summaryrefslogtreecommitdiff
path: root/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp
blob: f7015cdf6b5ea79d554b8da61f7b49bc5daf9026 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
//===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Implementation of ELF support for the MC-JIT runtime dynamic linker.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "dyld"
#include "RuntimeDyldELF.h"
#include "JITRegistrar.h"
#include "ObjectImageCommon.h"
#include "llvm/ADT/OwningPtr.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/IntervalMap.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/ExecutionEngine/ObjectImage.h"
#include "llvm/ExecutionEngine/ObjectBuffer.h"
#include "llvm/Support/ELF.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Object/ELF.h"
using namespace llvm;
using namespace llvm::object;

namespace {

static inline
error_code check(error_code Err) {
  if (Err) {
    report_fatal_error(Err.message());
  }
  return Err;
}

template<support::endianness target_endianness, bool is64Bits>
class DyldELFObject : public ELFObjectFile<target_endianness, is64Bits> {
  LLVM_ELF_IMPORT_TYPES(target_endianness, is64Bits)

  typedef Elf_Shdr_Impl<target_endianness, is64Bits> Elf_Shdr;
  typedef Elf_Sym_Impl<target_endianness, is64Bits> Elf_Sym;
  typedef Elf_Rel_Impl<target_endianness, is64Bits, false> Elf_Rel;
  typedef Elf_Rel_Impl<target_endianness, is64Bits, true> Elf_Rela;

  typedef Elf_Ehdr_Impl<target_endianness, is64Bits> Elf_Ehdr;

  typedef typename ELFDataTypeTypedefHelper<
          target_endianness, is64Bits>::value_type addr_type;

public:
  DyldELFObject(MemoryBuffer *Wrapper, error_code &ec);

  void updateSectionAddress(const SectionRef &Sec, uint64_t Addr);
  void updateSymbolAddress(const SymbolRef &Sym, uint64_t Addr);

  // Methods for type inquiry through isa, cast and dyn_cast
  static inline bool classof(const Binary *v) {
    return (isa<ELFObjectFile<target_endianness, is64Bits> >(v)
            && classof(cast<ELFObjectFile<target_endianness, is64Bits> >(v)));
  }
  static inline bool classof(
      const ELFObjectFile<target_endianness, is64Bits> *v) {
    return v->isDyldType();
  }
};

template<support::endianness target_endianness, bool is64Bits>
class ELFObjectImage : public ObjectImageCommon {
  protected:
    DyldELFObject<target_endianness, is64Bits> *DyldObj;
    bool Registered;

  public:
    ELFObjectImage(ObjectBuffer *Input,
                   DyldELFObject<target_endianness, is64Bits> *Obj)
    : ObjectImageCommon(Input, Obj),
      DyldObj(Obj),
      Registered(false) {}

    virtual ~ELFObjectImage() {
      if (Registered)
        deregisterWithDebugger();
    }

    // Subclasses can override these methods to update the image with loaded
    // addresses for sections and common symbols
    virtual void updateSectionAddress(const SectionRef &Sec, uint64_t Addr)
    {
      DyldObj->updateSectionAddress(Sec, Addr);
    }

    virtual void updateSymbolAddress(const SymbolRef &Sym, uint64_t Addr)
    {
      DyldObj->updateSymbolAddress(Sym, Addr);
    }

    virtual void registerWithDebugger()
    {
      JITRegistrar::getGDBRegistrar().registerObject(*Buffer);
      Registered = true;
    }
    virtual void deregisterWithDebugger()
    {
      JITRegistrar::getGDBRegistrar().deregisterObject(*Buffer);
    }
};

// The MemoryBuffer passed into this constructor is just a wrapper around the
// actual memory.  Ultimately, the Binary parent class will take ownership of
// this MemoryBuffer object but not the underlying memory.
template<support::endianness target_endianness, bool is64Bits>
DyldELFObject<target_endianness, is64Bits>::DyldELFObject(MemoryBuffer *Wrapper,
                                                          error_code &ec)
  : ELFObjectFile<target_endianness, is64Bits>(Wrapper, ec) {
  this->isDyldELFObject = true;
}

template<support::endianness target_endianness, bool is64Bits>
void DyldELFObject<target_endianness, is64Bits>::updateSectionAddress(
                                                       const SectionRef &Sec,
                                                       uint64_t Addr) {
  DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
  Elf_Shdr *shdr = const_cast<Elf_Shdr*>(
                          reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));

