summaryrefslogtreecommitdiff
path: root/lib/IR/Type.cpp
blob: f76eb9eb83857b104138d2999210a3c7937f0761 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
//===-- Type.cpp - Implement the Type class -------------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Type class for the IR library.
//
//===----------------------------------------------------------------------===//

#include "llvm/Type.h"
#include "LLVMContextImpl.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/Module.h"
#include <algorithm>
#include <cstdarg>
using namespace llvm;

//===----------------------------------------------------------------------===//
//                         Type Class Implementation
//===----------------------------------------------------------------------===//

Type *Type::getPrimitiveType(LLVMContext &C, TypeID IDNumber) {
  switch (IDNumber) {
  case VoidTyID      : return getVoidTy(C);
  case HalfTyID      : return getHalfTy(C);
  case FloatTyID     : return getFloatTy(C);
  case DoubleTyID    : return getDoubleTy(C);
  case X86_FP80TyID  : return getX86_FP80Ty(C);
  case FP128TyID     : return getFP128Ty(C);
  case PPC_FP128TyID : return getPPC_FP128Ty(C);
  case LabelTyID     : return getLabelTy(C);
  case MetadataTyID  : return getMetadataTy(C);
  case X86_MMXTyID   : return getX86_MMXTy(C);
  default:
    return 0;
  }
}

/// getScalarType - If this is a vector type, return the element type,
/// otherwise return this.
Type *Type::getScalarType() {
  if (VectorType *VTy = dyn_cast<VectorType>(this))
    return VTy->getElementType();
  return this;
}

const Type *Type::getScalarType() const {
  if (const VectorType *VTy = dyn_cast<VectorType>(this))
    return VTy->getElementType();
  return this;
}

/// isIntegerTy - Return true if this is an IntegerType of the specified width.
bool Type::isIntegerTy(unsigned Bitwidth) const {
  return isIntegerTy() && cast<IntegerType>(this)->getBitWidth() == Bitwidth;
}

// canLosslesslyBitCastTo - Return true if this type can be converted to
// 'Ty' without any reinterpretation of bits.  For example, i8* to i32*.
//
bool Type::canLosslesslyBitCastTo(Type *Ty) const {
  // Identity cast means no change so return true
  if (this == Ty) 
    return true;
  
  // They are not convertible unless they are at least first class types
  if (!this->isFirstClassType() || !Ty->isFirstClassType())
    return false;

  // Vector -> Vector conversions are always lossless if the two vector types
  // have the same size, otherwise not.  Also, 64-bit vector types can be
  // converted to x86mmx.
  if (const VectorType *thisPTy = dyn_cast<VectorType>(this)) {
    if (const VectorType *thatPTy = dyn_cast<VectorType>(Ty))
      return thisPTy->getBitWidth() == thatPTy->getBitWidth();
    if (Ty->getTypeID() == Type::X86_MMXTyID &&
        thisPTy->getBitWidth() == 64)
      return true;
  }

  if (this->getTypeID() == Type::X86_MMXTyID)
    if (const VectorType *thatPTy = dyn_cast<VectorType>(Ty))
      if (thatPTy->getBitWidth() == 64)
        return true;

  // At this point we have only various mismatches of the first class types
  // remaining and ptr->ptr. Just select the lossless conversions. Everything
  // else is not lossless.
  if (this->isPointerTy())
    return Ty->isPointerTy();
  return false;  // Other types have no identity values
}

bool Type::isEmptyTy() const {
  const ArrayType *ATy = dyn_cast<ArrayType>(this);
  if (ATy) {
    unsigned NumElements = ATy->getNumElements();
    return NumElements == 0 || ATy->getElementType()->isEmptyTy();
  }

  const StructType *STy = dyn_cast<StructType>(this);
  if (STy) {
    unsigned NumElements = STy->getNumElements();
    for (unsigned i = 0; i < NumElements; ++i)
      if (!STy->getElementType(i)->isEmptyTy())
        return false;
    return true;
  }

  return false;
}

unsigned Type::getPrimitiveSizeInBits() const {
  switch (getTypeID()) {
  case Type::HalfTyID: return 16;
  case Type::FloatTyID: return 32;
  case Type::DoubleTyID: return 64;
  case Type::X86_FP80TyID: return 80;
  case Type::FP128TyID: return 128;
  case Type::PPC_FP128TyID: return 128;
  case Type::X86_MMXTyID: return 64;
  case Type::IntegerTyID: return cast<IntegerType>(this)->getBitWidth();
  case Type::VectorTyID:  return cast<VectorType>(this)->getBitWidth();
  default: return 0;
  }
}

