summaryrefslogtreecommitdiff
path: root/lib/IR/ConstantsContext.h
blob: e9958589f53cdf2ac7d71dbc13023a817d80d85d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
//===-- ConstantsContext.h - Constants-related Context Interals -----------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//  This file defines various helper methods and classes used by
// LLVMContextImpl for creating and managing constants.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_CONSTANTSCONTEXT_H
#define LLVM_CONSTANTSCONTEXT_H

#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Operator.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <map>

namespace llvm {
template<class ValType>
struct ConstantTraits;

/// UnaryConstantExpr - This class is private to Constants.cpp, and is used
/// behind the scenes to implement unary constant exprs.
class UnaryConstantExpr : public ConstantExpr {
  virtual void anchor();
  void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
public:
  // allocate space for exactly one operand
  void *operator new(size_t s) {
    return User::operator new(s, 1);
  }
  UnaryConstantExpr(unsigned Opcode, Constant *C, Type *Ty)
    : ConstantExpr(Ty, Opcode, &Op<0>(), 1) {
    Op<0>() = C;
  }
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
};

/// BinaryConstantExpr - This class is private to Constants.cpp, and is used
/// behind the scenes to implement binary constant exprs.
class BinaryConstantExpr : public ConstantExpr {
  virtual void anchor();
  void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
public:
  // allocate space for exactly two operands
  void *operator new(size_t s) {
    return User::operator new(s, 2);
  }
  BinaryConstantExpr(unsigned Opcode, Constant *C1, Constant *C2,
                     unsigned Flags)
    : ConstantExpr(C1->getType(), Opcode, &Op<0>(), 2) {
    Op<0>() = C1;
    Op<1>() = C2;
    SubclassOptionalData = Flags;
  }
  /// Transparently provide more efficient getOperand methods.
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
};

/// SelectConstantExpr - This class is private to Constants.cpp, and is used
/// behind the scenes to implement select constant exprs.
class SelectConstantExpr : public ConstantExpr {
  virtual void anchor();
  void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
public:
  // allocate space for exactly three operands
  void *operator new(size_t s) {
    return User::operator new(s, 3);
  }
  SelectConstantExpr(Constant *C1, Constant *C2, Constant *C3)
    : ConstantExpr(C2->getType(), Instruction::Select, &Op<0>(), 3) {
    Op<0>() = C1;
    Op<1>() = C2;
    Op<2>() = C3;
  }
  /// Transparently provide more efficient getOperand methods.
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
};

/// ExtractElementConstantExpr - This class is private to
/// Constants.cpp, and is used behind the scenes to implement
/// extractelement constant exprs.
class ExtractElementConstantExpr : public ConstantExpr {
  virtual void anchor();
  void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
public:
  // allocate space for exactly two operands
  void *operator new(size_t s) {
    return User::operator new(s, 2);
  }
  ExtractElementConstantExpr(Constant *C1, Constant *C2)
    : ConstantExpr(cast<VectorType>(C1->getType())->getElementType(), 
                   Instruction::ExtractElement, &Op<0>(), 2) {
    Op<0>() = C1;
    Op<1>() = C2;
  }
  /// Transparently provide more efficient getOperand methods.
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
};

/// InsertElementConstantExpr - This class is private to
/// Constants.cpp, and is used behind the scenes to implement
/// insertelement constant exprs.
class InsertElementConstantExpr : public ConstantExpr {
  virtual void anchor();
  void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
public:
  // allocate space for exactly three operands
  void *operator new(size_t s) {
    return User::operator new(s, 3);
  }
  InsertElementConstantExpr(Constant *C1, Constant *C2, Constant *C3)
    : ConstantExpr(C1->getType(), Instruction::InsertElement, 
                   &Op<0>(), 3) {
    Op<0>() = C1;
    Op<1>() = C2;
    Op<2>() = C3;
  }
  /// Transparently provide more efficient getOperand methods.
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
};

