summaryrefslogtreecommitdiff
path: root/lib/Target/ARM/ARMCodeEmitter.cpp
blob: e44f2a0d3bb969ad27ac949b8f196a69e038a483 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
//===-- ARM/ARMCodeEmitter.cpp - Convert ARM code to machine code ---------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the pass that transforms the ARM machine instructions into
// relocatable machine code.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "jit"
#include "ARM.h"
#include "ARMBaseInstrInfo.h"
#include "ARMConstantPoolValue.h"
#include "ARMRelocations.h"
#include "ARMSubtarget.h"
#include "ARMTargetMachine.h"
#include "MCTargetDesc/ARMAddressingModes.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/JITCodeEmitter.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/PassManager.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#ifndef NDEBUG
#include <iomanip>
#endif
using namespace llvm;

STATISTIC(NumEmitted, "Number of machine instructions emitted");

namespace {

  class ARMCodeEmitter : public MachineFunctionPass {
    ARMJITInfo                *JTI;
    const ARMBaseInstrInfo    *II;
    const DataLayout          *TD;
    const ARMSubtarget        *Subtarget;
    TargetMachine             &TM;
    JITCodeEmitter            &MCE;
    MachineModuleInfo *MMI;
    const std::vector<MachineConstantPoolEntry> *MCPEs;
    const std::vector<MachineJumpTableEntry> *MJTEs;
    bool IsPIC;
    bool IsThumb;

    void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.addRequired<MachineModuleInfo>();
      MachineFunctionPass::getAnalysisUsage(AU);
    }

    static char ID;
  public:
    ARMCodeEmitter(TargetMachine &tm, JITCodeEmitter &mce)
      : MachineFunctionPass(ID), JTI(0),
        II((const ARMBaseInstrInfo *)tm.getInstrInfo()),
        TD(tm.getDataLayout()), TM(tm),
        MCE(mce), MCPEs(0), MJTEs(0),
        IsPIC(TM.getRelocationModel() == Reloc::PIC_), IsThumb(false) {}

    /// getBinaryCodeForInstr - This function, generated by the
    /// CodeEmitterGenerator using TableGen, produces the binary encoding for
    /// machine instructions.
    uint64_t getBinaryCodeForInstr(const MachineInstr &MI) const;

    bool runOnMachineFunction(MachineFunction &MF);

    virtual const char *getPassName() const {
      return "ARM Machine Code Emitter";
    }

    void emitInstruction(const MachineInstr &MI);

  private:

    void emitWordLE(unsigned Binary);
    void emitDWordLE(uint64_t Binary);
    void emitConstPoolInstruction(const MachineInstr &MI);
    void emitMOVi32immInstruction(const MachineInstr &MI);
    void emitMOVi2piecesInstruction(const MachineInstr &MI);
    void emitLEApcrelJTInstruction(const MachineInstr &MI);
    void emitPseudoMoveInstruction(const MachineInstr &MI);
    void addPCLabel(unsigned LabelID);
    void emitPseudoInstruction(const MachineInstr &MI);
    unsigned getMachineSoRegOpValue(const MachineInstr &MI,
                                    const MCInstrDesc &MCID,
                                    const MachineOperand &MO,
                                    unsigned OpIdx);

    unsigned getMachineSoImmOpValue(unsigned SoImm);
    unsigned getAddrModeSBit(const MachineInstr &MI,
                             const MCInstrDesc &MCID) const;

    void emitDataProcessingInstruction(const MachineInstr &MI,
                                       unsigned ImplicitRd = 0,
                                       unsigned ImplicitRn = 0);

    void emitLoadStoreInstruction(const MachineInstr &MI,
                                  unsigned ImplicitRd = 0,
                                  unsigned ImplicitRn = 0);

    void emitMiscLoadStoreInstruction(const MachineInstr &MI,
                                      unsigned ImplicitRn = 0);

    void emitLoadStoreMultipleInstruction(const MachineInstr &MI);

    void emitMulFrmInstruction(const MachineInstr &MI);

    void emitExtendInstruction(const MachineInstr &MI);

    void emitMiscArithInstruction(const MachineInstr &MI);

    void emitSaturateInstruction(const MachineInstr &MI);

    void emitBranchInstruction(const MachineInstr &MI);

    void emitInlineJumpTable(unsigned JTIndex);

    void emitMiscBranchInstruction(const MachineInstr &MI);

    void emitVFPArithInstruction(const MachineInstr &MI);

    void emitVFPConversionInstruction(const MachineInstr &MI);

    void emitVFPLoadStoreInstruction(const MachineInstr &MI);

    void emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI);

    void emitNEONLaneInstruction(const MachineInstr &MI);
    void emitNEONDupInstruction(const MachineInstr &MI);
    void emitNEON1RegModImmInstruction(const MachineInstr &MI);
    void emitNEON2RegInstruction(const MachineInstr &MI);
    void emitNEON3RegInstruction(const MachineInstr &MI);

