= IW;
  // Assume issue width 1 without a schedule model.
  return std::max(Instrs, PRMax);
}

void MachineTraceMetrics::Ensemble::print(raw_ostream &OS) const {
  OS << getName() << " ensemble:\n";
  for (unsigned i = 0, e = BlockInfo.size(); i != e; ++i) {
    OS << "  BB#" << i << '\t';
    BlockInfo[i].print(OS);
    OS << '\n';
  }
}

void MachineTraceMetrics::TraceBlockInfo::print(raw_ostream &OS) const {
  if (hasValidDepth()) {
    OS << "depth=" << InstrDepth;
    if (Pred)
      OS << " pred=BB#" << Pred->getNumber();
    else
      OS << " pred=null";
    OS << " head=BB#" << Head;
    if (HasValidInstrDepths)
      OS << " +instrs";
  } else
    OS << "depth invalid";
  OS << ", ";
  if (hasValidHeight()) {
    OS << "height=" << InstrHeight;
    if (Succ)
      OS << " succ=BB#" << Succ->getNumber();
    else
      OS << " succ=null";
    OS << " tail=BB#" << Tail;
    if (HasValidInstrHeights)
      OS << " +instrs";
  } else
    OS << "height invalid";
  if (HasValidInstrDepths && HasValidInstrHeights)
    OS << ", crit=" << CriticalPath;
}

void MachineTraceMetrics::Trace::print(raw_ostream &OS) const {
  unsigned MBBNum = &TBI - &TE.BlockInfo[0];

  OS << TE.getName() << " trace BB#" << TBI.Head << " --> BB#" << MBBNum
     << " --> BB#" << TBI.Tail << ':';
  if (TBI.hasValidHeight() && TBI.hasValidDepth())
    OS << ' ' << getInstrCount() << " instrs.";
  if (TBI.HasValidInstrDepths && TBI.HasValidInstrHeights)
    OS << ' ' << TBI.CriticalPath << " cycles.";

  const MachineTraceMetrics::TraceBlockInfo *Block = &TBI;
  OS << "\nBB#" << MBBNum;
  while (Block->hasValidDepth() && Block->Pred) {
    unsigned Num = Block->Pred->getNumber();
    OS << " <- BB#" << Num;
    Block = &TE.BlockInfo[Num];
  }

  Block = &TBI;
  OS << "\n    ";
  while (Block->hasValidHeight() && Block->Succ) {
    unsigned Num = Block->Succ->getNumber();
    OS << " -> BB#" << Num;
    Block = &TE.BlockInfo[Num];
  }
  OS << '\n';
}