summaryrefslogtreecommitdiff
path: root/lib/Linker/LinkModules.cpp
blob: eb73a49402adf8df5b6cacb22121e2087d69e625 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
//===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the LLVM module linker.
//
//===----------------------------------------------------------------------===//

#include "llvm/Linker/Linker.h"
#include "llvm-c/Linker.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/TypeFinder.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include <cctype>
using namespace llvm;


//===----------------------------------------------------------------------===//
// TypeMap implementation.
//===----------------------------------------------------------------------===//

namespace {
  typedef SmallPtrSet<StructType*, 32> TypeSet;

class TypeMapTy : public ValueMapTypeRemapper {
  /// MappedTypes - This is a mapping from a source type to a destination type
  /// to use.
  DenseMap<Type*, Type*> MappedTypes;

  /// SpeculativeTypes - When checking to see if two subgraphs are isomorphic,
  /// we speculatively add types to MappedTypes, but keep track of them here in
  /// case we need to roll back.
  SmallVector<Type*, 16> SpeculativeTypes;

  /// SrcDefinitionsToResolve - This is a list of non-opaque structs in the
  /// source module that are mapped to an opaque struct in the destination
  /// module.
  SmallVector<StructType*, 16> SrcDefinitionsToResolve;

  /// DstResolvedOpaqueTypes - This is the set of opaque types in the
  /// destination modules who are getting a body from the source module.
  SmallPtrSet<StructType*, 16> DstResolvedOpaqueTypes;

public:
  TypeMapTy(TypeSet &Set) : DstStructTypesSet(Set) {}

  TypeSet &DstStructTypesSet;
  /// addTypeMapping - Indicate that the specified type in the destination
  /// module is conceptually equivalent to the specified type in the source
  /// module.
  void addTypeMapping(Type *DstTy, Type *SrcTy);

  /// linkDefinedTypeBodies - Produce a body for an opaque type in the dest
  /// module from a type definition in the source module.
  void linkDefinedTypeBodies();

  /// get - Return the mapped type to use for the specified input type from the
  /// source module.
  Type *get(Type *SrcTy);

  FunctionType *get(FunctionType *T) {return cast<FunctionType>(get((Type*)T));}

  /// dump - Dump out the type map for debugging purposes.
  void dump() const {
    for (DenseMap<Type*, Type*>::const_iterator
           I = MappedTypes.begin(), E = MappedTypes.end(); I != E; ++I) {
      dbgs() << "TypeMap: ";
      I->first->dump();
      dbgs() << " => ";
      I->second->dump();
      dbgs() << '\n';
    }
  }

private:
  Type *getImpl(Type *T);
  /// remapType - Implement the ValueMapTypeRemapper interface.
  Type *remapType(Type *SrcTy) override {
    return get(SrcTy);
  }

  bool areTypesIsomorphic(Type *DstTy, Type *SrcTy);
};
}

void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) {
  Type *&Entry = MappedTypes[SrcTy];
  if (Entry) return;

  if (DstTy == SrcTy) {
    Entry = DstTy;
    return;
  }

  // Check to see if these types are recursively isomorphic and establish a
  // mapping between them if so.
  if (!areTypesIsomorphic(DstTy, SrcTy)) {
    // Oops, they aren't isomorphic.  Just discard this request by rolling out
    // any speculative mappings we've established.
    for (unsigned i = 0, e = SpeculativeTypes.size(); i != e; ++i)
      MappedTypes.erase(SpeculativeTypes[i]);
  }
  SpeculativeTypes.clear();
}

/// areTypesIsomorphic - Recursively walk this pair of types, returning true
/// if they are isomorphic, false if they are not.
bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) {
  // Two types with differing kinds are clearly not isomorphic.
  if (DstTy->getTypeID() != SrcTy->getTypeID()) return false;

  // If we have an entry in the MappedTypes table, then we have our answer.
  Type *&Entry = MappedTypes[SrcTy];
  if (Entry)
    return Entry == DstTy;

  // Two identical types are clearly isomorphic.  Remember this
  // non-speculatively.
  if (DstTy == SrcTy) {
    Entry = DstTy;
    return true;
  }

  // Okay, we have two types with identical kinds that we haven't seen before.

  // If this is an opaque struct type, special case it.
  if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) {
    // Mapping an opaque type to any struct, just keep the dest struct.
    if (SSTy->isOpaque()) {
      Entry = DstTy;
      SpeculativeTypes.push_back(SrcTy);
      return true;
    }

    // Mapping a non-opaque source type to an opaque dest.  If this is the first
    // type that we're mapping onto this destination type then we succeed.  Keep
    // the dest, but fill it in later.  This doesn't need to be speculative.  If
    // this is the second (different) type that we're trying to map onto the
    // same opaque type then we fail.
    if (cast<StructType>(DstTy)->isOpaque()) {
      // We can only map one source type onto the opaque destination type.
      if (!DstResolvedOpaqueTypes.insert(cast<StructType>(DstTy)))
        return false;
      SrcDefinitionsToResolve.push_back(SSTy);
      Entry = DstTy;
      return true;
    }
  }

  // If the number of subtypes disagree between the two types, then we fail.
  if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes())
    return false;

  // Fail if any of the extra properties (e.g. array size) of the type disagree.
  if (isa<IntegerType>(DstTy))
    return false;  // bitwidth disagrees.
  if (PointerType *PT = dyn_cast<PointerType>(DstTy)) {
    if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace())
      return false;

  } else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) {
    if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg())
      return false;
  } else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) {
    StructType *SSTy = cast<StructType>(SrcTy);
    if (DSTy->isLiteral() != SSTy->isLiteral() ||
        DSTy->isPacked() != SSTy->isPacked())
      return false;
  } else if (ArrayType *DATy = dyn_cast<ArrayType>(DstTy)) {
    if (DATy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements())
      return false;
  } else if (VectorType *DVTy = dyn_cast<VectorType>(DstTy)) {
    if (DVTy->getNumElements() != cast<VectorType>(SrcTy)->getNumElements())
      return false;
  }

  // Otherwise, we speculate that these two types will line up and recursively
  // check the subelements.
  Entry = DstTy;
  SpeculativeTypes.push_back(SrcTy);

  for (unsigned i = 0, e = SrcTy->getNumContainedTypes(); i != e; ++i)
    if (!areTypesIsomorphic(DstTy->getContainedType(i),
                            SrcTy->getContainedType(i)))
      return false;

  // If everything seems to have lined up, then everything is great.
  return true;
}

/// linkDefinedTypeBodies - Produce a body for an opaque type in the dest
/// module from a type definition in the source module.
void TypeMapTy::linkDefinedTypeBodies() {
  SmallVector<Type*, 16> Elements;
  SmallString<16> TmpName;

  // Note that processing entries in this loop (calling 'get') can add new
  // entries to the SrcDefinitionsToResolve vector.
  while (!SrcDefinitionsToResolve.empty()) {
    StructType *SrcSTy = SrcDefinitionsToResolve.pop_back_val();
    StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]);

    // TypeMap is a many-to-one mapping, if there were multiple types that
    // provide a body for DstSTy then previous iterations of this loop may have
    // already handled it.  Just ignore this case.
    if (!DstSTy->isOpaque()) continue;
    assert(!SrcSTy->isOpaque() && "Not resolving a definition?");

    // Map the body of the source type over to a new body for the dest type.
    Elements.resize(SrcSTy->getNumElements());
    for (unsigned i = 0, e = Elements.size(); i != e; ++i)
      Elements[i] = getImpl(SrcSTy->getElementType(i));

    DstSTy->setBody(Elements, SrcSTy->isPacked());