    /// getMachineOpValue - Return binary encoding of operand. If the machine
    /// operand requires relocation, record the relocation and return zero.
    unsigned getMachineOpValue(const MachineInstr &MI,
                               const MachineOperand &MO) const;
    unsigned getMachineOpValue(const MachineInstr &MI, unsigned OpIdx) const {
      return getMachineOpValue(MI, MI.getOperand(OpIdx));
    }

    // FIXME: The legacy JIT ARMCodeEmitter doesn't rely on the the
    //  TableGen'erated getBinaryCodeForInstr() function to encode any
    //  operand values, instead querying getMachineOpValue() directly for
    //  each operand it needs to encode. Thus, any of the new encoder
    //  helper functions can simply return 0 as the values the return
    //  are already handled elsewhere. They are placeholders to allow this
    //  encoder to continue to function until the MC encoder is sufficiently
    //  far along that this one can be eliminated entirely.
    unsigned NEONThumb2DataIPostEncoder(const MachineInstr &MI, unsigned Val)
      const { return 0; }
    unsigned NEONThumb2LoadStorePostEncoder(const MachineInstr &MI,unsigned Val)
      const { return 0; }
    unsigned NEONThumb2DupPostEncoder(const MachineInstr &MI,unsigned Val)
      const { return 0; }
    unsigned VFPThumb2PostEncoder(const MachineInstr&MI, unsigned Val)
      const { return 0; }
    unsigned getAdrLabelOpValue(const MachineInstr &MI, unsigned Op)
      const { return 0; }
    unsigned getThumbAdrLabelOpValue(const MachineInstr &MI, unsigned Op)
      const { return 0; }
    unsigned getThumbBLTargetOpValue(const MachineInstr &MI, unsigned Op)
      const { return 0; }
    unsigned getThumbBLXTargetOpValue(const MachineInstr &MI, unsigned Op)
      const { return 0; }
    unsigned getThumbBRTargetOpValue(const MachineInstr &MI, unsigned Op)
      const { return 0; }
    unsigned getThumbBCCTargetOpValue(const MachineInstr &MI, unsigned Op)
      const { return 0; }
    unsigned getThumbCBTargetOpValue(const MachineInstr &MI, unsigned Op)
      const { return 0; }
    unsigned getBranchTargetOpValue(const MachineInstr &MI, unsigned Op)
      const { return 0; }
    unsigned getUnconditionalBranchTargetOpValue(const MachineInstr &MI,
      unsigned Op) const { return 0; }
    unsigned getARMBranchTargetOpValue(const MachineInstr &MI, unsigned Op)
      const { return 0; }
    unsigned getARMBLTargetOpValue(const MachineInstr &MI, unsigned Op)
      const { return 0; }
    unsigned getARMBLXTargetOpValue(const MachineInstr &MI, unsigned Op)
      const { return 0; }
    unsigned getCCOutOpValue(const MachineInstr &MI, unsigned Op)
      const { return 0; }
    unsigned getSOImmOpValue(const MachineInstr &MI, unsigned Op)
      const { return 0; }
    unsigned getT2SOImmOpValue(const MachineInstr &MI, unsigned Op)
      const { return 0; }
    unsigned getSORegRegOpValue(const MachineInstr &MI, unsigned Op)
      const { return 0; }
    unsigned getSORegImmOpValue(const MachineInstr &MI, unsigned Op)
      const { return 0; }
    unsigned getThumbAddrModeRegRegOpValue(const MachineInstr &MI, unsigned Op)
      const { return 0; }
    unsigned getT2AddrModeImm12OpValue(const MachineInstr &MI, unsigned Op)
      const { return 0; }
    unsigned getT2AddrModeImm8OpValue(const MachineInstr &MI, unsigned Op)
      const { return 0; }
    unsigned getT2Imm8s4OpValue(const MachineInstr &MI, unsigned Op)
      const { return 0; }
    unsigned getT2AddrModeImm8s4OpValue(const MachineInstr &MI, unsigned Op)
      const { return 0; }
    unsigned getT2AddrModeImm0_1020s4OpValue(const MachineInstr &MI,unsigned Op)
      const { return 0; }
    unsigned getT2AddrModeImm8OffsetOpValue(const MachineInstr &MI, unsigned Op)
      const { return 0; }
    unsigned getT2AddrModeImm12OffsetOpValue(const MachineInstr &MI,unsigned Op)
      const { return 0; }
    unsigned getT2AddrModeSORegOpValue(const MachineInstr &MI, unsigned Op)
      const { return 0; }
    unsigned getT2SORegOpValue(const MachineInstr &MI, unsigned Op)
      const { return 0; }
    unsigned getT2AdrLabelOpValue(const MachineInstr &MI, unsigned Op)
      const { return 0; }
    unsigned getAddrMode6AddressOpValue(const MachineInstr &MI, unsigned Op)
      const { return 0; }
    unsigned getAddrMode6OneLane32AddressOpValue(const MachineInstr &MI,
                                                 unsigned Op)
      const { return 0; }
    unsigned getAddrMode6DupAddressOpValue(const MachineInstr &MI, unsigned Op)
      const { return 0; }
    unsigned getAddrMode6OffsetOpValue(const MachineInstr &MI, unsigned Op)
      const { return 0; }
    unsigned getBitfieldInvertedMaskOpValue(const MachineInstr &MI,
                                            unsigned Op) const { return 0; }
    unsigned getSsatBitPosValue(const MachineInstr &MI,
                                unsigned Op) const { return 0; }
    uint32_t getLdStmModeOpValue(const MachineInstr &MI, unsigned OpIdx)
      const {return 0; }
    uint32_t getLdStSORegOpValue(const MachineInstr &MI, unsigned OpIdx)
      const { return 0; }