  // This assumes the address passed in matches the target address bitness
  // The template-based type cast handles everything else.
  shdr->sh_addr = static_cast<addr_type>(Addr);
}

template<support::endianness target_endianness, bool is64Bits>
void DyldELFObject<target_endianness, is64Bits>::updateSymbolAddress(
                                                       const SymbolRef &SymRef,
                                                       uint64_t Addr) {

  Elf_Sym *sym = const_cast<Elf_Sym*>(
                                 ELFObjectFile<target_endianness, is64Bits>::
                                   getSymbol(SymRef.getRawDataRefImpl()));

  // This assumes the address passed in matches the target address bitness
  // The template-based type cast handles everything else.
  sym->st_value = static_cast<addr_type>(Addr);
}

} // namespace


namespace llvm {

ObjectImage *RuntimeDyldELF::createObjectImage(ObjectBuffer *Buffer) {
  if (Buffer->getBufferSize() < ELF::EI_NIDENT)
    llvm_unreachable("Unexpected ELF object size");
  std::pair<unsigned char, unsigned char> Ident = std::make_pair(
                         (uint8_t)Buffer->getBufferStart()[ELF::EI_CLASS],
                         (uint8_t)Buffer->getBufferStart()[ELF::EI_DATA]);
  error_code ec;

  if (Ident.first == ELF::ELFCLASS32 && Ident.second == ELF::ELFDATA2LSB) {
    DyldELFObject<support::little, false> *Obj =
           new DyldELFObject<support::little, false>(Buffer->getMemBuffer(), ec);
    return new ELFObjectImage<support::little, false>(Buffer, Obj);
  }
  else if (Ident.first == ELF::ELFCLASS32 && Ident.second == ELF::ELFDATA2MSB) {
    DyldELFObject<support::big, false> *Obj =
           new DyldELFObject<support::big, false>(Buffer->getMemBuffer(), ec);
    return new ELFObjectImage<support::big, false>(Buffer, Obj);
  }
  else if (Ident.first == ELF::ELFCLASS64 && Ident.second == ELF::ELFDATA2MSB) {
    DyldELFObject<support::big, true> *Obj =
           new DyldELFObject<support::big, true>(Buffer->getMemBuffer(), ec);
    return new ELFObjectImage<support::big, true>(Buffer, Obj);
  }
  else if (Ident.first == ELF::ELFCLASS64 && Ident.second == ELF::ELFDATA2LSB) {
    DyldELFObject<support::little, true> *Obj =
           new DyldELFObject<support::little, true>(Buffer->getMemBuffer(), ec);
    return new ELFObjectImage<support::little, true>(Buffer, Obj);
  }
  else
    llvm_unreachable("Unexpected ELF format");
}

RuntimeDyldELF::~RuntimeDyldELF() {
}

void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
                                             uint64_t Offset,
                                             uint64_t Value,
                                             uint32_t Type,
                                             int64_t Addend) {
  switch (Type) {
  default:
    llvm_unreachable("Relocation type not implemented yet!");
  break;
  case ELF::R_X86_64_64: {
    uint64_t *Target = reinterpret_cast<uint64_t*>(Section.Address + Offset);
    *Target = Value + Addend;
    DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend))
                 << " at " << format("%p\n",Target));
    break;
  }
  case ELF::R_X86_64_32:
  case ELF::R_X86_64_32S: {
    Value += Addend;
    assert((Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) ||
           (Type == ELF::R_X86_64_32S && 
             ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN)));
    uint32_t TruncatedAddr = (Value & 0xFFFFFFFF);
    uint32_t *Target = reinterpret_cast<uint32_t*>(Section.Address + Offset);
    *Target = TruncatedAddr;
    DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr)
                 << " at " << format("%p\n",Target));
    break;
  }
  case ELF::R_X86_64_PC32: {
    // Get the placeholder value from the generated object since
    // a previous relocation attempt may have overwritten the loaded version
    uint32_t *Placeholder = reinterpret_cast<uint32_t*>(Section.ObjAddress
                                                                   + Offset);
    uint32_t *Target = reinterpret_cast<uint32_t*>(Section.Address + Offset);
    uint64_t  FinalAddress = Section.LoadAddress + Offset;
    int64_t RealOffset = *Placeholder + Value + Addend - FinalAddress;
    assert(RealOffset <= INT32_MAX && RealOffset >= INT32_MIN);
    int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
    *Target = TruncOffset;
    break;
  }
  }
}