    // If DstSTy has no name or has a longer name than STy, then viciously steal
    // STy's name.
    if (!SrcSTy->hasName()) continue;
    StringRef SrcName = SrcSTy->getName();

    if (!DstSTy->hasName() || DstSTy->getName().size() > SrcName.size()) {
      TmpName.insert(TmpName.end(), SrcName.begin(), SrcName.end());
      SrcSTy->setName("");
      DstSTy->setName(TmpName.str());
      TmpName.clear();
    }
  }

  DstResolvedOpaqueTypes.clear();
}

/// get - Return the mapped type to use for the specified input type from the
/// source module.
Type *TypeMapTy::get(Type *Ty) {
  Type *Result = getImpl(Ty);

  // If this caused a reference to any struct type, resolve it before returning.
  if (!SrcDefinitionsToResolve.empty())
    linkDefinedTypeBodies();
  return Result;
}

/// getImpl - This is the recursive version of get().
Type *TypeMapTy::getImpl(Type *Ty) {
  // If we already have an entry for this type, return it.
  Type **Entry = &MappedTypes[Ty];
  if (*Entry) return *Entry;

  // If this is not a named struct type, then just map all of the elements and
  // then rebuild the type from inside out.
  if (!isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral()) {
    // If there are no element types to map, then the type is itself.  This is
    // true for the anonymous {} struct, things like 'float', integers, etc.
    if (Ty->getNumContainedTypes() == 0)
      return *Entry = Ty;

    // Remap all of the elements, keeping track of whether any of them change.
    bool AnyChange = false;
    SmallVector<Type*, 4> ElementTypes;
    ElementTypes.resize(Ty->getNumContainedTypes());
    for (unsigned i = 0, e = Ty->getNumContainedTypes(); i != e; ++i) {
      ElementTypes[i] = getImpl(Ty->getContainedType(i));
      AnyChange |= ElementTypes[i] != Ty->getContainedType(i);
    }

    // If we found our type while recursively processing stuff, just use it.
    Entry = &MappedTypes[Ty];
    if (*Entry) return *Entry;

    // If all of the element types mapped directly over, then the type is usable
    // as-is.
    if (!AnyChange)
      return *Entry = Ty;

    // Otherwise, rebuild a modified type.
    switch (Ty->getTypeID()) {
    default: llvm_unreachable("unknown derived type to remap");
    case Type::ArrayTyID:
      return *Entry = ArrayType::get(ElementTypes[0],
                                     cast<ArrayType>(Ty)->getNumElements());
    case Type::VectorTyID:
      return *Entry = VectorType::get(ElementTypes[0],
                                      cast<VectorType>(Ty)->getNumElements());
    case Type::PointerTyID:
      return *Entry = PointerType::get(ElementTypes[0],
                                      cast<PointerType>(Ty)->getAddressSpace());
    case Type::FunctionTyID:
      return *Entry = FunctionType::get(ElementTypes[0],
                                        makeArrayRef(ElementTypes).slice(1),
                                        cast<FunctionType>(Ty)->isVarArg());
    case Type::StructTyID:
      // Note that this is only reached for anonymous structs.
      return *Entry = StructType::get(Ty->getContext(), ElementTypes,
                                      cast<StructType>(Ty)->isPacked());
    }
  }

  // Otherwise, this is an unmapped named struct.  If the struct can be directly
  // mapped over, just use it as-is.  This happens in a case when the linked-in
  // module has something like:
  //   %T = type {%T*, i32}
  //   @GV = global %T* null
  // where T does not exist at all in the destination module.
  //
  // The other case we watch for is when the type is not in the destination
  // module, but that it has to be rebuilt because it refers to something that
  // is already mapped.  For example, if the destination module has:
  //  %A = type { i32 }
  // and the source module has something like
  //  %A' = type { i32 }
  //  %B = type { %A'* }
  //  @GV = global %B* null
  // then we want to create a new type: "%B = type { %A*}" and have it take the
  // pristine "%B" name from the source module.
  //
  // To determine which case this is, we have to recursively walk the type graph
  // speculating that we'll be able to reuse it unmodified.  Only if this is
  // safe would we map the entire thing over.  Because this is an optimization,
  // and is not required for the prettiness of the linked module, we just skip
  // it and always rebuild a type here.
  StructType *STy = cast<StructType>(Ty);

  // If the type is opaque, we can just use it directly.
  if (STy->isOpaque()) {
    // A named structure type from src module is used. Add it to the Set of
    // identified structs in the destination module.
    DstStructTypesSet.insert(STy);
    return *Entry = STy;
  }

  // Otherwise we create a new type and resolve its body later.  This will be
  // resolved by the top level of get().
  SrcDefinitionsToResolve.push_back(STy);
  StructType *DTy = StructType::create(STy->getContext());
  // A new identified structure type was created. Add it to the set of
  // identified structs in the destination module.
  DstStructTypesSet.insert(DTy);
  DstResolvedOpaqueTypes.insert(DTy);
  return *Entry = DTy;
}

//===----------------------------------------------------------------------===//
// ModuleLinker implementation.
//===----------------------------------------------------------------------===//

namespace {
  class ModuleLinker;

  /// ValueMaterializerTy - Creates prototypes for functions that are lazily
  /// linked on the fly. This speeds up linking for modules with many
  /// lazily linked functions of which few get used.
  class ValueMaterializerTy : public ValueMaterializer {
    TypeMapTy &TypeMap;
    Module *DstM;
    std::vector<Function*> &LazilyLinkFunctions;
  public:
    ValueMaterializerTy(TypeMapTy &TypeMap, Module *DstM,
                        std::vector<Function*> &LazilyLinkFunctions) :
      ValueMaterializer(), TypeMap(TypeMap), DstM(DstM),
      LazilyLinkFunctions(LazilyLinkFunctions) {
    }

    Value *materializeValueFor(Value *V) override;
  };

  /// ModuleLinker - This is an implementation class for the LinkModules
  /// function, which is the entrypoint for this file.
  class ModuleLinker {
    Module *DstM, *SrcM;

    TypeMapTy TypeMap;
    ValueMaterializerTy ValMaterializer;

    /// ValueMap - Mapping of values from what they used to be in Src, to what
    /// they are now in DstM.  ValueToValueMapTy is a ValueMap, which involves
    /// some overhead due to the use of Value handles which the Linker doesn't
    /// actually need, but this allows us to reuse the ValueMapper code.
    ValueToValueMapTy ValueMap;

    struct AppendingVarInfo {
      GlobalVariable *NewGV;  // New aggregate global in dest module.
      Constant *DstInit;      // Old initializer from dest module.
      Constant *SrcInit;      // Old initializer from src module.
    };

    std::vector<AppendingVarInfo> AppendingVars;

    unsigned Mode; // Mode to treat source module.

