summaryrefslogtreecommitdiff
path: root/lib/CodeGen/RegAllocFast.cpp
blob: 97b9f7650892da0b3b72c8fa1b31b91a7504f609 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
//===-- RegAllocFast.cpp - A fast register allocator for debug code -------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This register allocator allocates registers to a basic block at a time,
// attempting to keep values in registers and reusing registers as appropriate.
//
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/Passes.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/IndexedMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/SparseSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegAllocRegistry.h"
#include "llvm/CodeGen/RegisterClassInfo.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include <algorithm>
using namespace llvm;

#define DEBUG_TYPE "regalloc"

STATISTIC(NumStores, "Number of stores added");
STATISTIC(NumLoads , "Number of loads added");
STATISTIC(NumCopies, "Number of copies coalesced");

static RegisterRegAlloc
  fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator);

namespace {
  class RAFast : public MachineFunctionPass {
  public:
    static char ID;
    RAFast() : MachineFunctionPass(ID), StackSlotForVirtReg(-1),
               isBulkSpilling(false) {}
  private:
    const TargetMachine *TM;
    MachineFunction *MF;
    MachineRegisterInfo *MRI;
    const TargetRegisterInfo *TRI;
    const TargetInstrInfo *TII;
    RegisterClassInfo RegClassInfo;

    // Basic block currently being allocated.
    MachineBasicBlock *MBB;

    // StackSlotForVirtReg - Maps virtual regs to the frame index where these
    // values are spilled.
    IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg;

    // Everything we know about a live virtual register.
    struct LiveReg {
      MachineInstr *LastUse;    // Last instr to use reg.
      unsigned VirtReg;         // Virtual register number.
      unsigned PhysReg;         // Currently held here.
      unsigned short LastOpNum; // OpNum on LastUse.
      bool Dirty;               // Register needs spill.

      explicit LiveReg(unsigned v)
        : LastUse(nullptr), VirtReg(v), PhysReg(0), LastOpNum(0), Dirty(false){}

      unsigned getSparseSetIndex() const {
        return TargetRegisterInfo::virtReg2Index(VirtReg);
      }
    };

    typedef SparseSet<LiveReg> LiveRegMap;

    // LiveVirtRegs - This map contains entries for each virtual register
    // that is currently available in a physical register.
    LiveRegMap LiveVirtRegs;

    DenseMap<unsigned, SmallVector<MachineInstr *, 4> > LiveDbgValueMap;

    // RegState - Track the state of a physical register.
    enum RegState {
      // A disabled register is not available for allocation, but an alias may
      // be in use. A register can only be moved out of the disabled state if
      // all aliases are disabled.
      regDisabled,

      // A free register is not currently in use and can be allocated
      // immediately without checking aliases.
      regFree,

      // A reserved register has been assigned explicitly (e.g., setting up a
      // call parameter), and it remains reserved until it is used.
      regReserved

      // A register state may also be a virtual register number, indication that
      // the physical register is currently allocated to a virtual register. In
      // that case, LiveVirtRegs contains the inverse mapping.
    };

    // PhysRegState - One of the RegState enums, or a virtreg.
    std::vector<unsigned> PhysRegState;

    // Set of register units.
    typedef SparseSet<unsigned> UsedInInstrSet;

    // Set of register units that are used in the current instruction, and so
    // cannot be allocated.
    UsedInInstrSet UsedInInstr;

    // Mark a physreg as used in this instruction.
    void markRegUsedInInstr(unsigned PhysReg) {
      for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
        UsedInInstr.insert(*Units);
    }

    // Check if a physreg or any of its aliases are used in this instruction.
    bool isRegUsedInInstr(unsigned PhysReg) const {
      for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
        if (UsedInInstr.count(*Units))
          return true;
      return false;
    }

    // SkippedInstrs - Descriptors of instructions whose clobber list was
    // ignored because all registers were spilled. It is still necessary to
    // mark all the clobbered registers as used by the function.
    SmallPtrSet<const MCInstrDesc*, 4> SkippedInstrs;

    // isBulkSpilling - This flag is set when LiveRegMap will be cleared
    // completely after spilling all live registers. LiveRegMap entries should
    // not be erased.
    bool isBulkSpilling;

    enum : unsigned {
      spillClean = 1,
      spillDirty = 100,
      spillImpossible = ~0u
    };
  public:
    const char *getPassName() const override {
      return "Fast Register Allocator";
    }

    void getAnalysisUsage(AnalysisUsage &AU) const override {
      AU.setPreservesCFG();
      MachineFunctionPass::getAnalysisUsage(AU);
    }

  private:
    bool runOnMachineFunction(MachineFunction &Fn) override;
    void AllocateBasicBlock();
    void handleThroughOperands(MachineInstr *MI,
                               SmallVectorImpl<unsigned> &VirtDead);
    int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC);
    bool isLastUseOfLocalReg(MachineOperand&);

    void addKillFlag(const LiveReg&);
    void killVirtReg(LiveRegMap::iterator);
    void killVirtReg(unsigned VirtReg);
    void spillVirtReg(MachineBasicBlock::iterator MI, LiveRegMap::iterator);
    void spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg);