    unsigned getAddrModeImm12OpValue(const MachineInstr &MI, unsigned Op)
      const {
      // {17-13} = reg
      // {12}    = (U)nsigned (add == '1', sub == '0')
      // {11-0}  = imm12
      const MachineOperand &MO  = MI.getOperand(Op);
      const MachineOperand &MO1 = MI.getOperand(Op + 1);
      if (!MO.isReg()) {
        emitConstPoolAddress(MO.getIndex(), ARM::reloc_arm_cp_entry);
        return 0;
      }
      unsigned Reg = II->getRegisterInfo().getEncodingValue(MO.getReg());
      int32_t Imm12 = MO1.getImm();
      uint32_t Binary;
      Binary = Imm12 & 0xfff;
      if (Imm12 >= 0)
        Binary |= (1 << 12);
      Binary |= (Reg << 13);
      return Binary;
    }

    unsigned getHiLo16ImmOpValue(const MachineInstr &MI, unsigned Op) const {
      return 0;
    }

    uint32_t getAddrMode2OpValue(const MachineInstr &MI, unsigned OpIdx)
      const { return 0;}
    uint32_t getAddrMode2OffsetOpValue(const MachineInstr &MI, unsigned OpIdx)
      const { return 0;}
    uint32_t getPostIdxRegOpValue(const MachineInstr &MI, unsigned OpIdx)
      const { return 0;}
    uint32_t getAddrMode3OffsetOpValue(const MachineInstr &MI, unsigned OpIdx)
      const { return 0;}
    uint32_t getAddrMode3OpValue(const MachineInstr &MI, unsigned Op)
      const { return 0; }
    uint32_t getAddrModeThumbSPOpValue(const MachineInstr &MI, unsigned Op)
      const { return 0; }
    uint32_t getAddrModeSOpValue(const MachineInstr &MI, unsigned Op)
      const { return 0; }
    uint32_t getAddrModeISOpValue(const MachineInstr &MI, unsigned Op)
      const { return 0; }
    uint32_t getAddrModePCOpValue(const MachineInstr &MI, unsigned Op)
      const { return 0; }
    uint32_t getAddrMode5OpValue(const MachineInstr &MI, unsigned Op) const {
      // {17-13} = reg
      // {12}    = (U)nsigned (add == '1', sub == '0')
      // {11-0}  = imm12
      const MachineOperand &MO  = MI.getOperand(Op);
      const MachineOperand &MO1 = MI.getOperand(Op + 1);
      if (!MO.isReg()) {
        emitConstPoolAddress(MO.getIndex(), ARM::reloc_arm_cp_entry);
        return 0;
      }
      unsigned Reg = II->getRegisterInfo().getEncodingValue(MO.getReg());
      int32_t Imm12 = MO1.getImm();

      // Special value for #-0
      if (Imm12 == INT32_MIN)
        Imm12 = 0;

      // Immediate is always encoded as positive. The 'U' bit controls add vs
      // sub.
      bool isAdd = true;
      if (Imm12 < 0) {
        Imm12 = -Imm12;
        isAdd = false;
      }

      uint32_t Binary = Imm12 & 0xfff;
      if (isAdd)
        Binary |= (1 << 12);
      Binary |= (Reg << 13);
      return Binary;
    }
    unsigned getNEONVcvtImm32OpValue(const MachineInstr &MI, unsigned Op)
      const { return 0; }

    unsigned getRegisterListOpValue(const MachineInstr &MI, unsigned Op)
      const { return 0; }

    unsigned getShiftRight8Imm(const MachineInstr &MI, unsigned Op)
      const { return 0; }
    unsigned getShiftRight16Imm(const MachineInstr &MI, unsigned Op)
      const { return 0; }
    unsigned getShiftRight32Imm(const MachineInstr &MI, unsigned Op)
      const { return 0; }
    unsigned getShiftRight64Imm(const MachineInstr &MI, unsigned Op)
      const { return 0; }