void RuntimeDyldELF::resolveX86Relocation(const SectionEntry &Section,
                                          uint64_t Offset,
                                          uint32_t Value,
                                          uint32_t Type,
                                          int32_t Addend) {
  switch (Type) {
  case ELF::R_386_32: {
    // Get the placeholder value from the generated object since
    // a previous relocation attempt may have overwritten the loaded version
    uint32_t *Placeholder = reinterpret_cast<uint32_t*>(Section.ObjAddress
                                                                   + Offset);
    uint32_t *Target = reinterpret_cast<uint32_t*>(Section.Address + Offset);
    *Target = *Placeholder + Value + Addend;
    break;
  }
  case ELF::R_386_PC32: {
    // Get the placeholder value from the generated object since
    // a previous relocation attempt may have overwritten the loaded version
    uint32_t *Placeholder = reinterpret_cast<uint32_t*>(Section.ObjAddress
                                                                   + Offset);
    uint32_t *Target = reinterpret_cast<uint32_t*>(Section.Address + Offset);
    uint32_t  FinalAddress = ((Section.LoadAddress + Offset) & 0xFFFFFFFF);
    uint32_t RealOffset = *Placeholder + Value + Addend - FinalAddress;
    *Target = RealOffset;
    break;
    }
    default:
      // There are other relocation types, but it appears these are the
      // only ones currently used by the LLVM ELF object writer
      llvm_unreachable("Relocation type not implemented yet!");
      break;
  }
}

void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section,
                                          uint64_t Offset,
                                          uint32_t Value,
                                          uint32_t Type,
                                          int32_t Addend) {
  // TODO: Add Thumb relocations.
  uint32_t* TargetPtr = (uint32_t*)(Section.Address + Offset);
  uint32_t FinalAddress = ((Section.LoadAddress + Offset) & 0xFFFFFFFF);
  Value += Addend;

  DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: "
               << Section.Address + Offset
               << " FinalAddress: " << format("%p",FinalAddress)
               << " Value: " << format("%x",Value)
               << " Type: " << format("%x",Type)
               << " Addend: " << format("%x",Addend)
               << "\n");

  switch(Type) {
  default:
    llvm_unreachable("Not implemented relocation type!");

  // Write a 32bit value to relocation address, taking into account the 
  // implicit addend encoded in the target.
  case ELF::R_ARM_ABS32 :
    *TargetPtr += Value;
    break;

  // Write first 16 bit of 32 bit value to the mov instruction.
  // Last 4 bit should be shifted.
  case ELF::R_ARM_MOVW_ABS_NC :
    // We are not expecting any other addend in the relocation address.
    // Using 0x000F0FFF because MOVW has its 16 bit immediate split into 2 
    // non-contiguous fields.
    assert((*TargetPtr & 0x000F0FFF) == 0);
    Value = Value & 0xFFFF;
    *TargetPtr |= Value & 0xFFF;
    *TargetPtr |= ((Value >> 12) & 0xF) << 16;
    break;

  // Write last 16 bit of 32 bit value to the mov instruction.
  // Last 4 bit should be shifted.
  case ELF::R_ARM_MOVT_ABS :
    // We are not expecting any other addend in the relocation address.
    // Use 0x000F0FFF for the same reason as R_ARM_MOVW_ABS_NC.
    assert((*TargetPtr & 0x000F0FFF) == 0);
    Value = (Value >> 16) & 0xFFFF;
    *TargetPtr |= Value & 0xFFF;
    *TargetPtr |= ((Value >> 12) & 0xF) << 16;
    break;