/// getScalarSizeInBits - If this is a vector type, return the
/// getPrimitiveSizeInBits value for the element type. Otherwise return the
/// getPrimitiveSizeInBits value for this type.
unsigned Type::getScalarSizeInBits() {
  return getScalarType()->getPrimitiveSizeInBits();
}

/// getFPMantissaWidth - Return the width of the mantissa of this type.  This
/// is only valid on floating point types.  If the FP type does not
/// have a stable mantissa (e.g. ppc long double), this method returns -1.
int Type::getFPMantissaWidth() const {
  if (const VectorType *VTy = dyn_cast<VectorType>(this))
    return VTy->getElementType()->getFPMantissaWidth();
  assert(isFloatingPointTy() && "Not a floating point type!");
  if (getTypeID() == HalfTyID) return 11;
  if (getTypeID() == FloatTyID) return 24;
  if (getTypeID() == DoubleTyID) return 53;
  if (getTypeID() == X86_FP80TyID) return 64;
  if (getTypeID() == FP128TyID) return 113;
  assert(getTypeID() == PPC_FP128TyID && "unknown fp type");
  return -1;
}

/// isSizedDerivedType - Derived types like structures and arrays are sized
/// iff all of the members of the type are sized as well.  Since asking for
/// their size is relatively uncommon, move this operation out of line.
bool Type::isSizedDerivedType() const {
  if (this->isIntegerTy())
    return true;

  if (const ArrayType *ATy = dyn_cast<ArrayType>(this))
    return ATy->getElementType()->isSized();

  if (const VectorType *VTy = dyn_cast<VectorType>(this))
    return VTy->getElementType()->isSized();

  if (!this->isStructTy()) 
    return false;

  return cast<StructType>(this)->isSized();
}

//===----------------------------------------------------------------------===//
//                         Subclass Helper Methods
//===----------------------------------------------------------------------===//

unsigned Type::getIntegerBitWidth() const {
  return cast<IntegerType>(this)->getBitWidth();
}

bool Type::isFunctionVarArg() const {
  return cast<FunctionType>(this)->isVarArg();
}

Type *Type::getFunctionParamType(unsigned i) const {
  return cast<FunctionType>(this)->getParamType(i);
}

unsigned Type::getFunctionNumParams() const {
  return cast<FunctionType>(this)->getNumParams();
}

StringRef Type::getStructName() const {
  return cast<StructType>(this)->getName();
}

unsigned Type::getStructNumElements() const {
  return cast<StructType>(this)->getNumElements();
}

Type *Type::getStructElementType(unsigned N) const {
  return cast<StructType>(this)->getElementType(N);
}

Type *Type::getSequentialElementType() const {
  return cast<SequentialType>(this)->getElementType();
}

uint64_t Type::getArrayNumElements() const {
  return cast<ArrayType>(this)->getNumElements();
}

unsigned Type::getVectorNumElements() const {
  return cast<VectorType>(this)->getNumElements();
}

unsigned Type::getPointerAddressSpace() const {
  return cast<PointerType>(getScalarType())->getAddressSpace();
}


//===----------------------------------------------------------------------===//
//                          Primitive 'Type' data
//===----------------------------------------------------------------------===//

