summaryrefslogtreecommitdiff
path: root/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp
blob: 6055ffe823b25a0ef5d672cf8125e78069183015 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
//===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Implementation of the MC-JIT runtime dynamic linker.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "dyld"
#include "llvm/ExecutionEngine/RuntimeDyld.h"
#include "JITRegistrar.h"
#include "ObjectImageCommon.h"
#include "RuntimeDyldELF.h"
#include "RuntimeDyldImpl.h"
#include "RuntimeDyldMachO.h"
#include "llvm/Object/ELF.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/MutexGuard.h"

using namespace llvm;
using namespace llvm::object;

// Empty out-of-line virtual destructor as the key function.
RuntimeDyldImpl::~RuntimeDyldImpl() {}

// Pin the JITRegistrar's and ObjectImage*'s vtables to this file.
void JITRegistrar::anchor() {}
void ObjectImage::anchor() {}
void ObjectImageCommon::anchor() {}

namespace llvm {

void RuntimeDyldImpl::registerEHFrames() {
}

void RuntimeDyldImpl::deregisterEHFrames() {
}

// Resolve the relocations for all symbols we currently know about.
void RuntimeDyldImpl::resolveRelocations() {
  MutexGuard locked(lock);

  // First, resolve relocations associated with external symbols.
  resolveExternalSymbols();

  // Just iterate over the sections we have and resolve all the relocations
  // in them. Gross overkill, but it gets the job done.
  for (int i = 0, e = Sections.size(); i != e; ++i) {
    // The Section here (Sections[i]) refers to the section in which the
    // symbol for the relocation is located.  The SectionID in the relocation
    // entry provides the section to which the relocation will be applied.
    uint64_t Addr = Sections[i].LoadAddress;
    DEBUG(dbgs() << "Resolving relocations Section #" << i
            << "\t" << format("%p", (uint8_t *)Addr)
            << "\n");
    resolveRelocationList(Relocations[i], Addr);
    Relocations.erase(i);
  }
}

void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress,
                                        uint64_t TargetAddress) {
  MutexGuard locked(lock);
  for (unsigned i = 0, e = Sections.size(); i != e; ++i) {
    if (Sections[i].Address == LocalAddress) {
      reassignSectionAddress(i, TargetAddress);
      return;
    }
  }
  llvm_unreachable("Attempting to remap address of unknown section!");
}

// Subclasses can implement this method to create specialized image instances.
// The caller owns the pointer that is returned.
ObjectImage *RuntimeDyldImpl::createObjectImage(ObjectBuffer *InputBuffer) {
  return new ObjectImageCommon(InputBuffer);
}

ObjectImage *RuntimeDyldImpl::createObjectImageFromFile(ObjectFile *InputObject) {
  return new ObjectImageCommon(InputObject);
}

ObjectImage *RuntimeDyldImpl::loadObject(ObjectFile *InputObject) {
  return loadObject(createObjectImageFromFile(InputObject));
}

ObjectImage *RuntimeDyldImpl::loadObject(ObjectBuffer *InputBuffer) {
  return loadObject(createObjectImage(InputBuffer));
} 

ObjectImage *RuntimeDyldImpl::loadObject(ObjectImage *InputObject) {
  MutexGuard locked(lock);

  OwningPtr<ObjectImage> Obj(InputObject);
  if (!Obj)
    return NULL;

  // Save information about our target
  Arch = (Triple::ArchType)Obj->getArch();
  IsTargetLittleEndian = Obj->getObjectFile()->isLittleEndian();
 
  // Compute the memory size required to load all sections to be loaded
  // and pass this information to the memory manager
  if (MemMgr->needsToReserveAllocationSpace()) {
    uint64_t CodeSize = 0, DataSizeRO = 0, DataSizeRW = 0;
    computeTotalAllocSize(*Obj, CodeSize, DataSizeRO, DataSizeRW);
    MemMgr->reserveAllocationSpace(CodeSize, DataSizeRO, DataSizeRW);
  }
  
  // Symbols found in this object
  StringMap<SymbolLoc> LocalSymbols;
  // Used sections from the object file
  ObjSectionToIDMap LocalSections;

  // Common symbols requiring allocation, with their sizes and alignments
  CommonSymbolMap CommonSymbols;
  // Maximum required total memory to allocate all common symbols
  uint64_t CommonSize = 0;