    void usePhysReg(MachineOperand&);
    void definePhysReg(MachineInstr *MI, unsigned PhysReg, RegState NewState);
    unsigned calcSpillCost(unsigned PhysReg) const;
    void assignVirtToPhysReg(LiveReg&, unsigned PhysReg);
    LiveRegMap::iterator findLiveVirtReg(unsigned VirtReg) {
      return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg));
    }
    LiveRegMap::const_iterator findLiveVirtReg(unsigned VirtReg) const {
      return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg));
    }
    LiveRegMap::iterator assignVirtToPhysReg(unsigned VReg, unsigned PhysReg);
    LiveRegMap::iterator allocVirtReg(MachineInstr *MI, LiveRegMap::iterator,
                                      unsigned Hint);
    LiveRegMap::iterator defineVirtReg(MachineInstr *MI, unsigned OpNum,
                                       unsigned VirtReg, unsigned Hint);
    LiveRegMap::iterator reloadVirtReg(MachineInstr *MI, unsigned OpNum,
                                       unsigned VirtReg, unsigned Hint);
    void spillAll(MachineBasicBlock::iterator MI);
    bool setPhysReg(MachineInstr *MI, unsigned OpNum, unsigned PhysReg);
  };
  char RAFast::ID = 0;
}

/// getStackSpaceFor - This allocates space for the specified virtual register
/// to be held on the stack.
int RAFast::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) {
  // Find the location Reg would belong...
  int SS = StackSlotForVirtReg[VirtReg];
  if (SS != -1)
    return SS;          // Already has space allocated?

  // Allocate a new stack object for this spill location...
  int FrameIdx = MF->getFrameInfo()->CreateSpillStackObject(RC->getSize(),
                                                            RC->getAlignment());

  // Assign the slot.
  StackSlotForVirtReg[VirtReg] = FrameIdx;
  return FrameIdx;
}

/// isLastUseOfLocalReg - Return true if MO is the only remaining reference to
/// its virtual register, and it is guaranteed to be a block-local register.
///
bool RAFast::isLastUseOfLocalReg(MachineOperand &MO) {
  // If the register has ever been spilled or reloaded, we conservatively assume
  // it is a global register used in multiple blocks.
  if (StackSlotForVirtReg[MO.getReg()] != -1)
    return false;

  // Check that the use/def chain has exactly one operand - MO.
  MachineRegisterInfo::reg_nodbg_iterator I = MRI->reg_nodbg_begin(MO.getReg());
  if (&*I != &MO)
    return false;
  return ++I == MRI->reg_nodbg_end();
}

/// addKillFlag - Set kill flags on last use of a virtual register.
void RAFast::addKillFlag(const LiveReg &LR) {
  if (!LR.LastUse) return;
  MachineOperand &MO = LR.LastUse->getOperand(LR.LastOpNum);
  if (MO.isUse() && !LR.LastUse->isRegTiedToDefOperand(LR.LastOpNum)) {
    if (MO.getReg() == LR.PhysReg)
      MO.setIsKill();
    else
      LR.LastUse->addRegisterKilled(LR.PhysReg, TRI, true);
  }
}

/// killVirtReg - Mark virtreg as no longer available.
void RAFast::killVirtReg(LiveRegMap::iterator LRI) {
  addKillFlag(*LRI);
  assert(PhysRegState[LRI->PhysReg] == LRI->VirtReg &&
         "Broken RegState mapping");
  PhysRegState[LRI->PhysReg] = regFree;
  // Erase from LiveVirtRegs unless we're spilling in bulk.
  if (!isBulkSpilling)
    LiveVirtRegs.erase(LRI);
}

/// killVirtReg - Mark virtreg as no longer available.
void RAFast::killVirtReg(unsigned VirtReg) {
  assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
         "killVirtReg needs a virtual register");
  LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
  if (LRI != LiveVirtRegs.end())
    killVirtReg(LRI);
}

/// spillVirtReg - This method spills the value specified by VirtReg into the
/// corresponding stack slot if needed.
void RAFast::spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg) {
  assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
         "Spilling a physical register is illegal!");
  LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
  assert(LRI != LiveVirtRegs.end() && "Spilling unmapped virtual register");
  spillVirtReg(MI, LRI);
}

/// spillVirtReg - Do the actual work of spilling.
void RAFast::spillVirtReg(MachineBasicBlock::iterator MI,
                          LiveRegMap::iterator LRI) {
  LiveReg &LR = *LRI;
  assert(PhysRegState[LR.PhysReg] == LRI->VirtReg && "Broken RegState mapping");

  if (LR.Dirty) {
    // If this physreg is used by the instruction, we want to kill it on the
    // instruction, not on the spill.
    bool SpillKill = LR.LastUse != MI;
    LR.Dirty = false;
    DEBUG(dbgs() << "Spilling " << PrintReg(LRI->VirtReg, TRI)
                 << " in " << PrintReg(LR.PhysReg, TRI));
    const TargetRegisterClass *RC = MRI->getRegClass(LRI->VirtReg);
    int FI = getStackSpaceFor(LRI->VirtReg, RC);
    DEBUG(dbgs() << " to stack slot #" << FI << "\n");
    TII->storeRegToStackSlot(*MBB, MI, LR.PhysReg, SpillKill, FI, RC, TRI);
    ++NumStores;   // Update statistics