    // Set of items not to link in from source.
    SmallPtrSet<const Value*, 16> DoNotLinkFromSource;

    // Vector of functions to lazily link in.
    std::vector<Function*> LazilyLinkFunctions;

    bool SuppressWarnings;

  public:
    std::string ErrorMsg;

    ModuleLinker(Module *dstM, TypeSet &Set, Module *srcM, unsigned mode,
                 bool SuppressWarnings=false)
        : DstM(dstM), SrcM(srcM), TypeMap(Set),
          ValMaterializer(TypeMap, DstM, LazilyLinkFunctions), Mode(mode),
          SuppressWarnings(SuppressWarnings) {}

    bool run();

  private:
    /// emitError - Helper method for setting a message and returning an error
    /// code.
    bool emitError(const Twine &Message) {
      ErrorMsg = Message.str();
      return true;
    }

    bool getComdatLeader(Module *M, StringRef ComdatName,
                         const GlobalVariable *&GVar);
    bool computeResultingSelectionKind(StringRef ComdatName,
                                       Comdat::SelectionKind Src,
                                       Comdat::SelectionKind Dst,
                                       Comdat::SelectionKind &Result,
                                       bool &LinkFromSrc);
    std::map<const Comdat *, std::pair<Comdat::SelectionKind, bool>>
        ComdatsChosen;
    bool getComdatResult(const Comdat *SrcC, Comdat::SelectionKind &SK,
                         bool &LinkFromSrc);

    /// getLinkageResult - This analyzes the two global values and determines
    /// what the result will look like in the destination module.
    bool getLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
                          GlobalValue::LinkageTypes &LT,
                          GlobalValue::VisibilityTypes &Vis,
                          bool &LinkFromSrc);

    /// getLinkedToGlobal - Given a global in the source module, return the
    /// global in the destination module that is being linked to, if any.
    GlobalValue *getLinkedToGlobal(GlobalValue *SrcGV) {
      // If the source has no name it can't link.  If it has local linkage,
      // there is no name match-up going on.
      if (!SrcGV->hasName() || SrcGV->hasLocalLinkage())
        return nullptr;

      // Otherwise see if we have a match in the destination module's symtab.
      GlobalValue *DGV = DstM->getNamedValue(SrcGV->getName());
      if (!DGV) return nullptr;

      // If we found a global with the same name in the dest module, but it has
      // internal linkage, we are really not doing any linkage here.
      if (DGV->hasLocalLinkage())
        return nullptr;

      // Otherwise, we do in fact link to the destination global.
      return DGV;
    }

    void computeTypeMapping();

    bool linkAppendingVarProto(GlobalVariable *DstGV, GlobalVariable *SrcGV);
    bool linkGlobalProto(GlobalVariable *SrcGV);
    bool linkFunctionProto(Function *SrcF);
    bool linkAliasProto(GlobalAlias *SrcA);
    bool linkModuleFlagsMetadata();

    void linkAppendingVarInit(const AppendingVarInfo &AVI);
    void linkGlobalInits();
    void linkFunctionBody(Function *Dst, Function *Src);
    void linkAliasBodies();
    void linkNamedMDNodes();
  };
}

/// forceRenaming - The LLVM SymbolTable class autorenames globals that conflict
/// in the symbol table.  This is good for all clients except for us.  Go
/// through the trouble to force this back.
static void forceRenaming(GlobalValue *GV, StringRef Name) {
  // If the global doesn't force its name or if it already has the right name,
  // there is nothing for us to do.
  if (GV->hasLocalLinkage() || GV->getName() == Name)
    return;

  Module *M = GV->getParent();

  // If there is a conflict, rename the conflict.
  if (GlobalValue *ConflictGV = M->getNamedValue(Name)) {
    GV->takeName(ConflictGV);
    ConflictGV->setName(Name);    // This will cause ConflictGV to get renamed
    assert(ConflictGV->getName() != Name && "forceRenaming didn't work");
  } else {
    GV->setName(Name);              // Force the name back
  }
}

/// copyGVAttributes - copy additional attributes (those not needed to construct
/// a GlobalValue) from the SrcGV to the DestGV.
static void copyGVAttributes(GlobalValue *DestGV, const GlobalValue *SrcGV) {
  // Use the maximum alignment, rather than just copying the alignment of SrcGV.
  auto *DestGO = dyn_cast<GlobalObject>(DestGV);
  unsigned Alignment;
  if (DestGO)
    Alignment = std::max(DestGO->getAlignment(), SrcGV->getAlignment());

  DestGV->copyAttributesFrom(SrcGV);

  if (DestGO)
    DestGO->setAlignment(Alignment);

  forceRenaming(DestGV, SrcGV->getName());
}

static bool isLessConstraining(GlobalValue::VisibilityTypes a,
                               GlobalValue::VisibilityTypes b) {
  if (a == GlobalValue::HiddenVisibility)
    return false;
  if (b == GlobalValue::HiddenVisibility)
    return true;
  if (a == GlobalValue::ProtectedVisibility)
    return false;
  if (b == GlobalValue::ProtectedVisibility)
    return true;
  return false;
}

Value *ValueMaterializerTy::materializeValueFor(Value *V) {
  Function *SF = dyn_cast<Function>(V);
  if (!SF)
    return nullptr;

  Function *DF = Function::Create(TypeMap.get(SF->getFunctionType()),
                                  SF->getLinkage(), SF->getName(), DstM);
  copyGVAttributes(DF, SF);

  LazilyLinkFunctions.push_back(SF);
  return DF;
}

bool ModuleLinker::getComdatLeader(Module *M, StringRef ComdatName,
                                   const GlobalVariable *&GVar) {
  const GlobalValue *GVal = M->getNamedValue(ComdatName);
  if (const auto *GA = dyn_cast_or_null<GlobalAlias>(GVal)) {
    GVal = GA->getBaseObject();
    if (!GVal)
      // We cannot resolve the size of the aliasee yet.
      return emitError("Linking COMDATs named '" + ComdatName +
                       "': COMDAT key involves incomputable alias size.");
  }

  GVar = dyn_cast_or_null<GlobalVariable>(GVal);
  if (!GVar)
    return emitError(
        "Linking COMDATs named '" + ComdatName +
        "': GlobalVariable required for data dependent selection!");

  return false;
}

bool ModuleLinker::computeResultingSelectionKind(StringRef ComdatName,
                                                 Comdat::SelectionKind Src,
                                                 Comdat::SelectionKind Dst,
                                                 Comdat::SelectionKind &Result,
                                                 bool &LinkFromSrc) {
  // The ability to mix Comdat::SelectionKind::Any with
  // Comdat::SelectionKind::Largest is a behavior that comes from COFF.
  bool DstAnyOrLargest = Dst == Comdat::SelectionKind::Any ||
                         Dst == Comdat::SelectionKind::Largest;
  bool SrcAnyOrLargest = Src == Comdat::SelectionKind::Any ||
                         Src == Comdat::SelectionKind::Largest;
  if (DstAnyOrLargest && SrcAnyOrLargest) {
    if (Dst == Comdat::SelectionKind::Largest ||
        Src == Comdat::SelectionKind::Largest)
      Result = Comdat::SelectionKind::Largest;
    else
      Result = Comdat::SelectionKind::Any;
  } else if (Src == Dst) {
    Result = Dst;
  } else {
    return emitError("Linking COMDATs named '" + ComdatName +
                     "': invalid selection kinds!");
  }

  switch (Result) {
  case Comdat::SelectionKind::Any:
    // Go with Dst.
    LinkFromSrc = false;
    break;
  case Comdat::SelectionKind::NoDuplicates:
    return emitError("Linking COMDATs named '" + ComdatName +
                     "': noduplicates has been violated!");
  case Comdat::SelectionKind::ExactMatch:
  case Comdat::SelectionKind::Largest:
  case Comdat::SelectionKind::SameSize: {
    const GlobalVariable *DstGV;
    const GlobalVariable *SrcGV;
    if (getComdatLeader(DstM, ComdatName, DstGV) ||
        getComdatLeader(SrcM, ComdatName, SrcGV))
      return true;

    const DataLayout *DstDL = DstM->getDataLayout();
    const DataLayout *SrcDL = SrcM->getDataLayout();
    if (!DstDL || !SrcDL) {
      return emitError(
          "Linking COMDATs named '" + ComdatName +
          "': can't do size dependent selection without DataLayout!");
    }
    uint64_t DstSize =
        DstDL->getTypeAllocSize(DstGV->getType()->getPointerElementType());
    uint64_t SrcSize =
        SrcDL->getTypeAllocSize(SrcGV->getType()->getPointerElementType());
    if (Result == Comdat::SelectionKind::ExactMatch) {
      if (SrcGV->getInitializer() != DstGV->getInitializer())
        return emitError("Linking COMDATs named '" + ComdatName +
                         "': ExactMatch violated!");
      LinkFromSrc = false;
    } else if (Result == Comdat::SelectionKind::Largest) {
      LinkFromSrc = SrcSize > DstSize;
    } else if (Result == Comdat::SelectionKind::SameSize) {
      if (SrcSize != DstSize)
        return emitError("Linking COMDATs named '" + ComdatName +
                         "': SameSize violated!");
      LinkFromSrc = false;
    } else {
      llvm_unreachable("unknown selection kind");
    }
    break;
  }
  }