  // Parse symbols
  DEBUG(dbgs() << "Parse symbols:\n");
  for (symbol_iterator I = Obj->begin_symbols(), E = Obj->end_symbols(); I != E;
       ++I) {
    object::SymbolRef::Type SymType;
    StringRef Name;
    Check(I->getType(SymType));
    Check(I->getName(Name));

    uint32_t Flags = I->getFlags();

    bool IsCommon = Flags & SymbolRef::SF_Common;
    if (IsCommon) {
      // Add the common symbols to a list.  We'll allocate them all below.
      uint32_t Align;
      Check(I->getAlignment(Align));
      uint64_t Size = 0;
      Check(I->getSize(Size));
      CommonSize += Size + Align;
      CommonSymbols[*I] = CommonSymbolInfo(Size, Align);
    } else {
      if (SymType == object::SymbolRef::ST_Function ||
          SymType == object::SymbolRef::ST_Data ||
          SymType == object::SymbolRef::ST_Unknown) {
        uint64_t FileOffset;
        StringRef SectionData;
        bool IsCode;
        section_iterator SI = Obj->end_sections();
        Check(I->getFileOffset(FileOffset));
        Check(I->getSection(SI));
        if (SI == Obj->end_sections()) continue;
        Check(SI->getContents(SectionData));
        Check(SI->isText(IsCode));
        const uint8_t* SymPtr = (const uint8_t*)InputObject->getData().data() +
                                (uintptr_t)FileOffset;
        uintptr_t SectOffset = (uintptr_t)(SymPtr -
                                           (const uint8_t*)SectionData.begin());
        unsigned SectionID = findOrEmitSection(*Obj, *SI, IsCode, LocalSections);
        LocalSymbols[Name.data()] = SymbolLoc(SectionID, SectOffset);
        DEBUG(dbgs() << "\tFileOffset: " << format("%p", (uintptr_t)FileOffset)
                     << " flags: " << Flags
                     << " SID: " << SectionID
                     << " Offset: " << format("%p", SectOffset));
        GlobalSymbolTable[Name] = SymbolLoc(SectionID, SectOffset);
      }
    }
    DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name << "\n");
  }

  // Allocate common symbols
  if (CommonSize != 0)
    emitCommonSymbols(*Obj, CommonSymbols, CommonSize, LocalSymbols);

  // Parse and process relocations
  DEBUG(dbgs() << "Parse relocations:\n");
  for (section_iterator SI = Obj->begin_sections(), SE = Obj->end_sections();
       SI != SE; ++SI) {
    bool IsFirstRelocation = true;
    unsigned SectionID = 0;
    StubMap Stubs;
    section_iterator RelocatedSection = SI->getRelocatedSection();

    for (relocation_iterator I = SI->relocation_begin(),
                             E = SI->relocation_end();
         I != E; ++I) {
      // If it's the first relocation in this section, find its SectionID
      if (IsFirstRelocation) {
        bool IsCode = false;
        Check(RelocatedSection->isText(IsCode));
        SectionID =
            findOrEmitSection(*Obj, *RelocatedSection, IsCode, LocalSections);
        DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n");
        IsFirstRelocation = false;
      }

      processRelocationRef(SectionID, *I, *Obj, LocalSections, LocalSymbols,
                           Stubs);
    }
  }

  // Give the subclasses a chance to tie-up any loose ends.
  finalizeLoad(LocalSections);

  return Obj.release();
}

// A helper method for computeTotalAllocSize.
// Computes the memory size required to allocate sections with the given sizes, 
// assuming that all sections are allocated with the given alignment
static uint64_t computeAllocationSizeForSections(std::vector<uint64_t>& SectionSizes, 
                                                 uint64_t Alignment) {
  uint64_t TotalSize = 0;
  for (size_t Idx = 0, Cnt = SectionSizes.size(); Idx < Cnt; Idx++) {
    uint64_t AlignedSize = (SectionSizes[Idx] + Alignment - 1) / 
                           Alignment * Alignment;
    TotalSize += AlignedSize;
  }
  return TotalSize;
}

// Compute an upper bound of the memory size that is required to load all sections
void RuntimeDyldImpl::computeTotalAllocSize(ObjectImage &Obj, 
    uint64_t& CodeSize, uint64_t& DataSizeRO, uint64_t& DataSizeRW) {
  // Compute the size of all sections required for execution
  std::vector<uint64_t> CodeSectionSizes;
  std::vector<uint64_t> ROSectionSizes;
  std::vector<uint64_t> RWSectionSizes;
  uint64_t MaxAlignment = sizeof(void*);