Type *Type::getVoidTy(LLVMContext &C) { return &C.pImpl->VoidTy; }
Type *Type::getLabelTy(LLVMContext &C) { return &C.pImpl->LabelTy; }
Type *Type::getHalfTy(LLVMContext &C) { return &C.pImpl->HalfTy; }
Type *Type::getFloatTy(LLVMContext &C) { return &C.pImpl->FloatTy; }
Type *Type::getDoubleTy(LLVMContext &C) { return &C.pImpl->DoubleTy; }
Type *Type::getMetadataTy(LLVMContext &C) { return &C.pImpl->MetadataTy; }
Type *Type::getX86_FP80Ty(LLVMContext &C) { return &C.pImpl->X86_FP80Ty; }
Type *Type::getFP128Ty(LLVMContext &C) { return &C.pImpl->FP128Ty; }
Type *Type::getPPC_FP128Ty(LLVMContext &C) { return &C.pImpl->PPC_FP128Ty; }
Type *Type::getX86_MMXTy(LLVMContext &C) { return &C.pImpl->X86_MMXTy; }

IntegerType *Type::getInt1Ty(LLVMContext &C) { return &C.pImpl->Int1Ty; }
IntegerType *Type::getInt8Ty(LLVMContext &C) { return &C.pImpl->Int8Ty; }
IntegerType *Type::getInt16Ty(LLVMContext &C) { return &C.pImpl->Int16Ty; }
IntegerType *Type::getInt32Ty(LLVMContext &C) { return &C.pImpl->Int32Ty; }
IntegerType *Type::getInt64Ty(LLVMContext &C) { return &C.pImpl->Int64Ty; }

IntegerType *Type::getIntNTy(LLVMContext &C, unsigned N) {
  return IntegerType::get(C, N);
}

PointerType *Type::getHalfPtrTy(LLVMContext &C, unsigned AS) {
  return getHalfTy(C)->getPointerTo(AS);
}

PointerType *Type::getFloatPtrTy(LLVMContext &C, unsigned AS) {
  return getFloatTy(C)->getPointerTo(AS);
}

PointerType *Type::getDoublePtrTy(LLVMContext &C, unsigned AS) {
  return getDoubleTy(C)->getPointerTo(AS);
}

PointerType *Type::getX86_FP80PtrTy(LLVMContext &C, unsigned AS) {
  return getX86_FP80Ty(C)->getPointerTo(AS);
}

PointerType *Type::getFP128PtrTy(LLVMContext &C, unsigned AS) {
  return getFP128Ty(C)->getPointerTo(AS);
}

PointerType *Type::getPPC_FP128PtrTy(LLVMContext &C, unsigned AS) {
  return getPPC_FP128Ty(C)->getPointerTo(AS);
}

PointerType *Type::getX86_MMXPtrTy(LLVMContext &C, unsigned AS) {
  return getX86_MMXTy(C)->getPointerTo(AS);
}

PointerType *Type::getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS) {
  return getIntNTy(C, N)->getPointerTo(AS);
}

PointerType *Type::getInt1PtrTy(LLVMContext &C, unsigned AS) {
  return getInt1Ty(C)->getPointerTo(AS);
}

PointerType *Type::getInt8PtrTy(LLVMContext &C, unsigned AS) {
  return getInt8Ty(C)->getPointerTo(AS);
}

PointerType *Type::getInt16PtrTy(LLVMContext &C, unsigned AS) {
  return getInt16Ty(C)->getPointerTo(AS);
}

PointerType *Type::getInt32PtrTy(LLVMContext &C, unsigned AS) {
  return getInt32Ty(C)->getPointerTo(AS);
}

PointerType *Type::getInt64PtrTy(LLVMContext &C, unsigned AS) {
  return getInt64Ty(C)->getPointerTo(AS);
}


//===----------------------------------------------------------------------===//
//                       IntegerType Implementation
//===----------------------------------------------------------------------===//

IntegerType *IntegerType::get(LLVMContext &C, unsigned NumBits) {
  assert(NumBits >= MIN_INT_BITS && "bitwidth too small");
  assert(NumBits <= MAX_INT_BITS && "bitwidth too large");
  