  // Write 24 bit relative value to the branch instruction.
  case ELF::R_ARM_PC24 :    // Fall through.
  case ELF::R_ARM_CALL :    // Fall through.
  case ELF::R_ARM_JUMP24 :
    int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8);
    RelValue = (RelValue & 0x03FFFFFC) >> 2;
    *TargetPtr &= 0xFF000000;
    *TargetPtr |= RelValue;
    break;
  }
}

void RuntimeDyldELF::resolveMIPSRelocation(const SectionEntry &Section,
                                           uint64_t Offset,
                                           uint32_t Value,
                                           uint32_t Type,
                                           int32_t Addend) {
  uint32_t* TargetPtr = (uint32_t*)(Section.Address + Offset);
  Value += Addend;

  DEBUG(dbgs() << "resolveMipselocation, LocalAddress: "
               << Section.Address + Offset
               << " FinalAddress: "
               << format("%p",Section.LoadAddress + Offset)
               << " Value: " << format("%x",Value)
               << " Type: " << format("%x",Type)
               << " Addend: " << format("%x",Addend)
               << "\n");

  switch(Type) {
  default:
    llvm_unreachable("Not implemented relocation type!");
    break;
  case ELF::R_MIPS_32:
    *TargetPtr = Value + (*TargetPtr);
    break;
  case ELF::R_MIPS_26:
    *TargetPtr = ((*TargetPtr) & 0xfc000000) | (( Value & 0x0fffffff) >> 2);
    break;
  case ELF::R_MIPS_HI16:
    // Get the higher 16-bits. Also add 1 if bit 15 is 1.
    Value += ((*TargetPtr) & 0x0000ffff) << 16;
    *TargetPtr = ((*TargetPtr) & 0xffff0000) |
                 (((Value + 0x8000) >> 16) & 0xffff);
    break;
   case ELF::R_MIPS_LO16:
    Value += ((*TargetPtr) & 0x0000ffff);
    *TargetPtr = ((*TargetPtr) & 0xffff0000) | (Value & 0xffff);
    break;
   }
}

// Return the .TOC. section address to R_PPC64_TOC relocations.
uint64_t RuntimeDyldELF::findPPC64TOC() const {
  // The TOC consists of sections .got, .toc, .tocbss, .plt in that
  // order. The TOC starts where the first of these sections starts.
  SectionList::const_iterator it = Sections.begin();
  SectionList::const_iterator ite = Sections.end();
  for (; it != ite; ++it) {
    if (it->Name == ".got" ||
        it->Name == ".toc" ||
        it->Name == ".tocbss" ||
        it->Name == ".plt")
      break;
  }
  if (it == ite) {
    // This may happen for
    // * references to TOC base base (sym@toc, .odp relocation) without
    // a .toc directive.
    // In this case just use the first section (which is usually
    // the .odp) since the code won't reference the .toc base
    // directly.
    it = Sections.begin();
  }
  assert (it != ite);
  // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
  // thus permitting a full 64 Kbytes segment.
  return it->LoadAddress + 0x8000;
}

// Returns the sections and offset associated with the ODP entry referenced
// by Symbol.
void RuntimeDyldELF::findOPDEntrySection(ObjectImage &Obj,
                                         ObjSectionToIDMap &LocalSections,
                                         RelocationValueRef &Rel) {
  // Get the ELF symbol value (st_value) to compare with Relocation offset in
  // .opd entries

  error_code err;
  for (section_iterator si = Obj.begin_sections(),
     se = Obj.end_sections(); si != se; si.increment(err)) {
    StringRef SectionName;
    check(si->getName(SectionName));
    if (SectionName != ".opd")
      continue;

    for (relocation_iterator i = si->begin_relocations(),
         e = si->end_relocations(); i != e;) {
      check(err);

      // The R_PPC64_ADDR64 relocation indicates the first field
      // of a .opd entry
      uint64_t TypeFunc;
      check(i->getType(TypeFunc));
      if (TypeFunc != ELF::R_PPC64_ADDR64) {
        i.increment(err);
        continue;
      }

      SymbolRef TargetSymbol;
      uint64_t TargetSymbolOffset;
      int64_t TargetAdditionalInfo;
      check(i->getSymbol(TargetSymbol));
      check(i->getOffset(TargetSymbolOffset));
      check(i->getAdditionalInfo(TargetAdditionalInfo));

      i = i.increment(err);
      if (i == e)
        break;
      check(err);