    /// getMovi32Value - Return binary encoding of operand for movw/movt. If the
    /// machine operand requires relocation, record the relocation and return
    /// zero.
    unsigned getMovi32Value(const MachineInstr &MI,const MachineOperand &MO,
                            unsigned Reloc);

    /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
    ///
    unsigned getShiftOp(unsigned Imm) const ;

    /// Routines that handle operands which add machine relocations which are
    /// fixed up by the relocation stage.
    void emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
                           bool MayNeedFarStub,  bool Indirect,
                           intptr_t ACPV = 0) const;
    void emitExternalSymbolAddress(const char *ES, unsigned Reloc) const;
    void emitConstPoolAddress(unsigned CPI, unsigned Reloc) const;
    void emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) const;
    void emitMachineBasicBlock(MachineBasicBlock *BB, unsigned Reloc,
                               intptr_t JTBase = 0) const;
    unsigned encodeVFPRd(const MachineInstr &MI, unsigned OpIdx) const;
    unsigned encodeVFPRn(const MachineInstr &MI, unsigned OpIdx) const;
    unsigned encodeVFPRm(const MachineInstr &MI, unsigned OpIdx) const;
    unsigned encodeNEONRd(const MachineInstr &MI, unsigned OpIdx) const;
    unsigned encodeNEONRn(const MachineInstr &MI, unsigned OpIdx) const;
    unsigned encodeNEONRm(const MachineInstr &MI, unsigned OpIdx) const;
  };
}

char ARMCodeEmitter::ID = 0;

/// createARMJITCodeEmitterPass - Return a pass that emits the collected ARM
/// code to the specified MCE object.
FunctionPass *llvm::createARMJITCodeEmitterPass(ARMBaseTargetMachine &TM,
                                                JITCodeEmitter &JCE) {
  return new ARMCodeEmitter(TM, JCE);
}

bool ARMCodeEmitter::runOnMachineFunction(MachineFunction &MF) {
  TargetMachine &Target = const_cast<TargetMachine&>(MF.getTarget());

  assert((Target.getRelocationModel() != Reloc::Default ||
          Target.getRelocationModel() != Reloc::Static) &&
         "JIT relocation model must be set to static or default!");

  JTI = static_cast<ARMJITInfo*>(Target.getJITInfo());
  II = static_cast<const ARMBaseInstrInfo*>(Target.getInstrInfo());
  TD = Target.getDataLayout();

  Subtarget = &TM.getSubtarget<ARMSubtarget>();
  MCPEs = &MF.getConstantPool()->getConstants();
  MJTEs = 0;
  if (MF.getJumpTableInfo()) MJTEs = &MF.getJumpTableInfo()->getJumpTables();
  IsPIC = TM.getRelocationModel() == Reloc::PIC_;
  IsThumb = MF.getInfo<ARMFunctionInfo>()->isThumbFunction();
  JTI->Initialize(MF, IsPIC);
  MMI = &getAnalysis<MachineModuleInfo>();
  MCE.setModuleInfo(MMI);

  do {
    DEBUG(errs() << "JITTing function '"
          << MF.getName() << "'\n");
    MCE.startFunction(MF);
    for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
         MBB != E; ++MBB) {
      MCE.StartMachineBasicBlock(MBB);
      for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
           I != E; ++I)
        emitInstruction(*I);
    }
  } while (MCE.finishFunction(MF));

  return false;
}

/// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
///
unsigned ARMCodeEmitter::getShiftOp(unsigned Imm) const {
  switch (ARM_AM::getAM2ShiftOpc(Imm)) {
  default: llvm_unreachable("Unknown shift opc!");
  case ARM_AM::asr: return 2;
  case ARM_AM::lsl: return 0;
  case ARM_AM::lsr: return 1;
  case ARM_AM::ror:
  case ARM_AM::rrx: return 3;
  }
}

/// getMovi32Value - Return binary encoding of operand for movw/movt. If the
/// machine operand requires relocation, record the relocation and return zero.
unsigned ARMCodeEmitter::getMovi32Value(const MachineInstr &MI,
                                        const MachineOperand &MO,
                                        unsigned Reloc) {
  assert(((Reloc == ARM::reloc_arm_movt) || (Reloc == ARM::reloc_arm_movw))
      && "Relocation to this function should be for movt or movw");

  if (MO.isImm())
    return static_cast<unsigned>(MO.getImm());
  else if (MO.isGlobal())
    emitGlobalAddress(MO.getGlobal(), Reloc, true, false);
  else if (MO.isSymbol())
    emitExternalSymbolAddress(MO.getSymbolName(), Reloc);
  else if (MO.isMBB())
    emitMachineBasicBlock(MO.getMBB(), Reloc);
  else {
#ifndef NDEBUG
    errs() << MO;
#endif
    llvm_unreachable("Unsupported operand type for movw/movt");
  }
  return 0;
}