    // If this register is used by DBG_VALUE then insert new DBG_VALUE to
    // identify spilled location as the place to find corresponding variable's
    // value.
    SmallVectorImpl<MachineInstr *> &LRIDbgValues =
      LiveDbgValueMap[LRI->VirtReg];
    for (unsigned li = 0, le = LRIDbgValues.size(); li != le; ++li) {
      MachineInstr *DBG = LRIDbgValues[li];
      const MDNode *MDPtr = DBG->getOperand(2).getMetadata();
      bool IsIndirect = DBG->isIndirectDebugValue();
      uint64_t Offset = IsIndirect ? DBG->getOperand(1).getImm() : 0;
      DebugLoc DL;
      if (MI == MBB->end()) {
        // If MI is at basic block end then use last instruction's location.
        MachineBasicBlock::iterator EI = MI;
        DL = (--EI)->getDebugLoc();
      } else
        DL = MI->getDebugLoc();
      MachineBasicBlock *MBB = DBG->getParent();
      MachineInstr *NewDV =
          BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::DBG_VALUE))
              .addFrameIndex(FI).addImm(Offset).addMetadata(MDPtr);
      (void)NewDV;
      DEBUG(dbgs() << "Inserting debug info due to spill:" << "\n" << *NewDV);
    }
    // Now this register is spilled there is should not be any DBG_VALUE
    // pointing to this register because they are all pointing to spilled value
    // now.
    LRIDbgValues.clear();
    if (SpillKill)
      LR.LastUse = nullptr; // Don't kill register again
  }
  killVirtReg(LRI);
}

/// spillAll - Spill all dirty virtregs without killing them.
void RAFast::spillAll(MachineBasicBlock::iterator MI) {
  if (LiveVirtRegs.empty()) return;
  isBulkSpilling = true;
  // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order
  // of spilling here is deterministic, if arbitrary.
  for (LiveRegMap::iterator i = LiveVirtRegs.begin(), e = LiveVirtRegs.end();
       i != e; ++i)
    spillVirtReg(MI, i);
  LiveVirtRegs.clear();
  isBulkSpilling = false;
}

/// usePhysReg - Handle the direct use of a physical register.
/// Check that the register is not used by a virtreg.
/// Kill the physreg, marking it free.
/// This may add implicit kills to MO->getParent() and invalidate MO.
void RAFast::usePhysReg(MachineOperand &MO) {
  unsigned PhysReg = MO.getReg();
  assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) &&
         "Bad usePhysReg operand");
  markRegUsedInInstr(PhysReg);
  switch (PhysRegState[PhysReg]) {
  case regDisabled:
    break;
  case regReserved:
    PhysRegState[PhysReg] = regFree;
    // Fall through
  case regFree:
    MO.setIsKill();
    return;
  default:
    // The physreg was allocated to a virtual register. That means the value we
    // wanted has been clobbered.
    llvm_unreachable("Instruction uses an allocated register");
  }

  // Maybe a superregister is reserved?
  for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) {
    unsigned Alias = *AI;
    switch (PhysRegState[Alias]) {
    case regDisabled:
      break;
    case regReserved:
      assert(TRI->isSuperRegister(PhysReg, Alias) &&
             "Instruction is not using a subregister of a reserved register");
      // Leave the superregister in the working set.
      PhysRegState[Alias] = regFree;
      MO.getParent()->addRegisterKilled(Alias, TRI, true);
      return;
    case regFree:
      if (TRI->isSuperRegister(PhysReg, Alias)) {
        // Leave the superregister in the working set.
        MO.getParent()->addRegisterKilled(Alias, TRI, true);
        return;
      }
      // Some other alias was in the working set - clear it.
      PhysRegState[Alias] = regDisabled;
      break;
    default:
      llvm_unreachable("Instruction uses an alias of an allocated register");
    }
  }

  // All aliases are disabled, bring register into working set.
  PhysRegState[PhysReg] = regFree;
  MO.setIsKill();
}

/// definePhysReg - Mark PhysReg as reserved or free after spilling any
/// virtregs. This is very similar to defineVirtReg except the physreg is
/// reserved instead of allocated.
void RAFast::definePhysReg(MachineInstr *MI, unsigned PhysReg,
                           RegState NewState) {
  markRegUsedInInstr(PhysReg);
  switch (unsigned VirtReg = PhysRegState[PhysReg]) {
  case regDisabled:
    break;
  default:
    spillVirtReg(MI, VirtReg);
    // Fall through.
  case regFree:
  case regReserved:
    PhysRegState[PhysReg] = NewState;
    return;
  }

  // This is a disabled register, disable all aliases.
  PhysRegState[PhysReg] = NewState;
  for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) {
    unsigned Alias = *AI;
    switch (unsigned VirtReg = PhysRegState[Alias]) {
    case regDisabled:
      break;
    default:
      spillVirtReg(MI, VirtReg);
      // Fall through.
    case regFree:
    case regReserved:
      PhysRegState[Alias] = regDisabled;
      if (TRI->isSuperRegister(PhysReg, Alias))
        return;
      break;
    }
  }
}