      // Just check if following relocation is a R_PPC64_TOC
      uint64_t TypeTOC;
      check(i->getType(TypeTOC));
      if (TypeTOC != ELF::R_PPC64_TOC)
        continue;

      // Finally compares the Symbol value and the target symbol offset
      // to check if this .opd entry refers to the symbol the relocation
      // points to.
      if (Rel.Addend != (intptr_t)TargetSymbolOffset)
        continue;

      section_iterator tsi(Obj.end_sections());
      check(TargetSymbol.getSection(tsi));
      Rel.SectionID = findOrEmitSection(Obj, (*tsi), true, LocalSections);
      Rel.Addend = (intptr_t)TargetAdditionalInfo;
      return;
    }
  }
  llvm_unreachable("Attempting to get address of ODP entry!");
}

// Relocation masks following the #lo(value), #hi(value), #higher(value),
// and #highest(value) macros defined in section 4.5.1. Relocation Types
// in PPC-elf64abi document.
//
static inline
uint16_t applyPPClo (uint64_t value)
{
  return value & 0xffff;
}

static inline
uint16_t applyPPChi (uint64_t value)
{
  return (value >> 16) & 0xffff;
}

static inline
uint16_t applyPPChigher (uint64_t value)
{
  return (value >> 32) & 0xffff;
}

static inline
uint16_t applyPPChighest (uint64_t value)
{
  return (value >> 48) & 0xffff;
}

void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section,
                                            uint64_t Offset,
                                            uint64_t Value,
                                            uint32_t Type,
                                            int64_t Addend) {
  uint8_t* LocalAddress = Section.Address + Offset;
  switch (Type) {
  default:
    llvm_unreachable("Relocation type not implemented yet!");
  break;
  case ELF::R_PPC64_ADDR16_LO :
    writeInt16BE(LocalAddress, applyPPClo (Value + Addend));
    break;
  case ELF::R_PPC64_ADDR16_HI :
    writeInt16BE(LocalAddress, applyPPChi (Value + Addend));
    break;
  case ELF::R_PPC64_ADDR16_HIGHER :
    writeInt16BE(LocalAddress, applyPPChigher (Value + Addend));
    break;
  case ELF::R_PPC64_ADDR16_HIGHEST :
    writeInt16BE(LocalAddress, applyPPChighest (Value + Addend));
    break;
  case ELF::R_PPC64_ADDR14 : {
    assert(((Value + Addend) & 3) == 0);
    // Preserve the AA/LK bits in the branch instruction
    uint8_t aalk = *(LocalAddress+3);
    writeInt16BE(LocalAddress + 2, (aalk & 3) | ((Value + Addend) & 0xfffc));
  } break;
  case ELF::R_PPC64_REL24 : {
    uint64_t FinalAddress = (Section.LoadAddress + Offset);
    int32_t delta = static_cast<int32_t>(Value - FinalAddress + Addend);
    if (SignExtend32<24>(delta) != delta)
      llvm_unreachable("Relocation R_PPC64_REL24 overflow");
    // Generates a 'bl <address>' instruction
    writeInt32BE(LocalAddress, 0x48000001 | (delta & 0x03FFFFFC));
  } break;
  case ELF::R_PPC64_ADDR64 :
    writeInt64BE(LocalAddress, Value + Addend);
    break;
  case ELF::R_PPC64_TOC :
    writeInt64BE(LocalAddress, findPPC64TOC());
    break;
  case ELF::R_PPC64_TOC16 : {
    uint64_t TOCStart = findPPC64TOC();
    Value = applyPPClo((Value + Addend) - TOCStart);
    writeInt16BE(LocalAddress, applyPPClo(Value));
  } break;
  case ELF::R_PPC64_TOC16_DS : {
    uint64_t TOCStart = findPPC64TOC();
    Value = ((Value + Addend) - TOCStart);
    writeInt16BE(LocalAddress, applyPPClo(Value));
  } break;
  }
}