  // Check for the built-in integer types
  switch (NumBits) {
  case  1: return cast<IntegerType>(Type::getInt1Ty(C));
  case  8: return cast<IntegerType>(Type::getInt8Ty(C));
  case 16: return cast<IntegerType>(Type::getInt16Ty(C));
  case 32: return cast<IntegerType>(Type::getInt32Ty(C));
  case 64: return cast<IntegerType>(Type::getInt64Ty(C));
  default: 
    break;
  }
  
  IntegerType *&Entry = C.pImpl->IntegerTypes[NumBits];
  
  if (Entry == 0)
    Entry = new (C.pImpl->TypeAllocator) IntegerType(C, NumBits);
  
  return Entry;
}

bool IntegerType::isPowerOf2ByteWidth() const {
  unsigned BitWidth = getBitWidth();
  return (BitWidth > 7) && isPowerOf2_32(BitWidth);
}

APInt IntegerType::getMask() const {
  return APInt::getAllOnesValue(getBitWidth());
}

//===----------------------------------------------------------------------===//
//                       FunctionType Implementation
//===----------------------------------------------------------------------===//

FunctionType::FunctionType(Type *Result, ArrayRef<Type*> Params,
                           bool IsVarArgs)
  : Type(Result->getContext(), FunctionTyID) {
  Type **SubTys = reinterpret_cast<Type**>(this+1);
  assert(isValidReturnType(Result) && "invalid return type for function");
  setSubclassData(IsVarArgs);

  SubTys[0] = const_cast<Type*>(Result);

  for (unsigned i = 0, e = Params.size(); i != e; ++i) {
    assert(isValidArgumentType(Params[i]) &&
           "Not a valid type for function argument!");
    SubTys[i+1] = Params[i];
  }

  ContainedTys = SubTys;
  NumContainedTys = Params.size() + 1; // + 1 for result type
}

// FunctionType::get - The factory function for the FunctionType class.
FunctionType *FunctionType::get(Type *ReturnType,
                                ArrayRef<Type*> Params, bool isVarArg) {
  LLVMContextImpl *pImpl = ReturnType->getContext().pImpl;
  FunctionTypeKeyInfo::KeyTy Key(ReturnType, Params, isVarArg);
  LLVMContextImpl::FunctionTypeMap::iterator I =
    pImpl->FunctionTypes.find_as(Key);
  FunctionType *FT;

  if (I == pImpl->FunctionTypes.end()) {
    FT = (FunctionType*) pImpl->TypeAllocator.
      Allocate(sizeof(FunctionType) + sizeof(Type*) * (Params.size() + 1),
               AlignOf<FunctionType>::Alignment);
    new (FT) FunctionType(ReturnType, Params, isVarArg);
    pImpl->FunctionTypes[FT] = true;
  } else {
    FT = I->first;
  }

  return FT;
}

FunctionType *FunctionType::get(Type *Result, bool isVarArg) {
  return get(Result, ArrayRef<Type *>(), isVarArg);
}

/// isValidReturnType - Return true if the specified type is valid as a return
/// type.
bool FunctionType::isValidReturnType(Type *RetTy) {
  return !RetTy->isFunctionTy() && !RetTy->isLabelTy() &&
  !RetTy->isMetadataTy();
}

/// isValidArgumentType - Return true if the specified type is valid as an
/// argument type.
bool FunctionType::isValidArgumentType(Type *ArgTy) {
  return ArgTy->isFirstClassType();
}

//===----------------------------------------------------------------------===//
//                       StructType Implementation
//===----------------------------------------------------------------------===//

// Primitive Constructors.