// calcSpillCost - Return the cost of spilling clearing out PhysReg and
// aliases so it is free for allocation.
// Returns 0 when PhysReg is free or disabled with all aliases disabled - it
// can be allocated directly.
// Returns spillImpossible when PhysReg or an alias can't be spilled.
unsigned RAFast::calcSpillCost(unsigned PhysReg) const {
  if (isRegUsedInInstr(PhysReg)) {
    DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is already used in instr.\n");
    return spillImpossible;
  }
  switch (unsigned VirtReg = PhysRegState[PhysReg]) {
  case regDisabled:
    break;
  case regFree:
    return 0;
  case regReserved:
    DEBUG(dbgs() << PrintReg(VirtReg, TRI) << " corresponding "
                 << PrintReg(PhysReg, TRI) << " is reserved already.\n");
    return spillImpossible;
  default: {
    LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg);
    assert(I != LiveVirtRegs.end() && "Missing VirtReg entry");
    return I->Dirty ? spillDirty : spillClean;
  }
  }

  // This is a disabled register, add up cost of aliases.
  DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is disabled.\n");
  unsigned Cost = 0;
  for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) {
    unsigned Alias = *AI;
    switch (unsigned VirtReg = PhysRegState[Alias]) {
    case regDisabled:
      break;
    case regFree:
      ++Cost;
      break;
    case regReserved:
      return spillImpossible;
    default: {
      LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg);
      assert(I != LiveVirtRegs.end() && "Missing VirtReg entry");
      Cost += I->Dirty ? spillDirty : spillClean;
      break;
    }
    }
  }
  return Cost;
}


/// assignVirtToPhysReg - This method updates local state so that we know
/// that PhysReg is the proper container for VirtReg now.  The physical
/// register must not be used for anything else when this is called.
///
void RAFast::assignVirtToPhysReg(LiveReg &LR, unsigned PhysReg) {
  DEBUG(dbgs() << "Assigning " << PrintReg(LR.VirtReg, TRI) << " to "
               << PrintReg(PhysReg, TRI) << "\n");
  PhysRegState[PhysReg] = LR.VirtReg;
  assert(!LR.PhysReg && "Already assigned a physreg");
  LR.PhysReg = PhysReg;
}

RAFast::LiveRegMap::iterator
RAFast::assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) {
  LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
  assert(LRI != LiveVirtRegs.end() && "VirtReg disappeared");
  assignVirtToPhysReg(*LRI, PhysReg);
  return LRI;
}

/// allocVirtReg - Allocate a physical register for VirtReg.
RAFast::LiveRegMap::iterator RAFast::allocVirtReg(MachineInstr *MI,
                                                  LiveRegMap::iterator LRI,
                                                  unsigned Hint) {
  const unsigned VirtReg = LRI->VirtReg;

  assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
         "Can only allocate virtual registers");

  const TargetRegisterClass *RC = MRI->getRegClass(VirtReg);

  // Ignore invalid hints.
  if (Hint && (!TargetRegisterInfo::isPhysicalRegister(Hint) ||
               !RC->contains(Hint) || !MRI->isAllocatable(Hint)))
    Hint = 0;

  // Take hint when possible.
  if (Hint) {
    // Ignore the hint if we would have to spill a dirty register.
    unsigned Cost = calcSpillCost(Hint);
    if (Cost < spillDirty) {
      if (Cost)
        definePhysReg(MI, Hint, regFree);
      // definePhysReg may kill virtual registers and modify LiveVirtRegs.
      // That invalidates LRI, so run a new lookup for VirtReg.
      return assignVirtToPhysReg(VirtReg, Hint);
    }
  }

  ArrayRef<MCPhysReg> AO = RegClassInfo.getOrder(RC);

  // First try to find a completely free register.
  for (ArrayRef<MCPhysReg>::iterator I = AO.begin(), E = AO.end(); I != E; ++I){
    unsigned PhysReg = *I;
    if (PhysRegState[PhysReg] == regFree && !isRegUsedInInstr(PhysReg)) {
      assignVirtToPhysReg(*LRI, PhysReg);
      return LRI;
    }
  }

  DEBUG(dbgs() << "Allocating " << PrintReg(VirtReg) << " from "
               << RC->getName() << "\n");

  unsigned BestReg = 0, BestCost = spillImpossible;
  for (ArrayRef<MCPhysReg>::iterator I = AO.begin(), E = AO.end(); I != E; ++I){
    unsigned Cost = calcSpillCost(*I);
    DEBUG(dbgs() << "\tRegister: " << PrintReg(*I, TRI) << "\n");
    DEBUG(dbgs() << "\tCost: " << Cost << "\n");
    DEBUG(dbgs() << "\tBestCost: " << BestCost << "\n");
    // Cost is 0 when all aliases are already disabled.
    if (Cost == 0) {
      assignVirtToPhysReg(*LRI, *I);
      return LRI;
    }
    if (Cost < BestCost)
      BestReg = *I, BestCost = Cost;
  }

  if (BestReg) {
    definePhysReg(MI, BestReg, regFree);
    // definePhysReg may kill virtual registers and modify LiveVirtRegs.
    // That invalidates LRI, so run a new lookup for VirtReg.
    return assignVirtToPhysReg(VirtReg, BestReg);
  }

  // Nothing we can do. Report an error and keep going with a bad allocation.
  if (MI->isInlineAsm())
    MI->emitError("inline assembly requires more registers than available");
  else
    MI->emitError("ran out of registers during register allocation");
  definePhysReg(MI, *AO.begin(), regFree);
  return assignVirtToPhysReg(VirtReg, *AO.begin());
}