/// ShuffleVectorConstantExpr - This class is private to
/// Constants.cpp, and is used behind the scenes to implement
/// shufflevector constant exprs.
class ShuffleVectorConstantExpr : public ConstantExpr {
  virtual void anchor();
  void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
public:
  // allocate space for exactly three operands
  void *operator new(size_t s) {
    return User::operator new(s, 3);
  }
  ShuffleVectorConstantExpr(Constant *C1, Constant *C2, Constant *C3)
  : ConstantExpr(VectorType::get(
                   cast<VectorType>(C1->getType())->getElementType(),
                   cast<VectorType>(C3->getType())->getNumElements()),
                 Instruction::ShuffleVector, 
                 &Op<0>(), 3) {
    Op<0>() = C1;
    Op<1>() = C2;
    Op<2>() = C3;
  }
  /// Transparently provide more efficient getOperand methods.
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
};

/// ExtractValueConstantExpr - This class is private to
/// Constants.cpp, and is used behind the scenes to implement
/// extractvalue constant exprs.
class ExtractValueConstantExpr : public ConstantExpr {
  virtual void anchor();
  void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
public:
  // allocate space for exactly one operand
  void *operator new(size_t s) {
    return User::operator new(s, 1);
  }
  ExtractValueConstantExpr(Constant *Agg,
                           const SmallVector<unsigned, 4> &IdxList,
                           Type *DestTy)
    : ConstantExpr(DestTy, Instruction::ExtractValue, &Op<0>(), 1),
      Indices(IdxList) {
    Op<0>() = Agg;
  }

  /// Indices - These identify which value to extract.
  const SmallVector<unsigned, 4> Indices;

  /// Transparently provide more efficient getOperand methods.
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
};

/// InsertValueConstantExpr - This class is private to
/// Constants.cpp, and is used behind the scenes to implement
/// insertvalue constant exprs.
class InsertValueConstantExpr : public ConstantExpr {
  virtual void anchor();
  void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
public:
  // allocate space for exactly one operand
  void *operator new(size_t s) {
    return User::operator new(s, 2);
  }
  InsertValueConstantExpr(Constant *Agg, Constant *Val,
                          const SmallVector<unsigned, 4> &IdxList,
                          Type *DestTy)
    : ConstantExpr(DestTy, Instruction::InsertValue, &Op<0>(), 2),
      Indices(IdxList) {
    Op<0>() = Agg;
    Op<1>() = Val;
  }

  /// Indices - These identify the position for the insertion.
  const SmallVector<unsigned, 4> Indices;

  /// Transparently provide more efficient getOperand methods.
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
};


/// GetElementPtrConstantExpr - This class is private to Constants.cpp, and is
/// used behind the scenes to implement getelementpr constant exprs.
class GetElementPtrConstantExpr : public ConstantExpr {
  virtual void anchor();
  GetElementPtrConstantExpr(Constant *C, ArrayRef<Constant*> IdxList,
                            Type *DestTy);
public:
  static GetElementPtrConstantExpr *Create(Constant *C,
                                           ArrayRef<Constant*> IdxList,
                                           Type *DestTy,
                                           unsigned Flags) {
    GetElementPtrConstantExpr *Result =
      new(IdxList.size() + 1) GetElementPtrConstantExpr(C, IdxList, DestTy);
    Result->SubclassOptionalData = Flags;
    return Result;
  }
  /// Transparently provide more efficient getOperand methods.
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
};