/// getMachineOpValue - Return binary encoding of operand. If the machine
/// operand requires relocation, record the relocation and return zero.
unsigned ARMCodeEmitter::getMachineOpValue(const MachineInstr &MI,
                                           const MachineOperand &MO) const {
  if (MO.isReg())
    return II->getRegisterInfo().getEncodingValue(MO.getReg());
  else if (MO.isImm())
    return static_cast<unsigned>(MO.getImm());
  else if (MO.isGlobal())
    emitGlobalAddress(MO.getGlobal(), ARM::reloc_arm_branch, true, false);
  else if (MO.isSymbol())
    emitExternalSymbolAddress(MO.getSymbolName(), ARM::reloc_arm_branch);
  else if (MO.isCPI()) {
    const MCInstrDesc &MCID = MI.getDesc();
    // For VFP load, the immediate offset is multiplied by 4.
    unsigned Reloc =  ((MCID.TSFlags & ARMII::FormMask) == ARMII::VFPLdStFrm)
      ? ARM::reloc_arm_vfp_cp_entry : ARM::reloc_arm_cp_entry;
    emitConstPoolAddress(MO.getIndex(), Reloc);
  } else if (MO.isJTI())
    emitJumpTableAddress(MO.getIndex(), ARM::reloc_arm_relative);
  else if (MO.isMBB())
    emitMachineBasicBlock(MO.getMBB(), ARM::reloc_arm_branch);
  else
    llvm_unreachable("Unable to encode MachineOperand!");
  return 0;
}

/// emitGlobalAddress - Emit the specified address to the code stream.
///
void ARMCodeEmitter::emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
                                       bool MayNeedFarStub, bool Indirect,
                                       intptr_t ACPV) const {
  MachineRelocation MR = Indirect
    ? MachineRelocation::getIndirectSymbol(MCE.getCurrentPCOffset(), Reloc,
                                           const_cast<GlobalValue *>(GV),
                                           ACPV, MayNeedFarStub)
    : MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc,
                               const_cast<GlobalValue *>(GV), ACPV,
                               MayNeedFarStub);
  MCE.addRelocation(MR);
}

/// emitExternalSymbolAddress - Arrange for the address of an external symbol to
/// be emitted to the current location in the function, and allow it to be PC
/// relative.
void ARMCodeEmitter::
emitExternalSymbolAddress(const char *ES, unsigned Reloc) const {
  MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
                                                 Reloc, ES));
}

/// emitConstPoolAddress - Arrange for the address of an constant pool
/// to be emitted to the current location in the function, and allow it to be PC
/// relative.
void ARMCodeEmitter::emitConstPoolAddress(unsigned CPI, unsigned Reloc) const {
  // Tell JIT emitter we'll resolve the address.
  MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
                                                    Reloc, CPI, 0, true));
}

/// emitJumpTableAddress - Arrange for the address of a jump table to
/// be emitted to the current location in the function, and allow it to be PC
/// relative.
void ARMCodeEmitter::
emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) const {
  MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
                                                    Reloc, JTIndex, 0, true));
}

/// emitMachineBasicBlock - Emit the specified address basic block.
void ARMCodeEmitter::emitMachineBasicBlock(MachineBasicBlock *BB,
                                           unsigned Reloc,
                                           intptr_t JTBase) const {
  MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
                                             Reloc, BB, JTBase));
}

void ARMCodeEmitter::emitWordLE(unsigned Binary) {
  DEBUG(errs() << "  0x";
        errs().write_hex(Binary) << "\n");
  MCE.emitWordLE(Binary);
}

void ARMCodeEmitter::emitDWordLE(uint64_t Binary) {
  DEBUG(errs() << "  0x";
        errs().write_hex(Binary) << "\n");
  MCE.emitDWordLE(Binary);
}

void ARMCodeEmitter::emitInstruction(const MachineInstr &MI) {
  DEBUG(errs() << "JIT: " << (void*)MCE.getCurrentPCValue() << ":\t" << MI);

  MCE.processDebugLoc(MI.getDebugLoc(), true);