StructType *StructType::get(LLVMContext &Context, ArrayRef<Type*> ETypes, 
                            bool isPacked) {
  LLVMContextImpl *pImpl = Context.pImpl;
  AnonStructTypeKeyInfo::KeyTy Key(ETypes, isPacked);
  LLVMContextImpl::StructTypeMap::iterator I =
    pImpl->AnonStructTypes.find_as(Key);
  StructType *ST;

  if (I == pImpl->AnonStructTypes.end()) {
    // Value not found.  Create a new type!
    ST = new (Context.pImpl->TypeAllocator) StructType(Context);
    ST->setSubclassData(SCDB_IsLiteral);  // Literal struct.
    ST->setBody(ETypes, isPacked);
    Context.pImpl->AnonStructTypes[ST] = true;
  } else {
    ST = I->first;
  }

  return ST;
}

void StructType::setBody(ArrayRef<Type*> Elements, bool isPacked) {
  assert(isOpaque() && "Struct body already set!");
  
  setSubclassData(getSubclassData() | SCDB_HasBody);
  if (isPacked)
    setSubclassData(getSubclassData() | SCDB_Packed);

  unsigned NumElements = Elements.size();
  Type **Elts = getContext().pImpl->TypeAllocator.Allocate<Type*>(NumElements);
  memcpy(Elts, Elements.data(), sizeof(Elements[0]) * NumElements);
  
  ContainedTys = Elts;
  NumContainedTys = NumElements;
}

void StructType::setName(StringRef Name) {
  if (Name == getName()) return;

  StringMap<StructType *> &SymbolTable = getContext().pImpl->NamedStructTypes;
  typedef StringMap<StructType *>::MapEntryTy EntryTy;

  // If this struct already had a name, remove its symbol table entry. Don't
  // delete the data yet because it may be part of the new name.
  if (SymbolTableEntry)
    SymbolTable.remove((EntryTy *)SymbolTableEntry);

  // If this is just removing the name, we're done.
  if (Name.empty()) {
    if (SymbolTableEntry) {
      // Delete the old string data.
      ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator());
      SymbolTableEntry = 0;
    }
    return;
  }
  
  // Look up the entry for the name.
  EntryTy *Entry = &getContext().pImpl->NamedStructTypes.GetOrCreateValue(Name);
  
  // While we have a name collision, try a random rename.
  if (Entry->getValue()) {
    SmallString<64> TempStr(Name);
    TempStr.push_back('.');
    raw_svector_ostream TmpStream(TempStr);
    unsigned NameSize = Name.size();
   
    do {
      TempStr.resize(NameSize + 1);
      TmpStream.resync();
      TmpStream << getContext().pImpl->NamedStructTypesUniqueID++;
      
      Entry = &getContext().pImpl->
                 NamedStructTypes.GetOrCreateValue(TmpStream.str());
    } while (Entry->getValue());
  }

  // Okay, we found an entry that isn't used.  It's us!
  Entry->setValue(this);

  // Delete the old string data.
  if (SymbolTableEntry)
    ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator());
  SymbolTableEntry = Entry;
}

//===----------------------------------------------------------------------===//
// StructType Helper functions.

StructType *StructType::create(LLVMContext &Context, StringRef Name) {
  StructType *ST = new (Context.pImpl->TypeAllocator) StructType(Context);
  if (!Name.empty())
    ST->setName(Name);
  return ST;
}

StructType *StructType::get(LLVMContext &Context, bool isPacked) {
  return get(Context, llvm::ArrayRef<Type*>(), isPacked);
}

StructType *StructType::get(Type *type, ...) {
  assert(type != 0 && "Cannot create a struct type with no elements with this");
  LLVMContext &Ctx = type->getContext();
  va_list ap;
  SmallVector<llvm::Type*, 8> StructFields;
  va_start(ap, type);
  while (type) {
    StructFields.push_back(type);
    type = va_arg(ap, llvm::Type*);
  }
  return llvm::StructType::get(Ctx, StructFields);
}

StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements,
                               StringRef Name, bool isPacked) {
  StructType *ST = create(Context, Name);
  ST->setBody(Elements, isPacked);
  return ST;
}

StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements) {
  return create(Context, Elements, StringRef());
}

StructType *StructType::create(LLVMContext &Context) {
  return create(Context, StringRef());
}

StructType *StructType::create(ArrayRef<Type*> Elements, StringRef Name,
                               bool isPacked) {
  assert(!Elements.empty() &&
         "This method may not be invoked with an empty list");
  return create(Elements[0]->getContext(), Elements, Name, isPacked);
}