void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section,
                                       uint64_t Offset,
                                       uint64_t Value,
                                       uint32_t Type,
                                       int64_t Addend) {
  switch (Arch) {
  case Triple::x86_64:
    resolveX86_64Relocation(Section, Offset, Value, Type, Addend);
    break;
  case Triple::x86:
    resolveX86Relocation(Section, Offset,
                         (uint32_t)(Value & 0xffffffffL), Type,
                         (uint32_t)(Addend & 0xffffffffL));
    break;
  case Triple::arm:    // Fall through.
  case Triple::thumb:
    resolveARMRelocation(Section, Offset,
                         (uint32_t)(Value & 0xffffffffL), Type,
                         (uint32_t)(Addend & 0xffffffffL));
    break;
  case Triple::mips:    // Fall through.
  case Triple::mipsel:
    resolveMIPSRelocation(Section, Offset,
                          (uint32_t)(Value & 0xffffffffL), Type,
                          (uint32_t)(Addend & 0xffffffffL));
    break;
  case Triple::ppc64:
    resolvePPC64Relocation(Section, Offset, Value, Type, Addend);
    break;
  default: llvm_unreachable("Unsupported CPU type!");
  }
}

void RuntimeDyldELF::processRelocationRef(const ObjRelocationInfo &Rel,
                                          ObjectImage &Obj,
                                          ObjSectionToIDMap &ObjSectionToID,
                                          const SymbolTableMap &Symbols,
                                          StubMap &Stubs) {

  uint32_t RelType = (uint32_t)(Rel.Type & 0xffffffffL);
  intptr_t Addend = (intptr_t)Rel.AdditionalInfo;
  const SymbolRef &Symbol = Rel.Symbol;

  // Obtain the symbol name which is referenced in the relocation
  StringRef TargetName;
  Symbol.getName(TargetName);
  DEBUG(dbgs() << "\t\tRelType: " << RelType
               << " Addend: " << Addend
               << " TargetName: " << TargetName
               << "\n");
  RelocationValueRef Value;
  // First search for the symbol in the local symbol table
  SymbolTableMap::const_iterator lsi = Symbols.find(TargetName.data());
  SymbolRef::Type SymType;
  Symbol.getType(SymType);
  if (lsi != Symbols.end()) {
    Value.SectionID = lsi->second.first;
    Value.Addend = lsi->second.second;
  } else {
    // Search for the symbol in the global symbol table
    SymbolTableMap::const_iterator gsi =
        GlobalSymbolTable.find(TargetName.data());
    if (gsi != GlobalSymbolTable.end()) {
      Value.SectionID = gsi->second.first;
      Value.Addend = gsi->second.second;
    } else {
      switch (SymType) {
        case SymbolRef::ST_Debug: {
          // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
          // and can be changed by another developers. Maybe best way is add
          // a new symbol type ST_Section to SymbolRef and use it.
          section_iterator si(Obj.end_sections());
          Symbol.getSection(si);
          if (si == Obj.end_sections())
            llvm_unreachable("Symbol section not found, bad object file format!");
          DEBUG(dbgs() << "\t\tThis is section symbol\n");
          // Default to 'true' in case isText fails (though it never does).
          bool isCode = true;
          si->isText(isCode);
          Value.SectionID = findOrEmitSection(Obj, 
                                              (*si), 
                                              isCode, 
                                              ObjSectionToID);
          Value.Addend = Addend;
          break;
        }
        case SymbolRef::ST_Unknown: {
          Value.SymbolName = TargetName.data();
          Value.Addend = Addend;
          break;
        }
        default:
          llvm_unreachable("Unresolved symbol type!");
          break;
      }
    }
  }
  DEBUG(dbgs() << "\t\tRel.SectionID: " << Rel.SectionID
               << " Rel.Offset: " << Rel.Offset
               << "\n");
  if (Arch == Triple::arm &&
      (RelType == ELF::R_ARM_PC24 ||
       RelType == ELF::R_ARM_CALL ||
       RelType == ELF::R_ARM_JUMP24)) {
    // This is an ARM branch relocation, need to use a stub function.
    DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.");
    SectionEntry &Section = Sections[Rel.SectionID];

