summaryrefslogtreecommitdiff
path: root/lib/MC/MCModuleYAML.cpp
blob: f81cb149d83a9ab903935a8c84e356d066c66c6c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
//===- MCModuleYAML.cpp - MCModule YAMLIO implementation ------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines classes for handling the YAML representation of MCModule.
//
//===----------------------------------------------------------------------===//

#include "llvm/MC/MCModuleYAML.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/MC/MCAtom.h"
#include "llvm/MC/MCFunction.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Object/YAML.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/YAMLTraits.h"
#include <vector>

namespace llvm {

namespace {

// This class is used to map opcode and register names to enum values.
//
// There are at least 3 obvious ways to do this:
// 1- Generate an MII/MRI method using a tablegen StringMatcher
// 2- Write an MII/MRI method using std::lower_bound and the assumption that
//    the enums are sorted (starting at a fixed value).
// 3- Do the matching manually as is done here.
//
// Why 3?
// 1- A StringMatcher function for thousands of entries would incur
//    a non-negligible binary size overhead.
// 2- The lower_bound comparators would be somewhat involved and aren't
//    obviously reusable (see LessRecordRegister in llvm/TableGen/Record.h)
// 3- This isn't actually something useful outside tests (but the same argument
//    can be made against having {MII,MRI}::getName).
//
// If this becomes useful outside this specific situation, feel free to do
// the Right Thing (tm) and move the functionality to MII/MRI.
//
class InstrRegInfoHolder {
  typedef StringMap<unsigned, BumpPtrAllocator> EnumValByNameTy;
  EnumValByNameTy InstEnumValueByName;
  EnumValByNameTy RegEnumValueByName;

public:
  const MCInstrInfo &MII;
  const MCRegisterInfo &MRI;
  InstrRegInfoHolder(const MCInstrInfo &MII, const MCRegisterInfo &MRI)
      : InstEnumValueByName(NextPowerOf2(MII.getNumOpcodes())),
        RegEnumValueByName(NextPowerOf2(MRI.getNumRegs())), MII(MII), MRI(MRI) {
    for (int i = 0, e = MII.getNumOpcodes(); i != e; ++i)
      InstEnumValueByName[MII.getName(i)] = i;
    for (int i = 0, e = MRI.getNumRegs(); i != e; ++i)
      RegEnumValueByName[MRI.getName(i)] = i;
  }

  bool matchRegister(StringRef Name, unsigned &Reg) {
    EnumValByNameTy::const_iterator It = RegEnumValueByName.find(Name);
    if (It == RegEnumValueByName.end())
      return false;
    Reg = It->getValue();
    return true;
  }
  bool matchOpcode(StringRef Name, unsigned &Opc) {
    EnumValByNameTy::const_iterator It = InstEnumValueByName.find(Name);
    if (It == InstEnumValueByName.end())
      return false;
    Opc = It->getValue();
    return true;
  }
};

} // end unnamed namespace

namespace MCModuleYAML {

LLVM_YAML_STRONG_TYPEDEF(unsigned, OpcodeEnum)

struct Operand {
  MCOperand MCOp;
};

struct Inst {
  OpcodeEnum Opcode;
  std::vector<Operand> Operands;
  uint64_t Size;
};

struct Atom {
  MCAtom::AtomKind Type;
  yaml::Hex64 StartAddress;
  uint64_t Size;

  std::vector<Inst> Insts;
  object::yaml::BinaryRef Data;
};

struct BasicBlock {
  yaml::Hex64 Address;
  std::vector<yaml::Hex64> Preds;
  std::vector<yaml::Hex64> Succs;
};

struct Function {
  StringRef Name;
  std::vector<BasicBlock> BasicBlocks;
};

struct Module {
  std::vector<Atom> Atoms;
  std::vector<Function> Functions;
};

} // end namespace MCModuleYAML
} // end namespace llvm

LLVM_YAML_IS_FLOW_SEQUENCE_VECTOR(llvm::yaml::Hex64)
LLVM_YAML_IS_FLOW_SEQUENCE_VECTOR(llvm::MCModuleYAML::Operand)
LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::MCModuleYAML::Inst)
LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::MCModuleYAML::Atom)
LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::MCModuleYAML::BasicBlock)
LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::MCModuleYAML::Function)

namespace llvm {

namespace yaml {

template <> struct ScalarEnumerationTraits<MCAtom::AtomKind> {
  static void enumeration(IO &IO, MCAtom::AtomKind &Kind);
};

template <> struct MappingTraits<MCModuleYAML::Atom> {
  static void mapping(IO &IO, MCModuleYAML::Atom &A);
};

template <> struct MappingTraits<MCModuleYAML::Inst> {
  static void mapping(IO &IO, MCModuleYAML::Inst &I);
};