// CompareConstantExpr - This class is private to Constants.cpp, and is used
// behind the scenes to implement ICmp and FCmp constant expressions. This is
// needed in order to store the predicate value for these instructions.
class CompareConstantExpr : public ConstantExpr {
  virtual void anchor();
  void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
public:
  // allocate space for exactly two operands
  void *operator new(size_t s) {
    return User::operator new(s, 2);
  }
  unsigned short predicate;
  CompareConstantExpr(Type *ty, Instruction::OtherOps opc,
                      unsigned short pred,  Constant* LHS, Constant* RHS)
    : ConstantExpr(ty, opc, &Op<0>(), 2), predicate(pred) {
    Op<0>() = LHS;
    Op<1>() = RHS;
  }
  /// Transparently provide more efficient getOperand methods.
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
};

template <>
struct OperandTraits<UnaryConstantExpr> :
  public FixedNumOperandTraits<UnaryConstantExpr, 1> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(UnaryConstantExpr, Value)

template <>
struct OperandTraits<BinaryConstantExpr> :
  public FixedNumOperandTraits<BinaryConstantExpr, 2> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BinaryConstantExpr, Value)

template <>
struct OperandTraits<SelectConstantExpr> :
  public FixedNumOperandTraits<SelectConstantExpr, 3> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectConstantExpr, Value)

template <>
struct OperandTraits<ExtractElementConstantExpr> :
  public FixedNumOperandTraits<ExtractElementConstantExpr, 2> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementConstantExpr, Value)

template <>
struct OperandTraits<InsertElementConstantExpr> :
  public FixedNumOperandTraits<InsertElementConstantExpr, 3> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementConstantExpr, Value)

template <>
struct OperandTraits<ShuffleVectorConstantExpr> :
    public FixedNumOperandTraits<ShuffleVectorConstantExpr, 3> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorConstantExpr, Value)

template <>
struct OperandTraits<ExtractValueConstantExpr> :
  public FixedNumOperandTraits<ExtractValueConstantExpr, 1> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractValueConstantExpr, Value)

template <>
struct OperandTraits<InsertValueConstantExpr> :
  public FixedNumOperandTraits<InsertValueConstantExpr, 2> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueConstantExpr, Value)

template <>
struct OperandTraits<GetElementPtrConstantExpr> :
  public VariadicOperandTraits<GetElementPtrConstantExpr, 1> {
};

DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrConstantExpr, Value)


template <>
struct OperandTraits<CompareConstantExpr> :
  public FixedNumOperandTraits<CompareConstantExpr, 2> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CompareConstantExpr, Value)

struct ExprMapKeyType {
  ExprMapKeyType(unsigned opc,
      ArrayRef<Constant*> ops,
      unsigned short flags = 0,
      unsigned short optionalflags = 0,
      ArrayRef<unsigned> inds = ArrayRef<unsigned>())
        : opcode(opc), subclassoptionaldata(optionalflags), subclassdata(flags),
        operands(ops.begin(), ops.end()), indices(inds.begin(), inds.end()) {}
  uint8_t opcode;
  uint8_t subclassoptionaldata;
  uint16_t subclassdata;
  std::vector<Constant*> operands;
  SmallVector<unsigned, 4> indices;
  bool operator==(const ExprMapKeyType& that) const {
    return this->opcode == that.opcode &&
           this->subclassdata == that.subclassdata &&
           this->subclassoptionaldata == that.subclassoptionaldata &&
           this->operands == that.operands &&
           this->indices == that.indices;
  }
  bool operator<(const ExprMapKeyType & that) const {
    if (this->opcode != that.opcode) return this->opcode < that.opcode;
    if (this->operands != that.operands) return this->operands < that.operands;
    if (this->subclassdata != that.subclassdata)
      return this->subclassdata < that.subclassdata;
    if (this->subclassoptionaldata != that.subclassoptionaldata)
      return this->subclassoptionaldata < that.subclassoptionaldata;
    if (this->indices != that.indices) return this->indices < that.indices;
    return false;
  }

  bool operator!=(const ExprMapKeyType& that) const {
    return !(*this == that);
  }
};