  return false;
}

bool ModuleLinker::getComdatResult(const Comdat *SrcC,
                                   Comdat::SelectionKind &Result,
                                   bool &LinkFromSrc) {
  StringRef ComdatName = SrcC->getName();
  Module::ComdatSymTabType &ComdatSymTab = DstM->getComdatSymbolTable();
  Module::ComdatSymTabType::iterator DstCI = ComdatSymTab.find(ComdatName);
  if (DstCI != ComdatSymTab.end()) {
    const Comdat *DstC = &DstCI->second;
    Comdat::SelectionKind SSK = SrcC->getSelectionKind();
    Comdat::SelectionKind DSK = DstC->getSelectionKind();
    if (computeResultingSelectionKind(ComdatName, SSK, DSK, Result, LinkFromSrc))
      return true;
  }
  return false;
}

/// getLinkageResult - This analyzes the two global values and determines what
/// the result will look like in the destination module.  In particular, it
/// computes the resultant linkage type and visibility, computes whether the
/// global in the source should be copied over to the destination (replacing
/// the existing one), and computes whether this linkage is an error or not.
bool ModuleLinker::getLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
                                    GlobalValue::LinkageTypes &LT,
                                    GlobalValue::VisibilityTypes &Vis,
                                    bool &LinkFromSrc) {
  assert(Dest && "Must have two globals being queried");
  assert(!Src->hasLocalLinkage() &&
         "If Src has internal linkage, Dest shouldn't be set!");

  bool SrcIsDeclaration = Src->isDeclaration() && !Src->isMaterializable();
  bool DestIsDeclaration = Dest->isDeclaration();

  if (SrcIsDeclaration) {
    // If Src is external or if both Src & Dest are external..  Just link the
    // external globals, we aren't adding anything.
    if (Src->hasDLLImportStorageClass()) {
      // If one of GVs is marked as DLLImport, result should be dllimport'ed.
      if (DestIsDeclaration) {
        LinkFromSrc = true;
        LT = Src->getLinkage();
      }
    } else if (Dest->hasExternalWeakLinkage()) {
      // If the Dest is weak, use the source linkage.
      LinkFromSrc = true;
      LT = Src->getLinkage();
    } else {
      LinkFromSrc = false;
      LT = Dest->getLinkage();
    }
  } else if (DestIsDeclaration && !Dest->hasDLLImportStorageClass()) {
    // If Dest is external but Src is not:
    LinkFromSrc = true;
    LT = Src->getLinkage();
  } else if (Src->isWeakForLinker()) {
    // At this point we know that Dest has LinkOnce, External*, Weak, Common,
    // or DLL* linkage.
    if (Dest->hasExternalWeakLinkage() ||
        Dest->hasAvailableExternallyLinkage() ||
        (Dest->hasLinkOnceLinkage() &&
         (Src->hasWeakLinkage() || Src->hasCommonLinkage()))) {
      LinkFromSrc = true;
      LT = Src->getLinkage();
    } else {
      LinkFromSrc = false;
      LT = Dest->getLinkage();
    }
  } else if (Dest->isWeakForLinker()) {
    // At this point we know that Src has External* or DLL* linkage.
    if (Src->hasExternalWeakLinkage()) {
      LinkFromSrc = false;
      LT = Dest->getLinkage();
    } else {
      LinkFromSrc = true;
      LT = GlobalValue::ExternalLinkage;
    }
  } else {
    assert((Dest->hasExternalLinkage()  || Dest->hasExternalWeakLinkage()) &&
           (Src->hasExternalLinkage()   || Src->hasExternalWeakLinkage()) &&
           "Unexpected linkage type!");
    return emitError("Linking globals named '" + Src->getName() +
                 "': symbol multiply defined!");
  }

  // Compute the visibility. We follow the rules in the System V Application
  // Binary Interface.
  assert(!GlobalValue::isLocalLinkage(LT) &&
         "Symbols with local linkage should not be merged");
  Vis = isLessConstraining(Src->getVisibility(), Dest->getVisibility()) ?
    Dest->getVisibility() : Src->getVisibility();
  return false;
}

/// computeTypeMapping - Loop over all of the linked values to compute type
/// mappings.  For example, if we link "extern Foo *x" and "Foo *x = NULL", then
/// we have two struct types 'Foo' but one got renamed when the module was
/// loaded into the same LLVMContext.
void ModuleLinker::computeTypeMapping() {
  // Incorporate globals.
  for (Module::global_iterator I = SrcM->global_begin(),
       E = SrcM->global_end(); I != E; ++I) {
    GlobalValue *DGV = getLinkedToGlobal(I);
    if (!DGV) continue;

    if (!DGV->hasAppendingLinkage() || !I->hasAppendingLinkage()) {
      TypeMap.addTypeMapping(DGV->getType(), I->getType());
      continue;
    }

    // Unify the element type of appending arrays.
    ArrayType *DAT = cast<ArrayType>(DGV->getType()->getElementType());
    ArrayType *SAT = cast<ArrayType>(I->getType()->getElementType());
    TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType());
  }

  // Incorporate functions.
  for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I) {
    if (GlobalValue *DGV = getLinkedToGlobal(I))
      TypeMap.addTypeMapping(DGV->getType(), I->getType());
  }

  // Incorporate types by name, scanning all the types in the source module.
  // At this point, the destination module may have a type "%foo = { i32 }" for
  // example.  When the source module got loaded into the same LLVMContext, if
  // it had the same type, it would have been renamed to "%foo.42 = { i32 }".
  TypeFinder SrcStructTypes;
  SrcStructTypes.run(*SrcM, true);
  SmallPtrSet<StructType*, 32> SrcStructTypesSet(SrcStructTypes.begin(),
                                                 SrcStructTypes.end());

  for (unsigned i = 0, e = SrcStructTypes.size(); i != e; ++i) {
    StructType *ST = SrcStructTypes[i];
    if (!ST->hasName()) continue;

    // Check to see if there is a dot in the name followed by a digit.
    size_t DotPos = ST->getName().rfind('.');
    if (DotPos == 0 || DotPos == StringRef::npos ||
        ST->getName().back() == '.' ||
        !isdigit(static_cast<unsigned char>(ST->getName()[DotPos+1])))
      continue;

    // Check to see if the destination module has a struct with the prefix name.
    if (StructType *DST = DstM->getTypeByName(ST->getName().substr(0, DotPos)))
      // Don't use it if this actually came from the source module. They're in
      // the same LLVMContext after all. Also don't use it unless the type is
      // actually used in the destination module. This can happen in situations
      // like this:
      //
      //      Module A                         Module B
      //      --------                         --------
      //   %Z = type { %A }                %B = type { %C.1 }
      //   %A = type { %B.1, [7 x i8] }    %C.1 = type { i8* }
      //   %B.1 = type { %C }              %A.2 = type { %B.3, [5 x i8] }
      //   %C = type { i8* }               %B.3 = type { %C.1 }
      //
      // When we link Module B with Module A, the '%B' in Module B is
      // used. However, that would then use '%C.1'. But when we process '%C.1',
      // we prefer to take the '%C' version. So we are then left with both
      // '%C.1' and '%C' being used for the same types. This leads to some
      // variables using one type and some using the other.
      if (!SrcStructTypesSet.count(DST) && TypeMap.DstStructTypesSet.count(DST))
        TypeMap.addTypeMapping(DST, ST);
  }

  // Don't bother incorporating aliases, they aren't generally typed well.