/// defineVirtReg - Allocate a register for VirtReg and mark it as dirty.
RAFast::LiveRegMap::iterator
RAFast::defineVirtReg(MachineInstr *MI, unsigned OpNum,
                      unsigned VirtReg, unsigned Hint) {
  assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
         "Not a virtual register");
  LiveRegMap::iterator LRI;
  bool New;
  std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
  if (New) {
    // If there is no hint, peek at the only use of this register.
    if ((!Hint || !TargetRegisterInfo::isPhysicalRegister(Hint)) &&
        MRI->hasOneNonDBGUse(VirtReg)) {
      const MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(VirtReg);
      // It's a copy, use the destination register as a hint.
      if (UseMI.isCopyLike())
        Hint = UseMI.getOperand(0).getReg();
    }
    LRI = allocVirtReg(MI, LRI, Hint);
  } else if (LRI->LastUse) {
    // Redefining a live register - kill at the last use, unless it is this
    // instruction defining VirtReg multiple times.
    if (LRI->LastUse != MI || LRI->LastUse->getOperand(LRI->LastOpNum).isUse())
      addKillFlag(*LRI);
  }
  assert(LRI->PhysReg && "Register not assigned");
  LRI->LastUse = MI;
  LRI->LastOpNum = OpNum;
  LRI->Dirty = true;
  markRegUsedInInstr(LRI->PhysReg);
  return LRI;
}

/// reloadVirtReg - Make sure VirtReg is available in a physreg and return it.
RAFast::LiveRegMap::iterator
RAFast::reloadVirtReg(MachineInstr *MI, unsigned OpNum,
                      unsigned VirtReg, unsigned Hint) {
  assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
         "Not a virtual register");
  LiveRegMap::iterator LRI;
  bool New;
  std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
  MachineOperand &MO = MI->getOperand(OpNum);
  if (New) {
    LRI = allocVirtReg(MI, LRI, Hint);
    const TargetRegisterClass *RC = MRI->getRegClass(VirtReg);
    int FrameIndex = getStackSpaceFor(VirtReg, RC);
    DEBUG(dbgs() << "Reloading " << PrintReg(VirtReg, TRI) << " into "
                 << PrintReg(LRI->PhysReg, TRI) << "\n");
    TII->loadRegFromStackSlot(*MBB, MI, LRI->PhysReg, FrameIndex, RC, TRI);
    ++NumLoads;
  } else if (LRI->Dirty) {
    if (isLastUseOfLocalReg(MO)) {
      DEBUG(dbgs() << "Killing last use: " << MO << "\n");
      if (MO.isUse())
        MO.setIsKill();
      else
        MO.setIsDead();
    } else if (MO.isKill()) {
      DEBUG(dbgs() << "Clearing dubious kill: " << MO << "\n");
      MO.setIsKill(false);
    } else if (MO.isDead()) {
      DEBUG(dbgs() << "Clearing dubious dead: " << MO << "\n");
      MO.setIsDead(false);
    }
  } else if (MO.isKill()) {
    // We must remove kill flags from uses of reloaded registers because the
    // register would be killed immediately, and there might be a second use:
    //   %foo = OR %x<kill>, %x
    // This would cause a second reload of %x into a different register.
    DEBUG(dbgs() << "Clearing clean kill: " << MO << "\n");
    MO.setIsKill(false);
  } else if (MO.isDead()) {
    DEBUG(dbgs() << "Clearing clean dead: " << MO << "\n");
    MO.setIsDead(false);
  }
  assert(LRI->PhysReg && "Register not assigned");
  LRI->LastUse = MI;
  LRI->LastOpNum = OpNum;
  markRegUsedInInstr(LRI->PhysReg);
  return LRI;
}

// setPhysReg - Change operand OpNum in MI the refer the PhysReg, considering
// subregs. This may invalidate any operand pointers.
// Return true if the operand kills its register.
bool RAFast::setPhysReg(MachineInstr *MI, unsigned OpNum, unsigned PhysReg) {
  MachineOperand &MO = MI->getOperand(OpNum);
  bool Dead = MO.isDead();
  if (!MO.getSubReg()) {
    MO.setReg(PhysReg);
    return MO.isKill() || Dead;
  }

  // Handle subregister index.
  MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : 0);
  MO.setSubReg(0);

  // A kill flag implies killing the full register. Add corresponding super
  // register kill.
  if (MO.isKill()) {
    MI->addRegisterKilled(PhysReg, TRI, true);
    return true;
  }

  // A <def,read-undef> of a sub-register requires an implicit def of the full
  // register.
  if (MO.isDef() && MO.isUndef())
    MI->addRegisterDefined(PhysReg, TRI);

  return Dead;
}

// Handle special instruction operand like early clobbers and tied ops when
// there are additional physreg defines.
void RAFast::handleThroughOperands(MachineInstr *MI,
                                   SmallVectorImpl<unsigned> &VirtDead) {
  DEBUG(dbgs() << "Scanning for through registers:");
  SmallSet<unsigned, 8> ThroughRegs;
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    MachineOperand &MO = MI->getOperand(i);
    if (!MO.isReg()) continue;
    unsigned Reg = MO.getReg();
    if (!TargetRegisterInfo::isVirtualRegister(Reg))
      continue;
    if (MO.isEarlyClobber() || MI->isRegTiedToDefOperand(i) ||
        (MO.getSubReg() && MI->readsVirtualRegister(Reg))) {
      if (ThroughRegs.insert(Reg))
        DEBUG(dbgs() << ' ' << PrintReg(Reg));
    }
  }