    // Look for an existing stub.
    StubMap::const_iterator i = Stubs.find(Value);
    if (i != Stubs.end()) {
        resolveRelocation(Section, Rel.Offset,
                          (uint64_t)Section.Address + i->second, RelType, 0);
      DEBUG(dbgs() << " Stub function found\n");
    } else {
      // Create a new stub function.
      DEBUG(dbgs() << " Create a new stub function\n");
      Stubs[Value] = Section.StubOffset;
      uint8_t *StubTargetAddr = createStubFunction(Section.Address +
                                                   Section.StubOffset);
      RelocationEntry RE(Rel.SectionID, StubTargetAddr - Section.Address,
                         ELF::R_ARM_ABS32, Value.Addend);
      if (Value.SymbolName)
        addRelocationForSymbol(RE, Value.SymbolName);
      else
        addRelocationForSection(RE, Value.SectionID);

      resolveRelocation(Section, Rel.Offset,
                        (uint64_t)Section.Address + Section.StubOffset,
                        RelType, 0);
      Section.StubOffset += getMaxStubSize();
    }
  } else if ((Arch == Triple::mipsel || Arch == Triple::mips) &&
             RelType == ELF::R_MIPS_26) {
    // This is an Mips branch relocation, need to use a stub function.
    DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
    SectionEntry &Section = Sections[Rel.SectionID];
    uint8_t *Target = Section.Address + Rel.Offset;
    uint32_t *TargetAddress = (uint32_t *)Target;

    // Extract the addend from the instruction.
    uint32_t Addend = ((*TargetAddress) & 0x03ffffff) << 2;

    Value.Addend += Addend;

    //  Look up for existing stub.
    StubMap::const_iterator i = Stubs.find(Value);
    if (i != Stubs.end()) {
      resolveRelocation(Section, Rel.Offset,
                        (uint64_t)Section.Address + i->second, RelType, 0);
      DEBUG(dbgs() << " Stub function found\n");
    } else {
      // Create a new stub function.
      DEBUG(dbgs() << " Create a new stub function\n");
      Stubs[Value] = Section.StubOffset;
      uint8_t *StubTargetAddr = createStubFunction(Section.Address +
                                                   Section.StubOffset);

      // Creating Hi and Lo relocations for the filled stub instructions.
      RelocationEntry REHi(Rel.SectionID,
                           StubTargetAddr - Section.Address,
                           ELF::R_MIPS_HI16, Value.Addend);
      RelocationEntry RELo(Rel.SectionID,
                           StubTargetAddr - Section.Address + 4,
                           ELF::R_MIPS_LO16, Value.Addend);

      if (Value.SymbolName) {
        addRelocationForSymbol(REHi, Value.SymbolName);
        addRelocationForSymbol(RELo, Value.SymbolName);
      } else {
        addRelocationForSection(REHi, Value.SectionID);
        addRelocationForSection(RELo, Value.SectionID);
      }

      resolveRelocation(Section, Rel.Offset,
                        (uint64_t)Section.Address + Section.StubOffset,
                        RelType, 0);
      Section.StubOffset += getMaxStubSize();
    }
  } else if (Arch == Triple::ppc64) {
    if (RelType == ELF::R_PPC64_REL24) {
      // A PPC branch relocation will need a stub function if the target is
      // an external symbol (Symbol::ST_Unknown) or if the target address
      // is not within the signed 24-bits branch address.
      SectionEntry &Section = Sections[Rel.SectionID];
      uint8_t *Target = Section.Address + Rel.Offset;
      bool RangeOverflow = false;
      if (SymType != SymbolRef::ST_Unknown) {
        // A function call may points to the .opd entry, so the final symbol value
        // in calculated based in the relocation values in .opd section.
        findOPDEntrySection(Obj, ObjSectionToID, Value);
        uint8_t *RelocTarget = Sections[Value.SectionID].Address + Value.Addend;
        int32_t delta = static_cast<int32_t>(Target - RelocTarget);
        // If it is within 24-bits branch range, just set the branch target
        if (SignExtend32<24>(delta) == delta) {
          RelocationEntry RE(Rel.SectionID, Rel.Offset, RelType, Value.Addend);
          if (Value.SymbolName)
            addRelocationForSymbol(RE, Value.SymbolName);
          else
            addRelocationForSection(RE, Value.SectionID);
        } else {
          RangeOverflow = true;
        }
      }
      if (SymType == SymbolRef::ST_Unknown || RangeOverflow == true) {
        // It is an external symbol (SymbolRef::ST_Unknown) or within a range
        // larger than 24-bits.
        StubMap::const_iterator i = Stubs.find(Value);
        if (i != Stubs.end()) {
          // Symbol function stub already created, just relocate to it
          resolveRelocation(Section, Rel.Offset,
                            (uint64_t)Section.Address + i->second, RelType, 0);
          DEBUG(dbgs() << " Stub function found\n");
        } else {
          // Create a new stub function.
          DEBUG(dbgs() << " Create a new stub function\n");
          Stubs[Value] = Section.StubOffset;
          uint8_t *StubTargetAddr = createStubFunction(Section.Address +
                                                       Section.StubOffset);
          RelocationEntry RE(Rel.SectionID, StubTargetAddr - Section.Address,
                             ELF::R_PPC64_ADDR64, Value.Addend);