  // Now that we have discovered all of the type equivalences, get a body for
  // any 'opaque' types in the dest module that are now resolved.
  TypeMap.linkDefinedTypeBodies();
}

/// linkAppendingVarProto - If there were any appending global variables, link
/// them together now.  Return true on error.
bool ModuleLinker::linkAppendingVarProto(GlobalVariable *DstGV,
                                         GlobalVariable *SrcGV) {

  if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage())
    return emitError("Linking globals named '" + SrcGV->getName() +
           "': can only link appending global with another appending global!");

  ArrayType *DstTy = cast<ArrayType>(DstGV->getType()->getElementType());
  ArrayType *SrcTy =
    cast<ArrayType>(TypeMap.get(SrcGV->getType()->getElementType()));
  Type *EltTy = DstTy->getElementType();

  // Check to see that they two arrays agree on type.
  if (EltTy != SrcTy->getElementType())
    return emitError("Appending variables with different element types!");
  if (DstGV->isConstant() != SrcGV->isConstant())
    return emitError("Appending variables linked with different const'ness!");

  if (DstGV->getAlignment() != SrcGV->getAlignment())
    return emitError(
             "Appending variables with different alignment need to be linked!");

  if (DstGV->getVisibility() != SrcGV->getVisibility())
    return emitError(
            "Appending variables with different visibility need to be linked!");

  if (DstGV->hasUnnamedAddr() != SrcGV->hasUnnamedAddr())
    return emitError(
        "Appending variables with different unnamed_addr need to be linked!");

  if (StringRef(DstGV->getSection()) != SrcGV->getSection())
    return emitError(
          "Appending variables with different section name need to be linked!");

  uint64_t NewSize = DstTy->getNumElements() + SrcTy->getNumElements();
  ArrayType *NewType = ArrayType::get(EltTy, NewSize);

  // Create the new global variable.
  GlobalVariable *NG =
    new GlobalVariable(*DstGV->getParent(), NewType, SrcGV->isConstant(),
                       DstGV->getLinkage(), /*init*/nullptr, /*name*/"", DstGV,
                       DstGV->getThreadLocalMode(),
                       DstGV->getType()->getAddressSpace());

  // Propagate alignment, visibility and section info.
  copyGVAttributes(NG, DstGV);

  AppendingVarInfo AVI;
  AVI.NewGV = NG;
  AVI.DstInit = DstGV->getInitializer();
  AVI.SrcInit = SrcGV->getInitializer();
  AppendingVars.push_back(AVI);

  // Replace any uses of the two global variables with uses of the new
  // global.
  ValueMap[SrcGV] = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType()));

  DstGV->replaceAllUsesWith(ConstantExpr::getBitCast(NG, DstGV->getType()));
  DstGV->eraseFromParent();

  // Track the source variable so we don't try to link it.
  DoNotLinkFromSource.insert(SrcGV);

  return false;
}

/// linkGlobalProto - Loop through the global variables in the src module and
/// merge them into the dest module.
bool ModuleLinker::linkGlobalProto(GlobalVariable *SGV) {
  GlobalValue *DGV = getLinkedToGlobal(SGV);
  llvm::Optional<GlobalValue::VisibilityTypes> NewVisibility;
  bool HasUnnamedAddr = SGV->hasUnnamedAddr();

  bool LinkFromSrc = false;
  Comdat *DC = nullptr;
  if (const Comdat *SC = SGV->getComdat()) {
    Comdat::SelectionKind SK;
    std::tie(SK, LinkFromSrc) = ComdatsChosen[SC];
    DC = DstM->getOrInsertComdat(SC->getName());
    DC->setSelectionKind(SK);
  }

  if (DGV) {
    if (!DC) {
      // Concatenation of appending linkage variables is magic and handled later.
      if (DGV->hasAppendingLinkage() || SGV->hasAppendingLinkage())
        return linkAppendingVarProto(cast<GlobalVariable>(DGV), SGV);

      // Determine whether linkage of these two globals follows the source
      // module's definition or the destination module's definition.
      GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
      GlobalValue::VisibilityTypes NV;
      if (getLinkageResult(DGV, SGV, NewLinkage, NV, LinkFromSrc))
        return true;
      NewVisibility = NV;
      HasUnnamedAddr = HasUnnamedAddr && DGV->hasUnnamedAddr();

      // If we're not linking from the source, then keep the definition that we
      // have.
      if (!LinkFromSrc) {
        // Special case for const propagation.
        if (GlobalVariable *DGVar = dyn_cast<GlobalVariable>(DGV))
          if (DGVar->isDeclaration() && SGV->isConstant() &&
              !DGVar->isConstant())
            DGVar->setConstant(true);

        // Set calculated linkage, visibility and unnamed_addr.
        DGV->setLinkage(NewLinkage);
        DGV->setVisibility(*NewVisibility);
        DGV->setUnnamedAddr(HasUnnamedAddr);
      }
    }

    if (!LinkFromSrc) {
      // Make sure to remember this mapping.
      ValueMap[SGV] = ConstantExpr::getBitCast(DGV,TypeMap.get(SGV->getType()));

      // Track the source global so that we don't attempt to copy it over when
      // processing global initializers.
      DoNotLinkFromSource.insert(SGV);

      return false;
    }
  }

  // If the Comdat this variable was inside of wasn't selected, skip it.
  if (DC && !DGV && !LinkFromSrc) {
    DoNotLinkFromSource.insert(SGV);
    return false;
  }

  // No linking to be performed or linking from the source: simply create an
  // identical version of the symbol over in the dest module... the
  // initializer will be filled in later by LinkGlobalInits.
  GlobalVariable *NewDGV =
    new GlobalVariable(*DstM, TypeMap.get(SGV->getType()->getElementType()),
                       SGV->isConstant(), SGV->getLinkage(), /*init*/nullptr,
                       SGV->getName(), /*insertbefore*/nullptr,
                       SGV->getThreadLocalMode(),
                       SGV->getType()->getAddressSpace());
  // Propagate alignment, visibility and section info.
  copyGVAttributes(NewDGV, SGV);
  if (NewVisibility)
    NewDGV->setVisibility(*NewVisibility);
  NewDGV->setUnnamedAddr(HasUnnamedAddr);

  if (DC)
    NewDGV->setComdat(DC);

  if (DGV) {
    DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDGV, DGV->getType()));
    DGV->eraseFromParent();
  }

  // Make sure to remember this mapping.
  ValueMap[SGV] = NewDGV;
  return false;
}

/// linkFunctionProto - Link the function in the source module into the
/// destination module if needed, setting up mapping information.
bool ModuleLinker::linkFunctionProto(Function *SF) {
  GlobalValue *DGV = getLinkedToGlobal(SF);
  llvm::Optional<GlobalValue::VisibilityTypes> NewVisibility;
  bool HasUnnamedAddr = SF->hasUnnamedAddr();

  bool LinkFromSrc = false;
  Comdat *DC = nullptr;
  if (const Comdat *SC = SF->getComdat()) {
    Comdat::SelectionKind SK;
    std::tie(SK, LinkFromSrc) = ComdatsChosen[SC];
    DC = DstM->getOrInsertComdat(SC->getName());
    DC->setSelectionKind(SK);
  }

  if (DGV) {
    if (!DC) {
      GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
      GlobalValue::VisibilityTypes NV;
      if (getLinkageResult(DGV, SF, NewLinkage, NV, LinkFromSrc))
        return true;
      NewVisibility = NV;
      HasUnnamedAddr = HasUnnamedAddr && DGV->hasUnnamedAddr();

      if (!LinkFromSrc) {
        // Set calculated linkage
        DGV->setLinkage(NewLinkage);
        DGV->setVisibility(*NewVisibility);
        DGV->setUnnamedAddr(HasUnnamedAddr);
      }
    }

    if (!LinkFromSrc) {
      // Make sure to remember this mapping.
      ValueMap[SF] = ConstantExpr::getBitCast(DGV, TypeMap.get(SF->getType()));