struct InlineAsmKeyType {
  InlineAsmKeyType(StringRef AsmString,
                   StringRef Constraints, bool hasSideEffects,
                   bool isAlignStack, InlineAsm::AsmDialect asmDialect)
    : asm_string(AsmString), constraints(Constraints),
      has_side_effects(hasSideEffects), is_align_stack(isAlignStack),
      asm_dialect(asmDialect) {}
  std::string asm_string;
  std::string constraints;
  bool has_side_effects;
  bool is_align_stack;
  InlineAsm::AsmDialect asm_dialect;
  bool operator==(const InlineAsmKeyType& that) const {
    return this->asm_string == that.asm_string &&
           this->constraints == that.constraints &&
           this->has_side_effects == that.has_side_effects &&
           this->is_align_stack == that.is_align_stack &&
           this->asm_dialect == that.asm_dialect;
  }
  bool operator<(const InlineAsmKeyType& that) const {
    if (this->asm_string != that.asm_string)
      return this->asm_string < that.asm_string;
    if (this->constraints != that.constraints)
      return this->constraints < that.constraints;
    if (this->has_side_effects != that.has_side_effects)
      return this->has_side_effects < that.has_side_effects;
    if (this->is_align_stack != that.is_align_stack)
      return this->is_align_stack < that.is_align_stack;
    if (this->asm_dialect != that.asm_dialect)
      return this->asm_dialect < that.asm_dialect;
    return false;
  }

  bool operator!=(const InlineAsmKeyType& that) const {
    return !(*this == that);
  }
};

// The number of operands for each ConstantCreator::create method is
// determined by the ConstantTraits template.
// ConstantCreator - A class that is used to create constants by
// ConstantUniqueMap*.  This class should be partially specialized if there is
// something strange that needs to be done to interface to the ctor for the
// constant.
//
template<typename T, typename Alloc>
struct ConstantTraits< std::vector<T, Alloc> > {
  static unsigned uses(const std::vector<T, Alloc>& v) {
    return v.size();
  }
};

template<>
struct ConstantTraits<Constant *> {
  static unsigned uses(Constant * const & v) {
    return 1;
  }
};

template<class ConstantClass, class TypeClass, class ValType>
struct ConstantCreator {
  static ConstantClass *create(TypeClass *Ty, const ValType &V) {
    return new(ConstantTraits<ValType>::uses(V)) ConstantClass(Ty, V);
  }
};

template<class ConstantClass, class TypeClass>
struct ConstantArrayCreator {
  static ConstantClass *create(TypeClass *Ty, ArrayRef<Constant*> V) {
    return new(V.size()) ConstantClass(Ty, V);
  }
};

template<class ConstantClass>
struct ConstantKeyData {
  typedef void ValType;
  static ValType getValType(ConstantClass *C) {
    llvm_unreachable("Unknown Constant type!");
  }
};

template<>
struct ConstantCreator<ConstantExpr, Type, ExprMapKeyType> {
  static ConstantExpr *create(Type *Ty, const ExprMapKeyType &V,
      unsigned short pred = 0) {
    if (Instruction::isCast(V.opcode))
      return new UnaryConstantExpr(V.opcode, V.operands[0], Ty);
    if ((V.opcode >= Instruction::BinaryOpsBegin &&
         V.opcode < Instruction::BinaryOpsEnd))
      return new BinaryConstantExpr(V.opcode, V.operands[0], V.operands[1],
                                    V.subclassoptionaldata);
    if (V.opcode == Instruction::Select)
      return new SelectConstantExpr(V.operands[0], V.operands[1], 
                                    V.operands[2]);
    if (V.opcode == Instruction::ExtractElement)
      return new ExtractElementConstantExpr(V.operands[0], V.operands[1]);
    if (V.opcode == Instruction::InsertElement)
      return new InsertElementConstantExpr(V.operands[0], V.operands[1],
                                           V.operands[2]);
    if (V.opcode == Instruction::ShuffleVector)
      return new ShuffleVectorConstantExpr(V.operands[0], V.operands[1],
                                           V.operands[2]);
    if (V.opcode == Instruction::InsertValue)
      return new InsertValueConstantExpr(V.operands[0], V.operands[1],
                                         V.indices, Ty);
    if (V.opcode == Instruction::ExtractValue)
      return new ExtractValueConstantExpr(V.operands[0], V.indices, Ty);
    if (V.opcode == Instruction::GetElementPtr) {
      std::vector<Constant*> IdxList(V.operands.begin()+1, V.operands.end());
      return GetElementPtrConstantExpr::Create(V.operands[0], IdxList, Ty,
                                               V.subclassoptionaldata);
    }