  // Collect sizes of all sections to be loaded; 
  // also determine the max alignment of all sections
  for (section_iterator SI = Obj.begin_sections(), SE = Obj.end_sections(); 
       SI != SE; ++SI) {
    const SectionRef &Section = *SI;

    bool IsRequired;
    Check(Section.isRequiredForExecution(IsRequired));
    
    // Consider only the sections that are required to be loaded for execution
    if (IsRequired) {
      uint64_t DataSize = 0;
      uint64_t Alignment64 = 0;
      bool IsCode = false;
      bool IsReadOnly = false;
      StringRef Name;
      Check(Section.getSize(DataSize));
      Check(Section.getAlignment(Alignment64));
      Check(Section.isText(IsCode));
      Check(Section.isReadOnlyData(IsReadOnly));
      Check(Section.getName(Name));
      unsigned Alignment = (unsigned) Alignment64 & 0xffffffffL;
      
      uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section);
      uint64_t SectionSize = DataSize + StubBufSize;
      
      // The .eh_frame section (at least on Linux) needs an extra four bytes padded
      // with zeroes added at the end.  For MachO objects, this section has a
      // slightly different name, so this won't have any effect for MachO objects.
      if (Name == ".eh_frame")
        SectionSize += 4;
        
      if (SectionSize > 0) {
        // save the total size of the section
        if (IsCode) {
          CodeSectionSizes.push_back(SectionSize);
        } else if (IsReadOnly) {
          ROSectionSizes.push_back(SectionSize);
        } else {
          RWSectionSizes.push_back(SectionSize);
        }
        // update the max alignment
        if (Alignment > MaxAlignment) {
          MaxAlignment = Alignment;
        }
      }      
    }
  }

  // Compute the size of all common symbols
  uint64_t CommonSize = 0;
  for (symbol_iterator I = Obj.begin_symbols(), E = Obj.end_symbols();
       I != E; ++I) {
    uint32_t Flags = I->getFlags();
    if (Flags & SymbolRef::SF_Common) {
      // Add the common symbols to a list.  We'll allocate them all below.
      uint64_t Size = 0;
      Check(I->getSize(Size));
      CommonSize += Size;
    }
  }
  if (CommonSize != 0) {
    RWSectionSizes.push_back(CommonSize);
  }

  // Compute the required allocation space for each different type of sections 
  // (code, read-only data, read-write data) assuming that all sections are 
  // allocated with the max alignment. Note that we cannot compute with the
  // individual alignments of the sections, because then the required size 
  // depends on the order, in which the sections are allocated.
  CodeSize = computeAllocationSizeForSections(CodeSectionSizes, MaxAlignment);
  DataSizeRO = computeAllocationSizeForSections(ROSectionSizes, MaxAlignment);
  DataSizeRW = computeAllocationSizeForSections(RWSectionSizes, MaxAlignment);   
}

// compute stub buffer size for the given section
unsigned RuntimeDyldImpl::computeSectionStubBufSize(ObjectImage &Obj, 
                                                    const SectionRef &Section) {
  unsigned StubSize = getMaxStubSize();
  if (StubSize == 0) {
     return 0;
  }
  // FIXME: this is an inefficient way to handle this. We should computed the
  // necessary section allocation size in loadObject by walking all the sections
  // once.
  unsigned StubBufSize = 0;
  for (section_iterator SI = Obj.begin_sections(),
                        SE = Obj.end_sections();
       SI != SE; ++SI) {
    section_iterator RelSecI = SI->getRelocatedSection();
    if (!(RelSecI == Section))
      continue;

    for (relocation_iterator I = SI->relocation_begin(),
                             E = SI->relocation_end();
         I != E; ++I) {
      StubBufSize += StubSize;
    }
  }
  
  // Get section data size and alignment
  uint64_t Alignment64;
  uint64_t DataSize;
  Check(Section.getSize(DataSize));
  Check(Section.getAlignment(Alignment64));