      // Track the function from the source module so we don't attempt to remap
      // it.
      DoNotLinkFromSource.insert(SF);

      return false;
    }
  }

  // If the function is to be lazily linked, don't create it just yet.
  // The ValueMaterializerTy will deal with creating it if it's used.
  if (!DGV && (SF->hasLocalLinkage() || SF->hasLinkOnceLinkage() ||
               SF->hasAvailableExternallyLinkage())) {
    DoNotLinkFromSource.insert(SF);
    return false;
  }

  // If the Comdat this function was inside of wasn't selected, skip it.
  if (DC && !DGV && !LinkFromSrc) {
    DoNotLinkFromSource.insert(SF);
    return false;
  }

  // If there is no linkage to be performed or we are linking from the source,
  // bring SF over.
  Function *NewDF = Function::Create(TypeMap.get(SF->getFunctionType()),
                                     SF->getLinkage(), SF->getName(), DstM);
  copyGVAttributes(NewDF, SF);
  if (NewVisibility)
    NewDF->setVisibility(*NewVisibility);
  NewDF->setUnnamedAddr(HasUnnamedAddr);

  if (DC)
    NewDF->setComdat(DC);

  if (DGV) {
    // Any uses of DF need to change to NewDF, with cast.
    DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDF, DGV->getType()));
    DGV->eraseFromParent();
  }

  ValueMap[SF] = NewDF;
  return false;
}

/// LinkAliasProto - Set up prototypes for any aliases that come over from the
/// source module.
bool ModuleLinker::linkAliasProto(GlobalAlias *SGA) {
  GlobalValue *DGV = getLinkedToGlobal(SGA);
  llvm::Optional<GlobalValue::VisibilityTypes> NewVisibility;
  bool HasUnnamedAddr = SGA->hasUnnamedAddr();

  bool LinkFromSrc = false;
  Comdat *DC = nullptr;
  if (const Comdat *SC = SGA->getComdat()) {
    Comdat::SelectionKind SK;
    std::tie(SK, LinkFromSrc) = ComdatsChosen[SC];
    DC = DstM->getOrInsertComdat(SC->getName());
    DC->setSelectionKind(SK);
  }

  if (DGV) {
    if (!DC) {
      GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
      GlobalValue::VisibilityTypes NV;
      if (getLinkageResult(DGV, SGA, NewLinkage, NV, LinkFromSrc))
        return true;
      NewVisibility = NV;
      HasUnnamedAddr = HasUnnamedAddr && DGV->hasUnnamedAddr();

      if (!LinkFromSrc) {
        // Set calculated linkage.
        DGV->setLinkage(NewLinkage);
        DGV->setVisibility(*NewVisibility);
        DGV->setUnnamedAddr(HasUnnamedAddr);
      }
    }

    if (!LinkFromSrc) {
      // Make sure to remember this mapping.
      ValueMap[SGA] = ConstantExpr::getBitCast(DGV,TypeMap.get(SGA->getType()));

      // Track the alias from the source module so we don't attempt to remap it.
      DoNotLinkFromSource.insert(SGA);

      return false;
    }
  }

  // If the Comdat this alias was inside of wasn't selected, skip it.
  if (DC && !DGV && !LinkFromSrc) {
    DoNotLinkFromSource.insert(SGA);
    return false;
  }

  // If there is no linkage to be performed or we're linking from the source,
  // bring over SGA.
  auto *PTy = cast<PointerType>(TypeMap.get(SGA->getType()));
  auto *NewDA =
      GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(),
                          SGA->getLinkage(), SGA->getName(), DstM);
  copyGVAttributes(NewDA, SGA);
  if (NewVisibility)
    NewDA->setVisibility(*NewVisibility);
  NewDA->setUnnamedAddr(HasUnnamedAddr);

  if (DGV) {
    // Any uses of DGV need to change to NewDA, with cast.
    DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDA, DGV->getType()));
    DGV->eraseFromParent();
  }

  ValueMap[SGA] = NewDA;
  return false;
}

static void getArrayElements(Constant *C, SmallVectorImpl<Constant*> &Dest) {
  unsigned NumElements = cast<ArrayType>(C->getType())->getNumElements();

  for (unsigned i = 0; i != NumElements; ++i)
    Dest.push_back(C->getAggregateElement(i));
}

void ModuleLinker::linkAppendingVarInit(const AppendingVarInfo &AVI) {
  // Merge the initializer.
  SmallVector<Constant*, 16> Elements;
  getArrayElements(AVI.DstInit, Elements);

  Constant *SrcInit = MapValue(AVI.SrcInit, ValueMap, RF_None, &TypeMap, &ValMaterializer);
  getArrayElements(SrcInit, Elements);

  ArrayType *NewType = cast<ArrayType>(AVI.NewGV->getType()->getElementType());
  AVI.NewGV->setInitializer(ConstantArray::get(NewType, Elements));
}

/// linkGlobalInits - Update the initializers in the Dest module now that all
/// globals that may be referenced are in Dest.
void ModuleLinker::linkGlobalInits() {
  // Loop over all of the globals in the src module, mapping them over as we go
  for (Module::const_global_iterator I = SrcM->global_begin(),
       E = SrcM->global_end(); I != E; ++I) {

    // Only process initialized GV's or ones not already in dest.
    if (!I->hasInitializer() || DoNotLinkFromSource.count(I)) continue;

    // Grab destination global variable.
    GlobalVariable *DGV = cast<GlobalVariable>(ValueMap[I]);
    // Figure out what the initializer looks like in the dest module.
    DGV->setInitializer(MapValue(I->getInitializer(), ValueMap,
                                 RF_None, &TypeMap, &ValMaterializer));
  }
}

/// linkFunctionBody - Copy the source function over into the dest function and
/// fix up references to values.  At this point we know that Dest is an external
/// function, and that Src is not.
void ModuleLinker::linkFunctionBody(Function *Dst, Function *Src) {
  assert(Src && Dst && Dst->isDeclaration() && !Src->isDeclaration());

  // Go through and convert function arguments over, remembering the mapping.
  Function::arg_iterator DI = Dst->arg_begin();
  for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
       I != E; ++I, ++DI) {
    DI->setName(I->getName());  // Copy the name over.