  ++NumEmitted;  // Keep track of the # of mi's emitted
  switch (MI.getDesc().TSFlags & ARMII::FormMask) {
  default: {
    llvm_unreachable("Unhandled instruction encoding format!");
  }
  case ARMII::MiscFrm:
    if (MI.getOpcode() == ARM::LEApcrelJT) {
      // Materialize jumptable address.
      emitLEApcrelJTInstruction(MI);
      break;
    }
    llvm_unreachable("Unhandled instruction encoding!");
  case ARMII::Pseudo:
    emitPseudoInstruction(MI);
    break;
  case ARMII::DPFrm:
  case ARMII::DPSoRegFrm:
    emitDataProcessingInstruction(MI);
    break;
  case ARMII::LdFrm:
  case ARMII::StFrm:
    emitLoadStoreInstruction(MI);
    break;
  case ARMII::LdMiscFrm:
  case ARMII::StMiscFrm:
    emitMiscLoadStoreInstruction(MI);
    break;
  case ARMII::LdStMulFrm:
    emitLoadStoreMultipleInstruction(MI);
    break;
  case ARMII::MulFrm:
    emitMulFrmInstruction(MI);
    break;
  case ARMII::ExtFrm:
    emitExtendInstruction(MI);
    break;
  case ARMII::ArithMiscFrm:
    emitMiscArithInstruction(MI);
    break;
  case ARMII::SatFrm:
    emitSaturateInstruction(MI);
    break;
  case ARMII::BrFrm:
    emitBranchInstruction(MI);
    break;
  case ARMII::BrMiscFrm:
    emitMiscBranchInstruction(MI);
    break;
  // VFP instructions.
  case ARMII::VFPUnaryFrm:
  case ARMII::VFPBinaryFrm:
    emitVFPArithInstruction(MI);
    break;
  case ARMII::VFPConv1Frm:
  case ARMII::VFPConv2Frm:
  case ARMII::VFPConv3Frm:
  case ARMII::VFPConv4Frm:
  case ARMII::VFPConv5Frm:
    emitVFPConversionInstruction(MI);
    break;
  case ARMII::VFPLdStFrm:
    emitVFPLoadStoreInstruction(MI);
    break;
  case ARMII::VFPLdStMulFrm:
    emitVFPLoadStoreMultipleInstruction(MI);
    break;

  // NEON instructions.
  case ARMII::NGetLnFrm:
  case ARMII::NSetLnFrm:
    emitNEONLaneInstruction(MI);
    break;
  case ARMII::NDupFrm:
    emitNEONDupInstruction(MI);
    break;
  case ARMII::N1RegModImmFrm:
    emitNEON1RegModImmInstruction(MI);
    break;
  case ARMII::N2RegFrm:
    emitNEON2RegInstruction(MI);
    break;
  case ARMII::N3RegFrm:
    emitNEON3RegInstruction(MI);
    break;
  }
  MCE.processDebugLoc(MI.getDebugLoc(), false);
}

void ARMCodeEmitter::emitConstPoolInstruction(const MachineInstr &MI) {
  unsigned CPI = MI.getOperand(0).getImm();       // CP instruction index.
  unsigned CPIndex = MI.getOperand(1).getIndex(); // Actual cp entry index.
  const MachineConstantPoolEntry &MCPE = (*MCPEs)[CPIndex];

  // Remember the CONSTPOOL_ENTRY address for later relocation.
  JTI->addConstantPoolEntryAddr(CPI, MCE.getCurrentPCValue());

  // Emit constpool island entry. In most cases, the actual values will be
  // resolved and relocated after code emission.
  if (MCPE.isMachineConstantPoolEntry()) {
    ARMConstantPoolValue *ACPV =
      static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);

    DEBUG(errs() << "  ** ARM constant pool #" << CPI << " @ "
          << (void*)MCE.getCurrentPCValue() << " " << *ACPV << '\n');

    assert(ACPV->isGlobalValue() && "unsupported constant pool value");
    const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV();
    if (GV) {
      Reloc::Model RelocM = TM.getRelocationModel();
      emitGlobalAddress(GV, ARM::reloc_arm_machine_cp_entry,
                        isa<Function>(GV),
                        Subtarget->GVIsIndirectSymbol(GV, RelocM),
                        (intptr_t)ACPV);
    } else  {
      const char *Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol();
      emitExternalSymbolAddress(Sym, ARM::reloc_arm_absolute);
    }
    emitWordLE(0);
  } else {
    const Constant *CV = MCPE.Val.ConstVal;