  // Add stubbuf size alignment
  unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
  unsigned StubAlignment = getStubAlignment();
  unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment);
  if (StubAlignment > EndAlignment)
     StubBufSize += StubAlignment - EndAlignment;
  return StubBufSize;
}

void RuntimeDyldImpl::emitCommonSymbols(ObjectImage &Obj,
                                        const CommonSymbolMap &CommonSymbols,
                                        uint64_t TotalSize,
                                        SymbolTableMap &SymbolTable) {
  // Allocate memory for the section
  unsigned SectionID = Sections.size();
  uint8_t *Addr = MemMgr->allocateDataSection(
    TotalSize, sizeof(void*), SectionID, StringRef(), false);
  if (!Addr)
    report_fatal_error("Unable to allocate memory for common symbols!");
  uint64_t Offset = 0;
  Sections.push_back(SectionEntry(StringRef(), Addr, TotalSize, 0));
  memset(Addr, 0, TotalSize);

  DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID
               << " new addr: " << format("%p", Addr)
               << " DataSize: " << TotalSize
               << "\n");

  // Assign the address of each symbol
  for (CommonSymbolMap::const_iterator it = CommonSymbols.begin(),
       itEnd = CommonSymbols.end(); it != itEnd; it++) {
    uint64_t Size = it->second.first;
    uint64_t Align = it->second.second;
    StringRef Name;
    it->first.getName(Name);
    if (Align) {
      // This symbol has an alignment requirement.
      uint64_t AlignOffset = OffsetToAlignment((uint64_t)Addr, Align);
      Addr += AlignOffset;
      Offset += AlignOffset;
      DEBUG(dbgs() << "Allocating common symbol " << Name << " address " <<
                      format("%p\n", Addr));
    }
    Obj.updateSymbolAddress(it->first, (uint64_t)Addr);
    SymbolTable[Name.data()] = SymbolLoc(SectionID, Offset);
    Offset += Size;
    Addr += Size;
  }
}

unsigned RuntimeDyldImpl::emitSection(ObjectImage &Obj,
                                      const SectionRef &Section,
                                      bool IsCode) {

  StringRef data;
  uint64_t Alignment64;
  Check(Section.getContents(data));
  Check(Section.getAlignment(Alignment64));

  unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
  bool IsRequired;
  bool IsVirtual;
  bool IsZeroInit;
  bool IsReadOnly;
  uint64_t DataSize;
  unsigned PaddingSize = 0;
  unsigned StubBufSize = 0;
  StringRef Name;
  Check(Section.isRequiredForExecution(IsRequired));
  Check(Section.isVirtual(IsVirtual));
  Check(Section.isZeroInit(IsZeroInit));
  Check(Section.isReadOnlyData(IsReadOnly));
  Check(Section.getSize(DataSize));
  Check(Section.getName(Name));
    
  StubBufSize = computeSectionStubBufSize(Obj, Section); 

  // The .eh_frame section (at least on Linux) needs an extra four bytes padded
  // with zeroes added at the end.  For MachO objects, this section has a
  // slightly different name, so this won't have any effect for MachO objects.
  if (Name == ".eh_frame")
    PaddingSize = 4;

  uintptr_t Allocate;
  unsigned SectionID = Sections.size();
  uint8_t *Addr;
  const char *pData = 0;

  // Some sections, such as debug info, don't need to be loaded for execution.
  // Leave those where they are.
  if (IsRequired) {
    Allocate = DataSize + PaddingSize + StubBufSize;
    Addr = IsCode
      ? MemMgr->allocateCodeSection(Allocate, Alignment, SectionID, Name)
      : MemMgr->allocateDataSection(Allocate, Alignment, SectionID, Name,
                                    IsReadOnly);
    if (!Addr)
      report_fatal_error("Unable to allocate section memory!");

    // Virtual sections have no data in the object image, so leave pData = 0
    if (!IsVirtual)
      pData = data.data();

    // Zero-initialize or copy the data from the image
    if (IsZeroInit || IsVirtual)
      memset(Addr, 0, DataSize);
    else
      memcpy(Addr, pData, DataSize);

    // Fill in any extra bytes we allocated for padding
    if (PaddingSize != 0) {
      memset(Addr + DataSize, 0, PaddingSize);
      // Update the DataSize variable so that the stub offset is set correctly.
      DataSize += PaddingSize;
    }