    // The compare instructions are weird. We have to encode the predicate
    // value and it is combined with the instruction opcode by multiplying
    // the opcode by one hundred. We must decode this to get the predicate.
    if (V.opcode == Instruction::ICmp)
      return new CompareConstantExpr(Ty, Instruction::ICmp, V.subclassdata,
                                     V.operands[0], V.operands[1]);
    if (V.opcode == Instruction::FCmp) 
      return new CompareConstantExpr(Ty, Instruction::FCmp, V.subclassdata,
                                     V.operands[0], V.operands[1]);
    llvm_unreachable("Invalid ConstantExpr!");
  }
};

template<>
struct ConstantKeyData<ConstantExpr> {
  typedef ExprMapKeyType ValType;
  static ValType getValType(ConstantExpr *CE) {
    std::vector<Constant*> Operands;
    Operands.reserve(CE->getNumOperands());
    for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i)
      Operands.push_back(cast<Constant>(CE->getOperand(i)));
    return ExprMapKeyType(CE->getOpcode(), Operands,
        CE->isCompare() ? CE->getPredicate() : 0,
        CE->getRawSubclassOptionalData(),
        CE->hasIndices() ?
          CE->getIndices() : ArrayRef<unsigned>());
  }
};

template<>
struct ConstantCreator<InlineAsm, PointerType, InlineAsmKeyType> {
  static InlineAsm *create(PointerType *Ty, const InlineAsmKeyType &Key) {
    return new InlineAsm(Ty, Key.asm_string, Key.constraints,
                         Key.has_side_effects, Key.is_align_stack,
                         Key.asm_dialect);
  }
};

template<>
struct ConstantKeyData<InlineAsm> {
  typedef InlineAsmKeyType ValType;
  static ValType getValType(InlineAsm *Asm) {
    return InlineAsmKeyType(Asm->getAsmString(), Asm->getConstraintString(),
                            Asm->hasSideEffects(), Asm->isAlignStack(),
                            Asm->getDialect());
  }
};

template<class ValType, class ValRefType, class TypeClass, class ConstantClass,
         bool HasLargeKey = false /*true for arrays and structs*/ >
class ConstantUniqueMap {
public:
  typedef std::pair<TypeClass*, ValType> MapKey;
  typedef std::map<MapKey, ConstantClass *> MapTy;
  typedef std::map<ConstantClass *, typename MapTy::iterator> InverseMapTy;
private:
  /// Map - This is the main map from the element descriptor to the Constants.
  /// This is the primary way we avoid creating two of the same shape
  /// constant.
  MapTy Map;
    
  /// InverseMap - If "HasLargeKey" is true, this contains an inverse mapping
  /// from the constants to their element in Map.  This is important for
  /// removal of constants from the array, which would otherwise have to scan
  /// through the map with very large keys.
  InverseMapTy InverseMap;

public:
  typename MapTy::iterator map_begin() { return Map.begin(); }
  typename MapTy::iterator map_end() { return Map.end(); }

  void freeConstants() {
    for (typename MapTy::iterator I=Map.begin(), E=Map.end();
         I != E; ++I) {
      // Asserts that use_empty().
      delete I->second;
    }
  }
    