template <> struct MappingTraits<MCModuleYAML::BasicBlock> {
  static void mapping(IO &IO, MCModuleYAML::BasicBlock &BB);
};

template <> struct MappingTraits<MCModuleYAML::Function> {
  static void mapping(IO &IO, MCModuleYAML::Function &Fn);
};

template <> struct MappingTraits<MCModuleYAML::Module> {
  static void mapping(IO &IO, MCModuleYAML::Module &M);
};

template <> struct ScalarTraits<MCModuleYAML::Operand> {
  static void output(const MCModuleYAML::Operand &, void *,
                     llvm::raw_ostream &);
  static StringRef input(StringRef, void *, MCModuleYAML::Operand &);
  static bool mustQuote(StringRef) { return false; }
};

template <> struct ScalarTraits<MCModuleYAML::OpcodeEnum> {
  static void output(const MCModuleYAML::OpcodeEnum &, void *,
                     llvm::raw_ostream &);
  static StringRef input(StringRef, void *, MCModuleYAML::OpcodeEnum &);
  static bool mustQuote(StringRef) { return false; }
};

void ScalarEnumerationTraits<MCAtom::AtomKind>::enumeration(
    IO &IO, MCAtom::AtomKind &Value) {
  IO.enumCase(Value, "Text", MCAtom::TextAtom);
  IO.enumCase(Value, "Data", MCAtom::DataAtom);
}

void MappingTraits<MCModuleYAML::Atom>::mapping(IO &IO, MCModuleYAML::Atom &A) {
  IO.mapRequired("StartAddress", A.StartAddress);
  IO.mapRequired("Size", A.Size);
  IO.mapRequired("Type", A.Type);
  if (A.Type == MCAtom::TextAtom)
    IO.mapRequired("Content", A.Insts);
  else if (A.Type == MCAtom::DataAtom)
    IO.mapRequired("Content", A.Data);
}

void MappingTraits<MCModuleYAML::Inst>::mapping(IO &IO, MCModuleYAML::Inst &I) {
  IO.mapRequired("Inst", I.Opcode);
  IO.mapRequired("Size", I.Size);
  IO.mapRequired("Ops", I.Operands);
}

void
MappingTraits<MCModuleYAML::BasicBlock>::mapping(IO &IO,
                                                 MCModuleYAML::BasicBlock &BB) {
  IO.mapRequired("Address", BB.Address);
  IO.mapRequired("Preds", BB.Preds);
  IO.mapRequired("Succs", BB.Succs);
}

void MappingTraits<MCModuleYAML::Function>::mapping(IO &IO,
                                                    MCModuleYAML::Function &F) {
  IO.mapRequired("Name", F.Name);
  IO.mapRequired("BasicBlocks", F.BasicBlocks);
}

void MappingTraits<MCModuleYAML::Module>::mapping(IO &IO,
                                                  MCModuleYAML::Module &M) {
  IO.mapRequired("Atoms", M.Atoms);
  IO.mapOptional("Functions", M.Functions);
}

void
ScalarTraits<MCModuleYAML::Operand>::output(const MCModuleYAML::Operand &Val,
                                            void *Ctx, raw_ostream &Out) {
  InstrRegInfoHolder *IRI = (InstrRegInfoHolder *)Ctx;

  // FIXME: Doesn't support FPImm and expr/inst, but do these make sense?
  if (Val.MCOp.isImm())
    Out << "I" << Val.MCOp.getImm();
  else if (Val.MCOp.isReg())
    Out << "R" << IRI->MRI.getName(Val.MCOp.getReg());
  else
    llvm_unreachable("Trying to output invalid MCOperand!");
}

StringRef
ScalarTraits<MCModuleYAML::Operand>::input(StringRef Scalar, void *Ctx,
                                           MCModuleYAML::Operand &Val) {
  InstrRegInfoHolder *IRI = (InstrRegInfoHolder *)Ctx;
  char Type = 0;
  if (Scalar.size() >= 1)
    Type = Scalar.front();
  if (Type != 'R' && Type != 'I')
    return "Operand must start with 'R' (register) or 'I' (immediate).";
  if (Type == 'R') {
    unsigned Reg;
    if (!IRI->matchRegister(Scalar.substr(1), Reg))
      return "Invalid register name.";
    Val.MCOp = MCOperand::CreateReg(Reg);
  } else if (Type == 'I') {
    int64_t RIVal;
    if (Scalar.substr(1).getAsInteger(10, RIVal))
      return "Invalid immediate value.";
    Val.MCOp = MCOperand::CreateImm(RIVal);
  } else {
    Val.MCOp = MCOperand();
  }
  return StringRef();
}

void ScalarTraits<MCModuleYAML::OpcodeEnum>::output(
    const MCModuleYAML::OpcodeEnum &Val, void *Ctx, raw_ostream &Out) {
  InstrRegInfoHolder *IRI = (InstrRegInfoHolder *)Ctx;
  Out << IRI->MII.getName(Val);
}