    DEBUG(dbgs() << "emitSection SectionID: " << SectionID
                 << " Name: " << Name
                 << " obj addr: " << format("%p", pData)
                 << " new addr: " << format("%p", Addr)
                 << " DataSize: " << DataSize
                 << " StubBufSize: " << StubBufSize
                 << " Allocate: " << Allocate
                 << "\n");
    Obj.updateSectionAddress(Section, (uint64_t)Addr);
  }
  else {
    // Even if we didn't load the section, we need to record an entry for it
    // to handle later processing (and by 'handle' I mean don't do anything
    // with these sections).
    Allocate = 0;
    Addr = 0;
    DEBUG(dbgs() << "emitSection SectionID: " << SectionID
                 << " Name: " << Name
                 << " obj addr: " << format("%p", data.data())
                 << " new addr: 0"
                 << " DataSize: " << DataSize
                 << " StubBufSize: " << StubBufSize
                 << " Allocate: " << Allocate
                 << "\n");
  }

  Sections.push_back(SectionEntry(Name, Addr, DataSize, (uintptr_t)pData));
  return SectionID;
}

unsigned RuntimeDyldImpl::findOrEmitSection(ObjectImage &Obj,
                                            const SectionRef &Section,
                                            bool IsCode,
                                            ObjSectionToIDMap &LocalSections) {

  unsigned SectionID = 0;
  ObjSectionToIDMap::iterator i = LocalSections.find(Section);
  if (i != LocalSections.end())
    SectionID = i->second;
  else {
    SectionID = emitSection(Obj, Section, IsCode);
    LocalSections[Section] = SectionID;
  }
  return SectionID;
}

void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE,
                                              unsigned SectionID) {
  Relocations[SectionID].push_back(RE);
}

void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE,
                                             StringRef SymbolName) {
  // Relocation by symbol.  If the symbol is found in the global symbol table,
  // create an appropriate section relocation.  Otherwise, add it to
  // ExternalSymbolRelocations.
  SymbolTableMap::const_iterator Loc =
      GlobalSymbolTable.find(SymbolName);
  if (Loc == GlobalSymbolTable.end()) {
    ExternalSymbolRelocations[SymbolName].push_back(RE);
  } else {
    // Copy the RE since we want to modify its addend.
    RelocationEntry RECopy = RE;
    RECopy.Addend += Loc->second.second;
    Relocations[Loc->second.first].push_back(RECopy);
  }
}

uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr) {
  if (Arch == Triple::aarch64) {
    // This stub has to be able to access the full address space,
    // since symbol lookup won't necessarily find a handy, in-range,
    // PLT stub for functions which could be anywhere.
    uint32_t *StubAddr = (uint32_t*)Addr;

    // Stub can use ip0 (== x16) to calculate address
    *StubAddr = 0xd2e00010; // movz ip0, #:abs_g3:<addr>
    StubAddr++;
    *StubAddr = 0xf2c00010; // movk ip0, #:abs_g2_nc:<addr>
    StubAddr++;
    *StubAddr = 0xf2a00010; // movk ip0, #:abs_g1_nc:<addr>
    StubAddr++;
    *StubAddr = 0xf2800010; // movk ip0, #:abs_g0_nc:<addr>
    StubAddr++;
    *StubAddr = 0xd61f0200; // br ip0

    return Addr;
  } else if (Arch == Triple::arm) {
    // TODO: There is only ARM far stub now. We should add the Thumb stub,
    // and stubs for branches Thumb - ARM and ARM - Thumb.
    uint32_t *StubAddr = (uint32_t*)Addr;
    *StubAddr = 0xe51ff004; // ldr pc,<label>
    return (uint8_t*)++StubAddr;
  } else if (Arch == Triple::mipsel || Arch == Triple::mips) {
    uint32_t *StubAddr = (uint32_t*)Addr;
    // 0:   3c190000        lui     t9,%hi(addr).
    // 4:   27390000        addiu   t9,t9,%lo(addr).
    // 8:   03200008        jr      t9.
    // c:   00000000        nop.
    const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000;
    const unsigned JrT9Instr = 0x03200008, NopInstr = 0x0;