    DEBUG({
        errs() << "  ** Constant pool #" << CPI << " @ "
               << (void*)MCE.getCurrentPCValue() << " ";
        if (const Function *F = dyn_cast<Function>(CV))
          errs() << F->getName();
        else
          errs() << *CV;
        errs() << '\n';
      });

    if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
      emitGlobalAddress(GV, ARM::reloc_arm_absolute, isa<Function>(GV), false);
      emitWordLE(0);
    } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
      uint32_t Val = uint32_t(*CI->getValue().getRawData());
      emitWordLE(Val);
    } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
      if (CFP->getType()->isFloatTy())
        emitWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
      else if (CFP->getType()->isDoubleTy())
        emitDWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
      else {
        llvm_unreachable("Unable to handle this constantpool entry!");
      }
    } else {
      llvm_unreachable("Unable to handle this constantpool entry!");
    }
  }
}

void ARMCodeEmitter::emitMOVi32immInstruction(const MachineInstr &MI) {
  const MachineOperand &MO0 = MI.getOperand(0);
  const MachineOperand &MO1 = MI.getOperand(1);

  // Emit the 'movw' instruction.
  unsigned Binary = 0x30 << 20;  // mov: Insts{27-20} = 0b00110000

  unsigned Lo16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movw) & 0xFFFF;

  // Set the conditional execution predicate.
  Binary |= II->getPredicate(&MI) << ARMII::CondShift;

  // Encode Rd.
  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;

  // Encode imm16 as imm4:imm12
  Binary |= Lo16 & 0xFFF; // Insts{11-0} = imm12
  Binary |= ((Lo16 >> 12) & 0xF) << 16; // Insts{19-16} = imm4
  emitWordLE(Binary);

  unsigned Hi16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movt) >> 16;
  // Emit the 'movt' instruction.
  Binary = 0x34 << 20; // movt: Insts{27-20} = 0b00110100

  // Set the conditional execution predicate.
  Binary |= II->getPredicate(&MI) << ARMII::CondShift;

  // Encode Rd.
  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;

  // Encode imm16 as imm4:imm1, same as movw above.
  Binary |= Hi16 & 0xFFF;
  Binary |= ((Hi16 >> 12) & 0xF) << 16;
  emitWordLE(Binary);
}

void ARMCodeEmitter::emitMOVi2piecesInstruction(const MachineInstr &MI) {
  const MachineOperand &MO0 = MI.getOperand(0);
  const MachineOperand &MO1 = MI.getOperand(1);
  assert(MO1.isImm() && ARM_AM::isSOImmTwoPartVal(MO1.getImm()) &&
                                                  "Not a valid so_imm value!");
  unsigned V1 = ARM_AM::getSOImmTwoPartFirst(MO1.getImm());
  unsigned V2 = ARM_AM::getSOImmTwoPartSecond(MO1.getImm());

  // Emit the 'mov' instruction.
  unsigned Binary = 0xd << 21;  // mov: Insts{24-21} = 0b1101

  // Set the conditional execution predicate.
  Binary |= II->getPredicate(&MI) << ARMII::CondShift;

  // Encode Rd.
  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;

  // Encode so_imm.
  // Set bit I(25) to identify this is the immediate form of <shifter_op>
  Binary |= 1 << ARMII::I_BitShift;
  Binary |= getMachineSoImmOpValue(V1);
  emitWordLE(Binary);

  // Now the 'orr' instruction.
  Binary = 0xc << 21;  // orr: Insts{24-21} = 0b1100

  // Set the conditional execution predicate.
  Binary |= II->getPredicate(&MI) << ARMII::CondShift;

  // Encode Rd.
  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;

  // Encode Rn.
  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRnShift;

  // Encode so_imm.
  // Set bit I(25) to identify this is the immediate form of <shifter_op>
  Binary |= 1 << ARMII::I_BitShift;
  Binary |= getMachineSoImmOpValue(V2);
  emitWordLE(Binary);
}

void ARMCodeEmitter::emitLEApcrelJTInstruction(const MachineInstr &MI) {
  // It's basically add r, pc, (LJTI - $+8)

  const MCInstrDesc &MCID = MI.getDesc();

  // Emit the 'add' instruction.
  unsigned Binary = 0x4 << 21;  // add: Insts{24-21} = 0b0100

  // Set the conditional execution predicate
  Binary |= II->getPredicate(&MI) << ARMII::CondShift;

  // Encode S bit if MI modifies CPSR.
  Binary |= getAddrModeSBit(MI, MCID);

  // Encode Rd.
  Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;

  // Encode Rn which is PC.
  Binary |= II->getRegisterInfo().getEncodingValue(ARM::PC) << ARMII::RegRnShift;

  // Encode the displacement.
  Binary |= 1 << ARMII::I_BitShift;
  emitJumpTableAddress(MI.getOperand(1).getIndex(), ARM::reloc_arm_jt_base);

  emitWordLE(Binary);
}

void ARMCodeEmitter::emitPseudoMoveInstruction(const MachineInstr &MI) {
  unsigned Opcode = MI.getDesc().Opcode;

  // Part of binary is determined by TableGn.
  unsigned Binary = getBinaryCodeForInstr(MI);