          // Generates the 64-bits address loads as exemplified in section
          // 4.5.1 in PPC64 ELF ABI.
          RelocationEntry REhst(Rel.SectionID,
                                StubTargetAddr - Section.Address + 2,
                                ELF::R_PPC64_ADDR16_HIGHEST, Value.Addend);
          RelocationEntry REhr(Rel.SectionID,
                               StubTargetAddr - Section.Address + 6,
                               ELF::R_PPC64_ADDR16_HIGHER, Value.Addend);
          RelocationEntry REh(Rel.SectionID,
                              StubTargetAddr - Section.Address + 14,
                              ELF::R_PPC64_ADDR16_HI, Value.Addend);
          RelocationEntry REl(Rel.SectionID,
                              StubTargetAddr - Section.Address + 18,
                              ELF::R_PPC64_ADDR16_LO, Value.Addend);

          if (Value.SymbolName) {
            addRelocationForSymbol(REhst, Value.SymbolName);
            addRelocationForSymbol(REhr,  Value.SymbolName);
            addRelocationForSymbol(REh,   Value.SymbolName);
            addRelocationForSymbol(REl,   Value.SymbolName);
          } else {
            addRelocationForSection(REhst, Value.SectionID);
            addRelocationForSection(REhr,  Value.SectionID);
            addRelocationForSection(REh,   Value.SectionID);
            addRelocationForSection(REl,   Value.SectionID);
          }

          resolveRelocation(Section, Rel.Offset,
                            (uint64_t)Section.Address + Section.StubOffset,
                            RelType, 0);
          if (SymType == SymbolRef::ST_Unknown)
            // Restore the TOC for external calls
            writeInt32BE(Target+4, 0xE8410028); // ld r2,40(r1)
          Section.StubOffset += getMaxStubSize();
        }
      }
    } else {
      RelocationEntry RE(Rel.SectionID, Rel.Offset, RelType, Value.Addend);
      // Extra check to avoid relocation againt empty symbols (usually
      // the R_PPC64_TOC).
      if (Value.SymbolName && !TargetName.empty())
        addRelocationForSymbol(RE, Value.SymbolName);
      else
        addRelocationForSection(RE, Value.SectionID);
    }
  } else {
    RelocationEntry RE(Rel.SectionID, Rel.Offset, RelType, Value.Addend);
    if (Value.SymbolName)
      addRelocationForSymbol(RE, Value.SymbolName);
    else
      addRelocationForSection(RE, Value.SectionID);
  }
}

unsigned RuntimeDyldELF::getCommonSymbolAlignment(const SymbolRef &Sym) {
  // In ELF, the value of an SHN_COMMON symbol is its alignment requirement.
  uint64_t Align;
  Check(Sym.getValue(Align));
  return Align;
}

bool RuntimeDyldELF::isCompatibleFormat(const ObjectBuffer *Buffer) const {
  if (Buffer->getBufferSize() < strlen(ELF::ElfMagic))
    return false;
  return (memcmp(Buffer->getBufferStart(), ELF::ElfMagic, strlen(ELF::ElfMagic))) == 0;
}
} // namespace llvm