StringRef
ScalarTraits<MCModuleYAML::OpcodeEnum>::input(StringRef Scalar, void *Ctx,
                                              MCModuleYAML::OpcodeEnum &Val) {
  InstrRegInfoHolder *IRI = (InstrRegInfoHolder *)Ctx;
  unsigned Opc;
  if (!IRI->matchOpcode(Scalar, Opc))
    return "Invalid instruction opcode.";
  Val = Opc;
  return "";
}

} // end namespace yaml

namespace {

class MCModule2YAML {
  const MCModule &MCM;
  MCModuleYAML::Module YAMLModule;
  void dumpAtom(const MCAtom *MCA);
  void dumpFunction(const MCFunction &MCF);
  void dumpBasicBlock(const MCBasicBlock *MCBB);

public:
  MCModule2YAML(const MCModule &MCM);
  MCModuleYAML::Module &getYAMLModule();
};

class YAML2MCModule {
  MCModule &MCM;

public:
  YAML2MCModule(MCModule &MCM);
  StringRef parse(const MCModuleYAML::Module &YAMLModule);
};

} // end unnamed namespace

MCModule2YAML::MCModule2YAML(const MCModule &MCM) : MCM(MCM), YAMLModule() {
  for (MCModule::const_atom_iterator AI = MCM.atom_begin(), AE = MCM.atom_end();
       AI != AE; ++AI)
    dumpAtom(*AI);
  for (MCModule::const_func_iterator FI = MCM.func_begin(), FE = MCM.func_end();
       FI != FE; ++FI)
    dumpFunction(**FI);
}

void MCModule2YAML::dumpAtom(const MCAtom *MCA) {
  YAMLModule.Atoms.resize(YAMLModule.Atoms.size() + 1);
  MCModuleYAML::Atom &A = YAMLModule.Atoms.back();
  A.Type = MCA->getKind();
  A.StartAddress = MCA->getBeginAddr();
  A.Size = MCA->getEndAddr() - MCA->getBeginAddr() + 1;
  if (const MCTextAtom *TA = dyn_cast<MCTextAtom>(MCA)) {
    const size_t InstCount = TA->size();
    A.Insts.resize(InstCount);
    for (size_t i = 0; i != InstCount; ++i) {
      const MCDecodedInst &MCDI = TA->at(i);
      A.Insts[i].Opcode = MCDI.Inst.getOpcode();
      A.Insts[i].Size = MCDI.Size;
      const unsigned OpCount = MCDI.Inst.getNumOperands();
      A.Insts[i].Operands.resize(OpCount);
      for (unsigned oi = 0; oi != OpCount; ++oi)
        A.Insts[i].Operands[oi].MCOp = MCDI.Inst.getOperand(oi);
    }
  } else if (const MCDataAtom *DA = dyn_cast<MCDataAtom>(MCA)) {
    A.Data = DA->getData();
  } else {
    llvm_unreachable("Unknown atom type.");
  }
}

void MCModule2YAML::dumpFunction(const MCFunction &MCF) {
  YAMLModule.Functions.resize(YAMLModule.Functions.size() + 1);
  MCModuleYAML::Function &F = YAMLModule.Functions.back();
  F.Name = MCF.getName();
  for (MCFunction::const_iterator BBI = MCF.begin(), BBE = MCF.end();
       BBI != BBE; ++BBI) {
    const MCBasicBlock &MCBB = **BBI;
    F.BasicBlocks.resize(F.BasicBlocks.size() + 1);
    MCModuleYAML::BasicBlock &BB = F.BasicBlocks.back();
    BB.Address = MCBB.getInsts()->getBeginAddr();
    for (MCBasicBlock::pred_const_iterator PI = MCBB.pred_begin(),
                                           PE = MCBB.pred_end();
         PI != PE; ++PI)
      BB.Preds.push_back((*PI)->getInsts()->getBeginAddr());
    for (MCBasicBlock::succ_const_iterator SI = MCBB.succ_begin(),
                                           SE = MCBB.succ_end();
         SI != SE; ++SI)
      BB.Succs.push_back((*SI)->getInsts()->getBeginAddr());
  }
}