  // If any physreg defines collide with preallocated through registers,
  // we must spill and reallocate.
  DEBUG(dbgs() << "\nChecking for physdef collisions.\n");
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    MachineOperand &MO = MI->getOperand(i);
    if (!MO.isReg() || !MO.isDef()) continue;
    unsigned Reg = MO.getReg();
    if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
    markRegUsedInInstr(Reg);
    for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
      if (ThroughRegs.count(PhysRegState[*AI]))
        definePhysReg(MI, *AI, regFree);
    }
  }

  SmallVector<unsigned, 8> PartialDefs;
  DEBUG(dbgs() << "Allocating tied uses.\n");
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    MachineOperand &MO = MI->getOperand(i);
    if (!MO.isReg()) continue;
    unsigned Reg = MO.getReg();
    if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
    if (MO.isUse()) {
      unsigned DefIdx = 0;
      if (!MI->isRegTiedToDefOperand(i, &DefIdx)) continue;
      DEBUG(dbgs() << "Operand " << i << "("<< MO << ") is tied to operand "
        << DefIdx << ".\n");
      LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, 0);
      unsigned PhysReg = LRI->PhysReg;
      setPhysReg(MI, i, PhysReg);
      // Note: we don't update the def operand yet. That would cause the normal
      // def-scan to attempt spilling.
    } else if (MO.getSubReg() && MI->readsVirtualRegister(Reg)) {
      DEBUG(dbgs() << "Partial redefine: " << MO << "\n");
      // Reload the register, but don't assign to the operand just yet.
      // That would confuse the later phys-def processing pass.
      LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, 0);
      PartialDefs.push_back(LRI->PhysReg);
    }
  }

  DEBUG(dbgs() << "Allocating early clobbers.\n");
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    MachineOperand &MO = MI->getOperand(i);
    if (!MO.isReg()) continue;
    unsigned Reg = MO.getReg();
    if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
    if (!MO.isEarlyClobber())
      continue;
    // Note: defineVirtReg may invalidate MO.
    LiveRegMap::iterator LRI = defineVirtReg(MI, i, Reg, 0);
    unsigned PhysReg = LRI->PhysReg;
    if (setPhysReg(MI, i, PhysReg))
      VirtDead.push_back(Reg);
  }

  // Restore UsedInInstr to a state usable for allocating normal virtual uses.
  UsedInInstr.clear();
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    MachineOperand &MO = MI->getOperand(i);
    if (!MO.isReg() || (MO.isDef() && !MO.isEarlyClobber())) continue;
    unsigned Reg = MO.getReg();
    if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
    DEBUG(dbgs() << "\tSetting " << PrintReg(Reg, TRI)
                 << " as used in instr\n");
    markRegUsedInInstr(Reg);
  }

  // Also mark PartialDefs as used to avoid reallocation.
  for (unsigned i = 0, e = PartialDefs.size(); i != e; ++i)
    markRegUsedInInstr(PartialDefs[i]);
}

void RAFast::AllocateBasicBlock() {
  DEBUG(dbgs() << "\nAllocating " << *MBB);

  PhysRegState.assign(TRI->getNumRegs(), regDisabled);
  assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?");

  MachineBasicBlock::iterator MII = MBB->begin();

  // Add live-in registers as live.
  for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
         E = MBB->livein_end(); I != E; ++I)
    if (MRI->isAllocatable(*I))
      definePhysReg(MII, *I, regReserved);

  SmallVector<unsigned, 8> VirtDead;
  SmallVector<MachineInstr*, 32> Coalesced;

  // Otherwise, sequentially allocate each instruction in the MBB.
  while (MII != MBB->end()) {
    MachineInstr *MI = MII++;
    const MCInstrDesc &MCID = MI->getDesc();
    DEBUG({
        dbgs() << "\n>> " << *MI << "Regs:";
        for (unsigned Reg = 1, E = TRI->getNumRegs(); Reg != E; ++Reg) {
          if (PhysRegState[Reg] == regDisabled) continue;
          dbgs() << " " << TRI->getName(Reg);
          switch(PhysRegState[Reg]) {
          case regFree:
            break;
          case regReserved:
            dbgs() << "*";
            break;
          default: {
            dbgs() << '=' << PrintReg(PhysRegState[Reg]);
            LiveRegMap::iterator I = findLiveVirtReg(PhysRegState[Reg]);
            assert(I != LiveVirtRegs.end() && "Missing VirtReg entry");
            if (I->Dirty)
              dbgs() << "*";
            assert(I->PhysReg == Reg && "Bad inverse map");
            break;
          }
          }
        }
        dbgs() << '\n';
        // Check that LiveVirtRegs is the inverse.
        for (LiveRegMap::iterator i = LiveVirtRegs.begin(),
             e = LiveVirtRegs.end(); i != e; ++i) {
           assert(TargetRegisterInfo::isVirtualRegister(i->VirtReg) &&
                  "Bad map key");
           assert(TargetRegisterInfo::isPhysicalRegister(i->PhysReg) &&
                  "Bad map value");
           assert(PhysRegState[i->PhysReg] == i->VirtReg && "Bad inverse map");
        }
      });