  /// InsertOrGetItem - Return an iterator for the specified element.
  /// If the element exists in the map, the returned iterator points to the
  /// entry and Exists=true.  If not, the iterator points to the newly
  /// inserted entry and returns Exists=false.  Newly inserted entries have
  /// I->second == 0, and should be filled in.
  typename MapTy::iterator InsertOrGetItem(std::pair<MapKey, ConstantClass *>
                                 &InsertVal,
                                 bool &Exists) {
    std::pair<typename MapTy::iterator, bool> IP = Map.insert(InsertVal);
    Exists = !IP.second;
    return IP.first;
  }
    
private:
  typename MapTy::iterator FindExistingElement(ConstantClass *CP) {
    if (HasLargeKey) {
      typename InverseMapTy::iterator IMI = InverseMap.find(CP);
      assert(IMI != InverseMap.end() && IMI->second != Map.end() &&
             IMI->second->second == CP &&
             "InverseMap corrupt!");
      return IMI->second;
    }
      
    typename MapTy::iterator I =
      Map.find(MapKey(static_cast<TypeClass*>(CP->getType()),
                      ConstantKeyData<ConstantClass>::getValType(CP)));
    if (I == Map.end() || I->second != CP) {
      // FIXME: This should not use a linear scan.  If this gets to be a
      // performance problem, someone should look at this.
      for (I = Map.begin(); I != Map.end() && I->second != CP; ++I)
        /* empty */;
    }
    return I;
  }

  ConstantClass *Create(TypeClass *Ty, ValRefType V,
                        typename MapTy::iterator I) {
    ConstantClass* Result =
      ConstantCreator<ConstantClass,TypeClass,ValType>::create(Ty, V);

    assert(Result->getType() == Ty && "Type specified is not correct!");
    I = Map.insert(I, std::make_pair(MapKey(Ty, V), Result));

    if (HasLargeKey)  // Remember the reverse mapping if needed.
      InverseMap.insert(std::make_pair(Result, I));

    return Result;
  }
public:
    
  /// getOrCreate - Return the specified constant from the map, creating it if
  /// necessary.
  ConstantClass *getOrCreate(TypeClass *Ty, ValRefType V) {
    MapKey Lookup(Ty, V);
    ConstantClass* Result = 0;
    
    typename MapTy::iterator I = Map.find(Lookup);
    // Is it in the map?  
    if (I != Map.end())
      Result = I->second;
        
    if (!Result) {
      // If no preexisting value, create one now...
      Result = Create(Ty, V, I);
    }
        
    return Result;
  }

  void remove(ConstantClass *CP) {
    typename MapTy::iterator I = FindExistingElement(CP);
    assert(I != Map.end() && "Constant not found in constant table!");
    assert(I->second == CP && "Didn't find correct element?");

    if (HasLargeKey)  // Remember the reverse mapping if needed.
      InverseMap.erase(CP);

    Map.erase(I);
  }

  /// MoveConstantToNewSlot - If we are about to change C to be the element
  /// specified by I, update our internal data structures to reflect this
  /// fact.
  void MoveConstantToNewSlot(ConstantClass *C, typename MapTy::iterator I) {
    // First, remove the old location of the specified constant in the map.
    typename MapTy::iterator OldI = FindExistingElement(C);
    assert(OldI != Map.end() && "Constant not found in constant table!");
    assert(OldI->second == C && "Didn't find correct element?");
      
     // Remove the old entry from the map.
    Map.erase(OldI);
    
    // Update the inverse map so that we know that this constant is now
    // located at descriptor I.
    if (HasLargeKey) {
      assert(I->second == C && "Bad inversemap entry!");
      InverseMap[C] = I;
    }
  }

  void dump() const {
    DEBUG(dbgs() << "Constant.cpp: ConstantUniqueMap\n");
  }
};