MCModuleYAML::Module &MCModule2YAML::getYAMLModule() { return YAMLModule; }

YAML2MCModule::YAML2MCModule(MCModule &MCM) : MCM(MCM) {}

StringRef YAML2MCModule::parse(const MCModuleYAML::Module &YAMLModule) {
  typedef std::vector<MCModuleYAML::Atom>::const_iterator AtomIt;
  typedef std::vector<MCModuleYAML::Inst>::const_iterator InstIt;
  typedef std::vector<MCModuleYAML::Operand>::const_iterator OpIt;

  typedef DenseMap<uint64_t, MCTextAtom *> AddrToTextAtomTy;
  AddrToTextAtomTy TAByAddr;

  for (AtomIt AI = YAMLModule.Atoms.begin(), AE = YAMLModule.Atoms.end();
       AI != AE; ++AI) {
    uint64_t StartAddress = AI->StartAddress;
    if (AI->Size == 0)
      return "Atoms can't be empty!";
    uint64_t EndAddress = StartAddress + AI->Size - 1;
    switch (AI->Type) {
    case MCAtom::TextAtom: {
      MCTextAtom *TA = MCM.createTextAtom(StartAddress, EndAddress);
      TAByAddr[StartAddress] = TA;
      for (InstIt II = AI->Insts.begin(), IE = AI->Insts.end(); II != IE;
           ++II) {
        MCInst MI;
        MI.setOpcode(II->Opcode);
        for (OpIt OI = II->Operands.begin(), OE = II->Operands.end(); OI != OE;
             ++OI)
          MI.addOperand(OI->MCOp);
        TA->addInst(MI, II->Size);
      }
      break;
    }
    case MCAtom::DataAtom: {
      MCDataAtom *DA = MCM.createDataAtom(StartAddress, EndAddress);
      SmallVector<char, 64> Data;
      raw_svector_ostream OS(Data);
      AI->Data.writeAsBinary(OS);
      OS.flush();
      for (size_t i = 0, e = Data.size(); i != e; ++i)
        DA->addData((uint8_t)Data[i]);
      break;
    }
    }
  }

  typedef std::vector<MCModuleYAML::Function>::const_iterator FuncIt;
  typedef std::vector<MCModuleYAML::BasicBlock>::const_iterator BBIt;
  typedef std::vector<yaml::Hex64>::const_iterator AddrIt;
  for (FuncIt FI = YAMLModule.Functions.begin(),
              FE = YAMLModule.Functions.end();
       FI != FE; ++FI) {
    MCFunction *MCFN = MCM.createFunction(FI->Name);
    for (BBIt BBI = FI->BasicBlocks.begin(), BBE = FI->BasicBlocks.end();
         BBI != BBE; ++BBI) {
      AddrToTextAtomTy::const_iterator It = TAByAddr.find(BBI->Address);
      if (It == TAByAddr.end())
        return "Basic block start address doesn't match any text atom!";
      MCFN->createBlock(*It->second);
    }
    for (BBIt BBI = FI->BasicBlocks.begin(), BBE = FI->BasicBlocks.end();
         BBI != BBE; ++BBI) {
      MCBasicBlock *MCBB = MCFN->find(BBI->Address);
      if (!MCBB)
        return "Couldn't find matching basic block in function.";
      for (AddrIt PI = BBI->Preds.begin(), PE = BBI->Preds.end(); PI != PE;
           ++PI) {
        MCBasicBlock *Pred = MCFN->find(*PI);
        if (!Pred)
          return "Couldn't find predecessor basic block.";
        MCBB->addPredecessor(Pred);
      }
      for (AddrIt SI = BBI->Succs.begin(), SE = BBI->Succs.end(); SI != SE;
           ++SI) {
        MCBasicBlock *Succ = MCFN->find(*SI);
        if (!Succ)
          return "Couldn't find predecessor basic block.";
        MCBB->addSuccessor(Succ);
      }
    }
  }
  return "";
}

StringRef mcmodule2yaml(raw_ostream &OS, const MCModule &MCM,
                        const MCInstrInfo &MII, const MCRegisterInfo &MRI) {
  MCModule2YAML Dumper(MCM);
  InstrRegInfoHolder IRI(MII, MRI);
  yaml::Output YOut(OS, (void *)&IRI);
  YOut << Dumper.getYAMLModule();
  return "";
}

StringRef yaml2mcmodule(std::unique_ptr<MCModule> &MCM, StringRef YamlContent,
                        const MCInstrInfo &MII, const MCRegisterInfo &MRI) {
  MCM.reset(new MCModule);
  YAML2MCModule Parser(*MCM);
  MCModuleYAML::Module YAMLModule;
  InstrRegInfoHolder IRI(MII, MRI);
  yaml::Input YIn(YamlContent, (void *)&IRI);
  YIn >> YAMLModule;
  if (error_code ec = YIn.error())
    return ec.message();
  StringRef err = Parser.parse(YAMLModule);
  if (!err.empty())
    return err;
  return "";
}

} // end namespace llvm