    *StubAddr = LuiT9Instr;
    StubAddr++;
    *StubAddr = AdduiT9Instr;
    StubAddr++;
    *StubAddr = JrT9Instr;
    StubAddr++;
    *StubAddr = NopInstr;
    return Addr;
  } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
    // PowerPC64 stub: the address points to a function descriptor
    // instead of the function itself. Load the function address
    // on r11 and sets it to control register. Also loads the function
    // TOC in r2 and environment pointer to r11.
    writeInt32BE(Addr,    0x3D800000); // lis   r12, highest(addr)
    writeInt32BE(Addr+4,  0x618C0000); // ori   r12, higher(addr)
    writeInt32BE(Addr+8,  0x798C07C6); // sldi  r12, r12, 32
    writeInt32BE(Addr+12, 0x658C0000); // oris  r12, r12, h(addr)
    writeInt32BE(Addr+16, 0x618C0000); // ori   r12, r12, l(addr)
    writeInt32BE(Addr+20, 0xF8410028); // std   r2,  40(r1)
    writeInt32BE(Addr+24, 0xE96C0000); // ld    r11, 0(r12)
    writeInt32BE(Addr+28, 0xE84C0008); // ld    r2,  0(r12)
    writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11
    writeInt32BE(Addr+36, 0xE96C0010); // ld    r11, 16(r2)
    writeInt32BE(Addr+40, 0x4E800420); // bctr

    return Addr;
  } else if (Arch == Triple::systemz) {
    writeInt16BE(Addr,    0xC418);     // lgrl %r1,.+8
    writeInt16BE(Addr+2,  0x0000);
    writeInt16BE(Addr+4,  0x0004);
    writeInt16BE(Addr+6,  0x07F1);     // brc 15,%r1
    // 8-byte address stored at Addr + 8
    return Addr;
  } else if (Arch == Triple::x86_64) {
    *Addr      = 0xFF; // jmp
    *(Addr+1)  = 0x25; // rip
    // 32-bit PC-relative address of the GOT entry will be stored at Addr+2
  }
  return Addr;
}

// Assign an address to a symbol name and resolve all the relocations
// associated with it.
void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID,
                                             uint64_t Addr) {
  // The address to use for relocation resolution is not
  // the address of the local section buffer. We must be doing
  // a remote execution environment of some sort. Relocations can't
  // be applied until all the sections have been moved.  The client must
  // trigger this with a call to MCJIT::finalize() or
  // RuntimeDyld::resolveRelocations().
  //
  // Addr is a uint64_t because we can't assume the pointer width
  // of the target is the same as that of the host. Just use a generic
  // "big enough" type.
  Sections[SectionID].LoadAddress = Addr;
}

void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs,
                                            uint64_t Value) {
  for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
    const RelocationEntry &RE = Relocs[i];
    // Ignore relocations for sections that were not loaded
    if (Sections[RE.SectionID].Address == 0)
      continue;
    resolveRelocation(RE, Value);
  }
}

void RuntimeDyldImpl::resolveExternalSymbols() {
  while(!ExternalSymbolRelocations.empty()) {
    StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin();

    StringRef Name = i->first();
    if (Name.size() == 0) {
      // This is an absolute symbol, use an address of zero.
      DEBUG(dbgs() << "Resolving absolute relocations." << "\n");
      RelocationList &Relocs = i->second;
      resolveRelocationList(Relocs, 0);
    } else {
      uint64_t Addr = 0;
      SymbolTableMap::const_iterator Loc = GlobalSymbolTable.find(Name);
      if (Loc == GlobalSymbolTable.end()) {
          // This is an external symbol, try to get its address from
          // MemoryManager.
          Addr = MemMgr->getSymbolAddress(Name.data());
          // The call to getSymbolAddress may have caused additional modules to
          // be loaded, which may have added new entries to the
          // ExternalSymbolRelocations map.  Consquently, we need to update our
          // iterator.  This is also why retrieval of the relocation list
          // associated with this symbol is deferred until below this point.
          // New entries may have been added to the relocation list.
          i = ExternalSymbolRelocations.find(Name);
      } else {
        // We found the symbol in our global table.  It was probably in a
        // Module that we loaded previously.
        SymbolLoc SymLoc = Loc->second;
        Addr = getSectionLoadAddress(SymLoc.first) + SymLoc.second;
      }

      // FIXME: Implement error handling that doesn't kill the host program!
      if (!Addr)
        report_fatal_error("Program used external function '" + Name +
                          "' which could not be resolved!");

      updateGOTEntries(Name, Addr);
      DEBUG(dbgs() << "Resolving relocations Name: " << Name
              << "\t" << format("0x%lx", Addr)
              << "\n");
      // This list may have been updated when we called getSymbolAddress, so
      // don't change this code to get the list earlier.
      RelocationList &Relocs = i->second;
      resolveRelocationList(Relocs, Addr);
    }