    // Debug values are not allowed to change codegen in any way.
    if (MI->isDebugValue()) {
      bool ScanDbgValue = true;
      while (ScanDbgValue) {
        ScanDbgValue = false;
        for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
          MachineOperand &MO = MI->getOperand(i);
          if (!MO.isReg()) continue;
          unsigned Reg = MO.getReg();
          if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
          LiveRegMap::iterator LRI = findLiveVirtReg(Reg);
          if (LRI != LiveVirtRegs.end())
            setPhysReg(MI, i, LRI->PhysReg);
          else {
            int SS = StackSlotForVirtReg[Reg];
            if (SS == -1) {
              // We can't allocate a physreg for a DebugValue, sorry!
              DEBUG(dbgs() << "Unable to allocate vreg used by DBG_VALUE");
              MO.setReg(0);
            }
            else {
              // Modify DBG_VALUE now that the value is in a spill slot.
              bool IsIndirect = MI->isIndirectDebugValue();
              uint64_t Offset = IsIndirect ? MI->getOperand(1).getImm() : 0;
              const MDNode *MDPtr =
                MI->getOperand(MI->getNumOperands()-1).getMetadata();
              DebugLoc DL = MI->getDebugLoc();
              MachineBasicBlock *MBB = MI->getParent();
              MachineInstr *NewDV = BuildMI(*MBB, MBB->erase(MI), DL,
                                            TII->get(TargetOpcode::DBG_VALUE))
                  .addFrameIndex(SS).addImm(Offset).addMetadata(MDPtr);
              DEBUG(dbgs() << "Modifying debug info due to spill:"
                           << "\t" << *NewDV);
              // Scan NewDV operands from the beginning.
              MI = NewDV;
              ScanDbgValue = true;
              break;
            }
          }
          LiveDbgValueMap[Reg].push_back(MI);
        }
      }
      // Next instruction.
      continue;
    }

    // If this is a copy, we may be able to coalesce.
    unsigned CopySrc = 0, CopyDst = 0, CopySrcSub = 0, CopyDstSub = 0;
    if (MI->isCopy()) {
      CopyDst = MI->getOperand(0).getReg();
      CopySrc = MI->getOperand(1).getReg();
      CopyDstSub = MI->getOperand(0).getSubReg();
      CopySrcSub = MI->getOperand(1).getSubReg();
    }

    // Track registers used by instruction.
    UsedInInstr.clear();

    // First scan.
    // Mark physreg uses and early clobbers as used.
    // Find the end of the virtreg operands
    unsigned VirtOpEnd = 0;
    bool hasTiedOps = false;
    bool hasEarlyClobbers = false;
    bool hasPartialRedefs = false;
    bool hasPhysDefs = false;
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
      MachineOperand &MO = MI->getOperand(i);
      // Make sure MRI knows about registers clobbered by regmasks.
      if (MO.isRegMask()) {
        MRI->addPhysRegsUsedFromRegMask(MO.getRegMask());
        continue;
      }
      if (!MO.isReg()) continue;
      unsigned Reg = MO.getReg();
      if (!Reg) continue;
      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
        VirtOpEnd = i+1;
        if (MO.isUse()) {
          hasTiedOps = hasTiedOps ||
                              MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1;
        } else {
          if (MO.isEarlyClobber())
            hasEarlyClobbers = true;
          if (MO.getSubReg() && MI->readsVirtualRegister(Reg))
            hasPartialRedefs = true;
        }
        continue;
      }
      if (!MRI->isAllocatable(Reg)) continue;
      if (MO.isUse()) {
        usePhysReg(MO);
      } else if (MO.isEarlyClobber()) {
        definePhysReg(MI, Reg, (MO.isImplicit() || MO.isDead()) ?
                               regFree : regReserved);
        hasEarlyClobbers = true;
      } else
        hasPhysDefs = true;
    }

    // The instruction may have virtual register operands that must be allocated
    // the same register at use-time and def-time: early clobbers and tied
    // operands. If there are also physical defs, these registers must avoid
    // both physical defs and uses, making them more constrained than normal
    // operands.
    // Similarly, if there are multiple defs and tied operands, we must make
    // sure the same register is allocated to uses and defs.
    // We didn't detect inline asm tied operands above, so just make this extra
    // pass for all inline asm.
    if (MI->isInlineAsm() || hasEarlyClobbers || hasPartialRedefs ||
        (hasTiedOps && (hasPhysDefs || MCID.getNumDefs() > 1))) {
      handleThroughOperands(MI, VirtDead);
      // Don't attempt coalescing when we have funny stuff going on.
      CopyDst = 0;
      // Pretend we have early clobbers so the use operands get marked below.
      // This is not necessary for the common case of a single tied use.
      hasEarlyClobbers = true;
    }

    // Second scan.
    // Allocate virtreg uses.
    for (unsigned i = 0; i != VirtOpEnd; ++i) {
      MachineOperand &MO = MI->getOperand(i);
      if (!MO.isReg()) continue;
      unsigned Reg = MO.getReg();
      if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
      if (MO.isUse()) {
        LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, CopyDst);
        unsigned PhysReg = LRI->PhysReg;
        CopySrc = (CopySrc == Reg || CopySrc == PhysReg) ? PhysReg : 0;
        if (setPhysReg(MI, i, PhysReg))
          killVirtReg(LRI);
      }
    }

    for (UsedInInstrSet::iterator
         I = UsedInInstr.begin(), E = UsedInInstr.end(); I != E; ++I)
      MRI->setRegUnitUsed(*I);