// Unique map for aggregate constants
template<class TypeClass, class ConstantClass>
class ConstantAggrUniqueMap {
public:
  typedef ArrayRef<Constant*> Operands;
  typedef std::pair<TypeClass*, Operands> LookupKey;
private:
  struct MapInfo {
    typedef DenseMapInfo<ConstantClass*> ConstantClassInfo;
    typedef DenseMapInfo<Constant*> ConstantInfo;
    typedef DenseMapInfo<TypeClass*> TypeClassInfo;
    static inline ConstantClass* getEmptyKey() {
      return ConstantClassInfo::getEmptyKey();
    }
    static inline ConstantClass* getTombstoneKey() {
      return ConstantClassInfo::getTombstoneKey();
    }
    static unsigned getHashValue(const ConstantClass *CP) {
      SmallVector<Constant*, 8> CPOperands;
      CPOperands.reserve(CP->getNumOperands());
      for (unsigned I = 0, E = CP->getNumOperands(); I < E; ++I)
        CPOperands.push_back(CP->getOperand(I));
      return getHashValue(LookupKey(CP->getType(), CPOperands));
    }
    static bool isEqual(const ConstantClass *LHS, const ConstantClass *RHS) {
      return LHS == RHS;
    }
    static unsigned getHashValue(const LookupKey &Val) {
      return hash_combine(Val.first, hash_combine_range(Val.second.begin(),
                                                        Val.second.end()));
    }
    static bool isEqual(const LookupKey &LHS, const ConstantClass *RHS) {
      if (RHS == getEmptyKey() || RHS == getTombstoneKey())
        return false;
      if (LHS.first != RHS->getType()
          || LHS.second.size() != RHS->getNumOperands())
        return false;
      for (unsigned I = 0, E = RHS->getNumOperands(); I < E; ++I) {
        if (LHS.second[I] != RHS->getOperand(I))
          return false;
      }
      return true;
    }
  };
public:
  typedef DenseMap<ConstantClass *, char, MapInfo> MapTy;

private:
  /// Map - This is the main map from the element descriptor to the Constants.
  /// This is the primary way we avoid creating two of the same shape
  /// constant.
  MapTy Map;

public:
  typename MapTy::iterator map_begin() { return Map.begin(); }
  typename MapTy::iterator map_end() { return Map.end(); }

  void freeConstants() {
    for (typename MapTy::iterator I=Map.begin(), E=Map.end();
         I != E; ++I) {
      // Asserts that use_empty().
      delete I->first;
    }
  }

private:
  typename MapTy::iterator findExistingElement(ConstantClass *CP) {
    return Map.find(CP);
  }

  ConstantClass *Create(TypeClass *Ty, Operands V, typename MapTy::iterator I) {
    ConstantClass* Result =
      ConstantArrayCreator<ConstantClass,TypeClass>::create(Ty, V);

    assert(Result->getType() == Ty && "Type specified is not correct!");
    Map[Result] = '\0';

    return Result;
  }
public:

  /// getOrCreate - Return the specified constant from the map, creating it if
  /// necessary.
  ConstantClass *getOrCreate(TypeClass *Ty, Operands V) {
    LookupKey Lookup(Ty, V);
    ConstantClass* Result = 0;

    typename MapTy::iterator I = Map.find_as(Lookup);
    // Is it in the map?
    if (I != Map.end())
      Result = I->first;

    if (!Result) {
      // If no preexisting value, create one now...
      Result = Create(Ty, V, I);
    }

    return Result;
  }

  /// Find the constant by lookup key.
  typename MapTy::iterator find(LookupKey Lookup) {
    return Map.find_as(Lookup);
  }

  /// Insert the constant into its proper slot.
  void insert(ConstantClass *CP) {
    Map[CP] = '\0';
  }

  /// Remove this constant from the map
  void remove(ConstantClass *CP) {
    typename MapTy::iterator I = findExistingElement(CP);
    assert(I != Map.end() && "Constant not found in constant table!");
    assert(I->first == CP && "Didn't find correct element?");
    Map.erase(I);
  }

  void dump() const {
    DEBUG(dbgs() << "Constant.cpp: ConstantUniqueMap\n");
  }
};

}

#endif