    ExternalSymbolRelocations.erase(i);
  }
}


//===----------------------------------------------------------------------===//
// RuntimeDyld class implementation
RuntimeDyld::RuntimeDyld(RTDyldMemoryManager *mm) {
  // FIXME: There's a potential issue lurking here if a single instance of
  // RuntimeDyld is used to load multiple objects.  The current implementation
  // associates a single memory manager with a RuntimeDyld instance.  Even
  // though the public class spawns a new 'impl' instance for each load,
  // they share a single memory manager.  This can become a problem when page
  // permissions are applied.
  Dyld = 0;
  MM = mm;
}

RuntimeDyld::~RuntimeDyld() {
  delete Dyld;
}

ObjectImage *RuntimeDyld::loadObject(ObjectFile *InputObject) {
  if (!Dyld) {
    if (InputObject->isELF())
      Dyld = new RuntimeDyldELF(MM);
    else if (InputObject->isMachO())
      Dyld = new RuntimeDyldMachO(MM);
    else
      report_fatal_error("Incompatible object format!");
  } else {
    if (!Dyld->isCompatibleFile(InputObject))
      report_fatal_error("Incompatible object format!");
  }

  return Dyld->loadObject(InputObject);
}

ObjectImage *RuntimeDyld::loadObject(ObjectBuffer *InputBuffer) {
  if (!Dyld) {
    sys::fs::file_magic Type =
        sys::fs::identify_magic(InputBuffer->getBuffer());
    switch (Type) {
    case sys::fs::file_magic::elf_relocatable:
    case sys::fs::file_magic::elf_executable:
    case sys::fs::file_magic::elf_shared_object:
    case sys::fs::file_magic::elf_core:
      Dyld = new RuntimeDyldELF(MM);
      break;
    case sys::fs::file_magic::macho_object:
    case sys::fs::file_magic::macho_executable:
    case sys::fs::file_magic::macho_fixed_virtual_memory_shared_lib:
    case sys::fs::file_magic::macho_core:
    case sys::fs::file_magic::macho_preload_executable:
    case sys::fs::file_magic::macho_dynamically_linked_shared_lib:
    case sys::fs::file_magic::macho_dynamic_linker:
    case sys::fs::file_magic::macho_bundle:
    case sys::fs::file_magic::macho_dynamically_linked_shared_lib_stub:
    case sys::fs::file_magic::macho_dsym_companion:
      Dyld = new RuntimeDyldMachO(MM);
      break;
    case sys::fs::file_magic::unknown:
    case sys::fs::file_magic::bitcode:
    case sys::fs::file_magic::archive:
    case sys::fs::file_magic::coff_object:
    case sys::fs::file_magic::coff_import_library:
    case sys::fs::file_magic::pecoff_executable:
    case sys::fs::file_magic::macho_universal_binary:
    case sys::fs::file_magic::windows_resource:
      report_fatal_error("Incompatible object format!");
    }
  } else {
    if (!Dyld->isCompatibleFormat(InputBuffer))
      report_fatal_error("Incompatible object format!");
  }

  return Dyld->loadObject(InputBuffer);
}

void *RuntimeDyld::getSymbolAddress(StringRef Name) {
  if (!Dyld)
    return NULL;
  return Dyld->getSymbolAddress(Name);
}

uint64_t RuntimeDyld::getSymbolLoadAddress(StringRef Name) {
  if (!Dyld)
    return 0;
  return Dyld->getSymbolLoadAddress(Name);
}

void RuntimeDyld::resolveRelocations() {
  Dyld->resolveRelocations();
}

void RuntimeDyld::reassignSectionAddress(unsigned SectionID,
                                         uint64_t Addr) {
  Dyld->reassignSectionAddress(SectionID, Addr);
}

void RuntimeDyld::mapSectionAddress(const void *LocalAddress,
                                    uint64_t TargetAddress) {
  Dyld->mapSectionAddress(LocalAddress, TargetAddress);
}

StringRef RuntimeDyld::getErrorString() {
  return Dyld->getErrorString();
}

void RuntimeDyld::registerEHFrames() {
  if (Dyld)
    Dyld->registerEHFrames();
}

void RuntimeDyld::deregisterEHFrames() {
  if (Dyld)
    Dyld->deregisterEHFrames();
}

} // end namespace llvm