StructType *StructType::create(ArrayRef<Type*> Elements) {
  assert(!Elements.empty() &&
         "This method may not be invoked with an empty list");
  return create(Elements[0]->getContext(), Elements, StringRef());
}

StructType *StructType::create(StringRef Name, Type *type, ...) {
  assert(type != 0 && "Cannot create a struct type with no elements with this");
  LLVMContext &Ctx = type->getContext();
  va_list ap;
  SmallVector<llvm::Type*, 8> StructFields;
  va_start(ap, type);
  while (type) {
    StructFields.push_back(type);
    type = va_arg(ap, llvm::Type*);
  }
  return llvm::StructType::create(Ctx, StructFields, Name);
}

bool StructType::isSized() const {
  if ((getSubclassData() & SCDB_IsSized) != 0)
    return true;
  if (isOpaque())
    return false;

  // Okay, our struct is sized if all of the elements are, but if one of the
  // elements is opaque, the struct isn't sized *yet*, but may become sized in
  // the future, so just bail out without caching.
  for (element_iterator I = element_begin(), E = element_end(); I != E; ++I)
    if (!(*I)->isSized())
      return false;

  // Here we cheat a bit and cast away const-ness. The goal is to memoize when
  // we find a sized type, as types can only move from opaque to sized, not the
  // other way.
  const_cast<StructType*>(this)->setSubclassData(
    getSubclassData() | SCDB_IsSized);
  return true;
}

StringRef StructType::getName() const {
  assert(!isLiteral() && "Literal structs never have names");
  if (SymbolTableEntry == 0) return StringRef();
  
  return ((StringMapEntry<StructType*> *)SymbolTableEntry)->getKey();
}

void StructType::setBody(Type *type, ...) {
  assert(type != 0 && "Cannot create a struct type with no elements with this");
  va_list ap;
  SmallVector<llvm::Type*, 8> StructFields;
  va_start(ap, type);
  while (type) {
    StructFields.push_back(type);
    type = va_arg(ap, llvm::Type*);
  }
  setBody(StructFields);
}

bool StructType::isValidElementType(Type *ElemTy) {
  return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
         !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy();
}

/// isLayoutIdentical - Return true if this is layout identical to the
/// specified struct.
bool StructType::isLayoutIdentical(StructType *Other) const {
  if (this == Other) return true;
  
  if (isPacked() != Other->isPacked() ||
      getNumElements() != Other->getNumElements())
    return false;
  
  return std::equal(element_begin(), element_end(), Other->element_begin());
}

/// getTypeByName - Return the type with the specified name, or null if there
/// is none by that name.
StructType *Module::getTypeByName(StringRef Name) const {
  StringMap<StructType*>::iterator I =
    getContext().pImpl->NamedStructTypes.find(Name);
  if (I != getContext().pImpl->NamedStructTypes.end())
    return I->second;
  return 0;
}


//===----------------------------------------------------------------------===//
//                       CompositeType Implementation
//===----------------------------------------------------------------------===//

Type *CompositeType::getTypeAtIndex(const Value *V) {
  if (StructType *STy = dyn_cast<StructType>(this)) {
    unsigned Idx =
      (unsigned)cast<Constant>(V)->getUniqueInteger().getZExtValue();
    assert(indexValid(Idx) && "Invalid structure index!");
    return STy->getElementType(Idx);
  }

  return cast<SequentialType>(this)->getElementType();
}
Type *CompositeType::getTypeAtIndex(unsigned Idx) {
  if (StructType *STy = dyn_cast<StructType>(this)) {
    assert(indexValid(Idx) && "Invalid structure index!");
    return STy->getElementType(Idx);
  }
  
  return cast<SequentialType>(this)->getElementType();
}
bool CompositeType::indexValid(const Value *V) const {
  if (const StructType *STy = dyn_cast<StructType>(this)) {
    // Structure indexes require (vectors of) 32-bit integer constants.  In the
    // vector case all of the indices must be equal.
    if (!V->getType()->getScalarType()->isIntegerTy(32))
      return false;
    const Constant *C = dyn_cast<Constant>(V);
    if (C && V->getType()->isVectorTy())
      C = C->getSplatValue();
    const ConstantInt *CU = dyn_cast_or_null<ConstantInt>(C);
    return CU && CU->getZExtValue() < STy->getNumElements();
  }