    // Add a mapping to our mapping.
    ValueMap[I] = DI;
  }

  if (Mode == Linker::DestroySource) {
    // Splice the body of the source function into the dest function.
    Dst->getBasicBlockList().splice(Dst->end(), Src->getBasicBlockList());

    // At this point, all of the instructions and values of the function are now
    // copied over.  The only problem is that they are still referencing values in
    // the Source function as operands.  Loop through all of the operands of the
    // functions and patch them up to point to the local versions.
    for (Function::iterator BB = Dst->begin(), BE = Dst->end(); BB != BE; ++BB)
      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
        RemapInstruction(I, ValueMap, RF_IgnoreMissingEntries,
                         &TypeMap, &ValMaterializer);

  } else {
    // Clone the body of the function into the dest function.
    SmallVector<ReturnInst*, 8> Returns; // Ignore returns.
    CloneFunctionInto(Dst, Src, ValueMap, false, Returns, "", nullptr,
                      &TypeMap, &ValMaterializer);
  }

  // There is no need to map the arguments anymore.
  for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
       I != E; ++I)
    ValueMap.erase(I);

}

/// linkAliasBodies - Insert all of the aliases in Src into the Dest module.
void ModuleLinker::linkAliasBodies() {
  for (Module::alias_iterator I = SrcM->alias_begin(), E = SrcM->alias_end();
       I != E; ++I) {
    if (DoNotLinkFromSource.count(I))
      continue;
    if (Constant *Aliasee = I->getAliasee()) {
      GlobalAlias *DA = cast<GlobalAlias>(ValueMap[I]);
      Constant *Val =
          MapValue(Aliasee, ValueMap, RF_None, &TypeMap, &ValMaterializer);
      DA->setAliasee(Val);
    }
  }
}

/// linkNamedMDNodes - Insert all of the named MDNodes in Src into the Dest
/// module.
void ModuleLinker::linkNamedMDNodes() {
  const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
  for (Module::const_named_metadata_iterator I = SrcM->named_metadata_begin(),
       E = SrcM->named_metadata_end(); I != E; ++I) {
    // Don't link module flags here. Do them separately.
    if (&*I == SrcModFlags) continue;
    NamedMDNode *DestNMD = DstM->getOrInsertNamedMetadata(I->getName());
    // Add Src elements into Dest node.
    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
      DestNMD->addOperand(MapValue(I->getOperand(i), ValueMap,
                                   RF_None, &TypeMap, &ValMaterializer));
  }
}

/// linkModuleFlagsMetadata - Merge the linker flags in Src into the Dest
/// module.
bool ModuleLinker::linkModuleFlagsMetadata() {
  // If the source module has no module flags, we are done.
  const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
  if (!SrcModFlags) return false;

  // If the destination module doesn't have module flags yet, then just copy
  // over the source module's flags.
  NamedMDNode *DstModFlags = DstM->getOrInsertModuleFlagsMetadata();
  if (DstModFlags->getNumOperands() == 0) {
    for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I)
      DstModFlags->addOperand(SrcModFlags->getOperand(I));

    return false;
  }

  // First build a map of the existing module flags and requirements.
  DenseMap<MDString*, MDNode*> Flags;
  SmallSetVector<MDNode*, 16> Requirements;
  for (unsigned I = 0, E = DstModFlags->getNumOperands(); I != E; ++I) {
    MDNode *Op = DstModFlags->getOperand(I);
    ConstantInt *Behavior = cast<ConstantInt>(Op->getOperand(0));
    MDString *ID = cast<MDString>(Op->getOperand(1));

    if (Behavior->getZExtValue() == Module::Require) {
      Requirements.insert(cast<MDNode>(Op->getOperand(2)));
    } else {
      Flags[ID] = Op;
    }
  }

  // Merge in the flags from the source module, and also collect its set of
  // requirements.
  bool HasErr = false;
  for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) {
    MDNode *SrcOp = SrcModFlags->getOperand(I);
    ConstantInt *SrcBehavior = cast<ConstantInt>(SrcOp->getOperand(0));
    MDString *ID = cast<MDString>(SrcOp->getOperand(1));
    MDNode *DstOp = Flags.lookup(ID);
    unsigned SrcBehaviorValue = SrcBehavior->getZExtValue();

    // If this is a requirement, add it and continue.
    if (SrcBehaviorValue == Module::Require) {
      // If the destination module does not already have this requirement, add
      // it.
      if (Requirements.insert(cast<MDNode>(SrcOp->getOperand(2)))) {
        DstModFlags->addOperand(SrcOp);
      }
      continue;
    }

    // If there is no existing flag with this ID, just add it.
    if (!DstOp) {
      Flags[ID] = SrcOp;
      DstModFlags->addOperand(SrcOp);
      continue;
    }

    // Otherwise, perform a merge.
    ConstantInt *DstBehavior = cast<ConstantInt>(DstOp->getOperand(0));
    unsigned DstBehaviorValue = DstBehavior->getZExtValue();

    // If either flag has override behavior, handle it first.
    if (DstBehaviorValue == Module::Override) {
      // Diagnose inconsistent flags which both have override behavior.
      if (SrcBehaviorValue == Module::Override &&
          SrcOp->getOperand(2) != DstOp->getOperand(2)) {
        HasErr |= emitError("linking module flags '" + ID->getString() +
                            "': IDs have conflicting override values");
      }
      continue;
    } else if (SrcBehaviorValue == Module::Override) {
      // Update the destination flag to that of the source.
      DstOp->replaceOperandWith(0, SrcBehavior);
      DstOp->replaceOperandWith(2, SrcOp->getOperand(2));
      continue;
    }

    // Diagnose inconsistent merge behavior types.
    if (SrcBehaviorValue != DstBehaviorValue) {
      HasErr |= emitError("linking module flags '" + ID->getString() +
                          "': IDs have conflicting behaviors");
      continue;
    }

    // Perform the merge for standard behavior types.
    switch (SrcBehaviorValue) {
    case Module::Require:
    case Module::Override: llvm_unreachable("not possible");
    case Module::Error: {
      // Emit an error if the values differ.
      if (SrcOp->getOperand(2) != DstOp->getOperand(2)) {
        HasErr |= emitError("linking module flags '" + ID->getString() +
                            "': IDs have conflicting values");
      }
      continue;
    }
    case Module::Warning: {
      // Emit a warning if the values differ.
      if (SrcOp->getOperand(2) != DstOp->getOperand(2)) {
        if (!SuppressWarnings) {
          errs() << "WARNING: linking module flags '" << ID->getString()
                 << "': IDs have conflicting values";
        }
      }
      continue;
    }
    case Module::Append: {
      MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
      MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
      unsigned NumOps = DstValue->getNumOperands() + SrcValue->getNumOperands();
      Value **VP, **Values = VP = new Value*[NumOps];
      for (unsigned i = 0, e = DstValue->getNumOperands(); i != e; ++i, ++VP)
        *VP = DstValue->getOperand(i);
      for (unsigned i = 0, e = SrcValue->getNumOperands(); i != e; ++i, ++VP)
        *VP = SrcValue->getOperand(i);
      DstOp->replaceOperandWith(2, MDNode::get(DstM->getContext(),
                                               ArrayRef<Value*>(Values,
                                                                NumOps)));
      delete[] Values;
      break;
    }
    case Module::AppendUnique: {
      SmallSetVector<Value*, 16> Elts;
      MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
      MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
      for (unsigned i = 0, e = DstValue->getNumOperands(); i != e; ++i)
        Elts.insert(DstValue->getOperand(i));
      for (unsigned i = 0, e = SrcValue->getNumOperands(); i != e; ++i)
        Elts.insert(SrcValue->getOperand(i));
      DstOp->replaceOperandWith(2, MDNode::get(DstM->getContext(),
                                               ArrayRef<Value*>(Elts.begin(),
                                                                Elts.end())));
      break;
    }
    }
  }

  // Check all of the requirements.
  for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
    MDNode *Requirement = Requirements[I];
    MDString *Flag = cast<MDString>(Requirement->getOperand(0));
    Value *ReqValue = Requirement->getOperand(1);

    MDNode *Op = Flags[Flag];
    if (!Op || Op->getOperand(2) != ReqValue) {
      HasErr |= emitError("linking module flags '" + Flag->getString() +
                          "': does not have the required value");
      continue;
    }
  }

  return HasErr;
}

bool ModuleLinker::run() {
  assert(DstM && "Null destination module");
  assert(SrcM && "Null source module");

  // Inherit the target data from the source module if the destination module
  // doesn't have one already.
  if (!DstM->getDataLayout() && SrcM->getDataLayout())
    DstM->setDataLayout(SrcM->getDataLayout());