    // Track registers defined by instruction - early clobbers and tied uses at
    // this point.
    UsedInInstr.clear();
    if (hasEarlyClobbers) {
      for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
        MachineOperand &MO = MI->getOperand(i);
        if (!MO.isReg()) continue;
        unsigned Reg = MO.getReg();
        if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
        // Look for physreg defs and tied uses.
        if (!MO.isDef() && !MI->isRegTiedToDefOperand(i)) continue;
        markRegUsedInInstr(Reg);
      }
    }

    unsigned DefOpEnd = MI->getNumOperands();
    if (MI->isCall()) {
      // Spill all virtregs before a call. This serves two purposes: 1. If an
      // exception is thrown, the landing pad is going to expect to find
      // registers in their spill slots, and 2. we don't have to wade through
      // all the <imp-def> operands on the call instruction.
      DefOpEnd = VirtOpEnd;
      DEBUG(dbgs() << "  Spilling remaining registers before call.\n");
      spillAll(MI);

      // The imp-defs are skipped below, but we still need to mark those
      // registers as used by the function.
      SkippedInstrs.insert(&MCID);
    }

    // Third scan.
    // Allocate defs and collect dead defs.
    for (unsigned i = 0; i != DefOpEnd; ++i) {
      MachineOperand &MO = MI->getOperand(i);
      if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber())
        continue;
      unsigned Reg = MO.getReg();

      if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
        if (!MRI->isAllocatable(Reg)) continue;
        definePhysReg(MI, Reg, (MO.isImplicit() || MO.isDead()) ?
                               regFree : regReserved);
        continue;
      }
      LiveRegMap::iterator LRI = defineVirtReg(MI, i, Reg, CopySrc);
      unsigned PhysReg = LRI->PhysReg;
      if (setPhysReg(MI, i, PhysReg)) {
        VirtDead.push_back(Reg);
        CopyDst = 0; // cancel coalescing;
      } else
        CopyDst = (CopyDst == Reg || CopyDst == PhysReg) ? PhysReg : 0;
    }

    // Kill dead defs after the scan to ensure that multiple defs of the same
    // register are allocated identically. We didn't need to do this for uses
    // because we are crerating our own kill flags, and they are always at the
    // last use.
    for (unsigned i = 0, e = VirtDead.size(); i != e; ++i)
      killVirtReg(VirtDead[i]);
    VirtDead.clear();

    for (UsedInInstrSet::iterator
         I = UsedInInstr.begin(), E = UsedInInstr.end(); I != E; ++I)
      MRI->setRegUnitUsed(*I);

    if (CopyDst && CopyDst == CopySrc && CopyDstSub == CopySrcSub) {
      DEBUG(dbgs() << "-- coalescing: " << *MI);
      Coalesced.push_back(MI);
    } else {
      DEBUG(dbgs() << "<< " << *MI);
    }
  }

  // Spill all physical registers holding virtual registers now.
  DEBUG(dbgs() << "Spilling live registers at end of block.\n");
  spillAll(MBB->getFirstTerminator());

  // Erase all the coalesced copies. We are delaying it until now because
  // LiveVirtRegs might refer to the instrs.
  for (unsigned i = 0, e = Coalesced.size(); i != e; ++i)
    MBB->erase(Coalesced[i]);
  NumCopies += Coalesced.size();

  DEBUG(MBB->dump());
}

/// runOnMachineFunction - Register allocate the whole function
///
bool RAFast::runOnMachineFunction(MachineFunction &Fn) {
  DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n"
               << "********** Function: " << Fn.getName() << '\n');
  MF = &Fn;
  MRI = &MF->getRegInfo();
  TM = &Fn.getTarget();
  TRI = TM->getRegisterInfo();
  TII = TM->getInstrInfo();
  MRI->freezeReservedRegs(Fn);
  RegClassInfo.runOnMachineFunction(Fn);
  UsedInInstr.clear();
  UsedInInstr.setUniverse(TRI->getNumRegUnits());

  assert(!MRI->isSSA() && "regalloc requires leaving SSA");

  // initialize the virtual->physical register map to have a 'null'
  // mapping for all virtual registers
  StackSlotForVirtReg.resize(MRI->getNumVirtRegs());
  LiveVirtRegs.setUniverse(MRI->getNumVirtRegs());

  // Loop over all of the basic blocks, eliminating virtual register references
  for (MachineFunction::iterator MBBi = Fn.begin(), MBBe = Fn.end();
       MBBi != MBBe; ++MBBi) {
    MBB = &*MBBi;
    AllocateBasicBlock();
  }

  // Add the clobber lists for all the instructions we skipped earlier.
  for (SmallPtrSet<const MCInstrDesc*, 4>::const_iterator
       I = SkippedInstrs.begin(), E = SkippedInstrs.end(); I != E; ++I)
    if (const uint16_t *Defs = (*I)->getImplicitDefs())
      while (*Defs)
        MRI->setPhysRegUsed(*Defs++);

  // All machine operands and other references to virtual registers have been
  // replaced. Remove the virtual registers.
  MRI->clearVirtRegs();

  SkippedInstrs.clear();
  StackSlotForVirtReg.clear();
  LiveDbgValueMap.clear();
  return true;
}

FunctionPass *llvm::createFastRegisterAllocator() {
  return new RAFast();
}