  // Sequential types can be indexed by any integer.
  return V->getType()->isIntOrIntVectorTy();
}

bool CompositeType::indexValid(unsigned Idx) const {
  if (const StructType *STy = dyn_cast<StructType>(this))
    return Idx < STy->getNumElements();
  // Sequential types can be indexed by any integer.
  return true;
}


//===----------------------------------------------------------------------===//
//                           ArrayType Implementation
//===----------------------------------------------------------------------===//

ArrayType::ArrayType(Type *ElType, uint64_t NumEl)
  : SequentialType(ArrayTyID, ElType) {
  NumElements = NumEl;
}

ArrayType *ArrayType::get(Type *elementType, uint64_t NumElements) {
  Type *ElementType = const_cast<Type*>(elementType);
  assert(isValidElementType(ElementType) && "Invalid type for array element!");
    
  LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
  ArrayType *&Entry = 
    pImpl->ArrayTypes[std::make_pair(ElementType, NumElements)];
  
  if (Entry == 0)
    Entry = new (pImpl->TypeAllocator) ArrayType(ElementType, NumElements);
  return Entry;
}

bool ArrayType::isValidElementType(Type *ElemTy) {
  return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
         !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy();
}

//===----------------------------------------------------------------------===//
//                          VectorType Implementation
//===----------------------------------------------------------------------===//

VectorType::VectorType(Type *ElType, unsigned NumEl)
  : SequentialType(VectorTyID, ElType) {
  NumElements = NumEl;
}

VectorType *VectorType::get(Type *elementType, unsigned NumElements) {
  Type *ElementType = const_cast<Type*>(elementType);
  assert(NumElements > 0 && "#Elements of a VectorType must be greater than 0");
  assert(isValidElementType(ElementType) &&
         "Elements of a VectorType must be a primitive type");
  
  LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
  VectorType *&Entry = ElementType->getContext().pImpl
    ->VectorTypes[std::make_pair(ElementType, NumElements)];
  
  if (Entry == 0)
    Entry = new (pImpl->TypeAllocator) VectorType(ElementType, NumElements);
  return Entry;
}

bool VectorType::isValidElementType(Type *ElemTy) {
  return ElemTy->isIntegerTy() || ElemTy->isFloatingPointTy() ||
    ElemTy->isPointerTy();
}

//===----------------------------------------------------------------------===//
//                         PointerType Implementation
//===----------------------------------------------------------------------===//

PointerType *PointerType::get(Type *EltTy, unsigned AddressSpace) {
  assert(EltTy && "Can't get a pointer to <null> type!");
  assert(isValidElementType(EltTy) && "Invalid type for pointer element!");
  
  LLVMContextImpl *CImpl = EltTy->getContext().pImpl;
  
  // Since AddressSpace #0 is the common case, we special case it.
  PointerType *&Entry = AddressSpace == 0 ? CImpl->PointerTypes[EltTy]
     : CImpl->ASPointerTypes[std::make_pair(EltTy, AddressSpace)];

  if (Entry == 0)
    Entry = new (CImpl->TypeAllocator) PointerType(EltTy, AddressSpace);
  return Entry;
}


PointerType::PointerType(Type *E, unsigned AddrSpace)
  : SequentialType(PointerTyID, E) {
#ifndef NDEBUG
  const unsigned oldNCT = NumContainedTys;
#endif
  setSubclassData(AddrSpace);
  // Check for miscompile. PR11652.
  assert(oldNCT == NumContainedTys && "bitfield written out of bounds?");
}

PointerType *Type::getPointerTo(unsigned addrs) {
  return PointerType::get(this, addrs);
}

bool PointerType::isValidElementType(Type *ElemTy) {
  return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
         !ElemTy->isMetadataTy();
}