  // Copy the target triple from the source to dest if the dest's is empty.
  if (DstM->getTargetTriple().empty() && !SrcM->getTargetTriple().empty())
    DstM->setTargetTriple(SrcM->getTargetTriple());

  if (SrcM->getDataLayout() && DstM->getDataLayout() &&
      *SrcM->getDataLayout() != *DstM->getDataLayout()) {
    if (!SuppressWarnings) {
      errs() << "WARNING: Linking two modules of different data layouts: '"
             << SrcM->getModuleIdentifier() << "' is '"
             << SrcM->getDataLayoutStr() << "' whereas '"
             << DstM->getModuleIdentifier() << "' is '"
             << DstM->getDataLayoutStr() << "'\n";
    }
  }
  if (!SrcM->getTargetTriple().empty() &&
      DstM->getTargetTriple() != SrcM->getTargetTriple()) {
    if (!SuppressWarnings) {
      errs() << "WARNING: Linking two modules of different target triples: "
             << SrcM->getModuleIdentifier() << "' is '"
             << SrcM->getTargetTriple() << "' whereas '"
             << DstM->getModuleIdentifier() << "' is '"
             << DstM->getTargetTriple() << "'\n";
    }
  }

  // Append the module inline asm string.
  if (!SrcM->getModuleInlineAsm().empty()) {
    if (DstM->getModuleInlineAsm().empty())
      DstM->setModuleInlineAsm(SrcM->getModuleInlineAsm());
    else
      DstM->setModuleInlineAsm(DstM->getModuleInlineAsm()+"\n"+
                               SrcM->getModuleInlineAsm());
  }

  // Loop over all of the linked values to compute type mappings.
  computeTypeMapping();

  ComdatsChosen.clear();
  for (const StringMapEntry<llvm::Comdat> &SMEC : SrcM->getComdatSymbolTable()) {
    const Comdat &C = SMEC.getValue();
    if (ComdatsChosen.count(&C))
      continue;
    Comdat::SelectionKind SK;
    bool LinkFromSrc;
    if (getComdatResult(&C, SK, LinkFromSrc))
      return true;
    ComdatsChosen[&C] = std::make_pair(SK, LinkFromSrc);
  }

  // Insert all of the globals in src into the DstM module... without linking
  // initializers (which could refer to functions not yet mapped over).
  for (Module::global_iterator I = SrcM->global_begin(),
       E = SrcM->global_end(); I != E; ++I)
    if (linkGlobalProto(I))
      return true;

  // Link the functions together between the two modules, without doing function
  // bodies... this just adds external function prototypes to the DstM
  // function...  We do this so that when we begin processing function bodies,
  // all of the global values that may be referenced are available in our
  // ValueMap.
  for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I)
    if (linkFunctionProto(I))
      return true;

  // If there were any aliases, link them now.
  for (Module::alias_iterator I = SrcM->alias_begin(),
       E = SrcM->alias_end(); I != E; ++I)
    if (linkAliasProto(I))
      return true;

  for (unsigned i = 0, e = AppendingVars.size(); i != e; ++i)
    linkAppendingVarInit(AppendingVars[i]);

  // Link in the function bodies that are defined in the source module into
  // DstM.
  for (Module::iterator SF = SrcM->begin(), E = SrcM->end(); SF != E; ++SF) {
    // Skip if not linking from source.
    if (DoNotLinkFromSource.count(SF)) continue;

    Function *DF = cast<Function>(ValueMap[SF]);
    if (SF->hasPrefixData()) {
      // Link in the prefix data.
      DF->setPrefixData(MapValue(
          SF->getPrefixData(), ValueMap, RF_None, &TypeMap, &ValMaterializer));
    }

    // Skip if no body (function is external) or materialize.
    if (SF->isDeclaration()) {
      if (!SF->isMaterializable())
        continue;
      if (SF->Materialize(&ErrorMsg))
        return true;
    }

    linkFunctionBody(DF, SF);
    SF->Dematerialize();
  }

  // Resolve all uses of aliases with aliasees.
  linkAliasBodies();

  // Remap all of the named MDNodes in Src into the DstM module. We do this
  // after linking GlobalValues so that MDNodes that reference GlobalValues
  // are properly remapped.
  linkNamedMDNodes();

  // Merge the module flags into the DstM module.
  if (linkModuleFlagsMetadata())
    return true;

  // Update the initializers in the DstM module now that all globals that may
  // be referenced are in DstM.
  linkGlobalInits();

  // Process vector of lazily linked in functions.
  bool LinkedInAnyFunctions;
  do {
    LinkedInAnyFunctions = false;

    for(std::vector<Function*>::iterator I = LazilyLinkFunctions.begin(),
        E = LazilyLinkFunctions.end(); I != E; ++I) {
      Function *SF = *I;
      if (!SF)
        continue;

      Function *DF = cast<Function>(ValueMap[SF]);
      if (SF->hasPrefixData()) {
        // Link in the prefix data.
        DF->setPrefixData(MapValue(SF->getPrefixData(),
                                   ValueMap,
                                   RF_None,
                                   &TypeMap,
                                   &ValMaterializer));
      }

      // Materialize if necessary.
      if (SF->isDeclaration()) {
        if (!SF->isMaterializable())
          continue;
        if (SF->Materialize(&ErrorMsg))
          return true;
      }

      // Erase from vector *before* the function body is linked - linkFunctionBody could
      // invalidate I.
      LazilyLinkFunctions.erase(I);

      // Link in function body.
      linkFunctionBody(DF, SF);
      SF->Dematerialize();

      // Set flag to indicate we may have more functions to lazily link in
      // since we linked in a function.
      LinkedInAnyFunctions = true;
      break;
    }
  } while (LinkedInAnyFunctions);

  // Now that all of the types from the source are used, resolve any structs
  // copied over to the dest that didn't exist there.
  TypeMap.linkDefinedTypeBodies();

  return false;
}

Linker::Linker(Module *M, bool SuppressWarnings)
    : Composite(M), SuppressWarnings(SuppressWarnings) {
  TypeFinder StructTypes;
  StructTypes.run(*M, true);
  IdentifiedStructTypes.insert(StructTypes.begin(), StructTypes.end());
}

Linker::~Linker() {
}

void Linker::deleteModule() {
  delete Composite;
  Composite = nullptr;
}

bool Linker::linkInModule(Module *Src, unsigned Mode, std::string *ErrorMsg) {
  ModuleLinker TheLinker(Composite, IdentifiedStructTypes, Src, Mode,
                         SuppressWarnings);
  if (TheLinker.run()) {
    if (ErrorMsg)
      *ErrorMsg = TheLinker.ErrorMsg;
    return true;
  }
  return false;
}

//===----------------------------------------------------------------------===//
// LinkModules entrypoint.
//===----------------------------------------------------------------------===//

/// LinkModules - This function links two modules together, with the resulting
/// Dest module modified to be the composite of the two input modules.  If an
/// error occurs, true is returned and ErrorMsg (if not null) is set to indicate
/// the problem.  Upon failure, the Dest module could be in a modified state,
/// and shouldn't be relied on to be consistent.
bool Linker::LinkModules(Module *Dest, Module *Src, unsigned Mode,
                         std::string *ErrorMsg) {
  Linker L(Dest);
  return L.linkInModule(Src, Mode, ErrorMsg);
}

//===----------------------------------------------------------------------===//
// C API.
//===----------------------------------------------------------------------===//

LLVMBool LLVMLinkModules(LLVMModuleRef Dest, LLVMModuleRef Src,
                         LLVMLinkerMode Mode, char **OutMessages) {
  std::string Messages;
  LLVMBool Result = Linker::LinkModules(unwrap(Dest), unwrap(Src),
                                        Mode, OutMessages? &Messages : nullptr);
  if (OutMessages)
    *OutMessages = strdup(Messages.c_str());
  return Result;
}