  // Set the conditional execution predicate
  Binary |= II->getPredicate(&MI) << ARMII::CondShift;

  // Encode S bit if MI modifies CPSR.
  if (Opcode == ARM::MOVsrl_flag || Opcode == ARM::MOVsra_flag)
    Binary |= 1 << ARMII::S_BitShift;

  // Encode register def if there is one.
  Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;

  // Encode the shift operation.
  switch (Opcode) {
  default: break;
  case ARM::RRX:
    // rrx
    Binary |= 0x6 << 4;
    break;
  case ARM::MOVsrl_flag:
    // lsr #1
    Binary |= (0x2 << 4) | (1 << 7);
    break;
  case ARM::MOVsra_flag:
    // asr #1
    Binary |= (0x4 << 4) | (1 << 7);
    break;
  }

  // Encode register Rm.
  Binary |= getMachineOpValue(MI, 1);

  emitWordLE(Binary);
}

void ARMCodeEmitter::addPCLabel(unsigned LabelID) {
  DEBUG(errs() << "  ** LPC" << LabelID << " @ "
        << (void*)MCE.getCurrentPCValue() << '\n');
  JTI->addPCLabelAddr(LabelID, MCE.getCurrentPCValue());
}

void ARMCodeEmitter::emitPseudoInstruction(const MachineInstr &MI) {
  unsigned Opcode = MI.getDesc().Opcode;
  switch (Opcode) {
  default:
    llvm_unreachable("ARMCodeEmitter::emitPseudoInstruction");
  case ARM::BX_CALL:
  case ARM::BMOVPCRX_CALL: {
    // First emit mov lr, pc
    unsigned Binary = 0x01a0e00f;
    Binary |= II->getPredicate(&MI) << ARMII::CondShift;
    emitWordLE(Binary);

    // and then emit the branch.
    emitMiscBranchInstruction(MI);
    break;
  }
  case TargetOpcode::INLINEASM: {
    // We allow inline assembler nodes with empty bodies - they can
    // implicitly define registers, which is ok for JIT.
    if (MI.getOperand(0).getSymbolName()[0]) {
      report_fatal_error("JIT does not support inline asm!");
    }
    break;
  }
  case TargetOpcode::PROLOG_LABEL:
  case TargetOpcode::EH_LABEL:
    MCE.emitLabel(MI.getOperand(0).getMCSymbol());
    break;
  case TargetOpcode::IMPLICIT_DEF:
  case TargetOpcode::KILL:
    // Do nothing.
    break;
  case ARM::CONSTPOOL_ENTRY:
    emitConstPoolInstruction(MI);
    break;
  case ARM::PICADD: {
    // Remember of the address of the PC label for relocation later.
    addPCLabel(MI.getOperand(2).getImm());
    // PICADD is just an add instruction that implicitly read pc.
    emitDataProcessingInstruction(MI, 0, ARM::PC);
    break;
  }
  case ARM::PICLDR:
  case ARM::PICLDRB:
  case ARM::PICSTR:
  case ARM::PICSTRB: {
    // Remember of the address of the PC label for relocation later.
    addPCLabel(MI.getOperand(2).getImm());
    // These are just load / store instructions that implicitly read pc.
    emitLoadStoreInstruction(MI, 0, ARM::PC);
    break;
  }
  case ARM::PICLDRH:
  case ARM::PICLDRSH:
  case ARM::PICLDRSB:
  case ARM::PICSTRH: {
    // Remember of the address of the PC label for relocation later.
    addPCLabel(MI.getOperand(2).getImm());
    // These are just load / store instructions that implicitly read pc.
    emitMiscLoadStoreInstruction(MI, ARM::PC);
    break;
  }

  case ARM::MOVi32imm:
    // Two instructions to materialize a constant.
    if (Subtarget->hasV6T2Ops())
      emitMOVi32immInstruction(MI);
    else
      emitMOVi2piecesInstruction(MI);
    break;

  case ARM::LEApcrelJT:
    // Materialize jumptable address.
    emitLEApcrelJTInstruction(MI);
    break;
  case ARM::RRX:
  case ARM::MOVsrl_flag:
  case ARM::MOVsra_flag:
    emitPseudoMoveInstruction(MI);
    break;
  }
}

unsigned ARMCodeEmitter::getMachineSoRegOpValue(const MachineInstr &MI,
                                                const MCInstrDesc &MCID,
                                                const MachineOperand &MO,
                                                unsigned OpIdx) {
  unsigned Binary = getMachineOpValue(MI, MO);

  const MachineOperand &MO1 = MI.getOperand(OpIdx + 1);
  const MachineOperand &MO2 = MI.getOperand(OpIdx + 2);
  ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(MO2.getImm());

  // Encode the shift opcode.
  unsigned SBits = 0;
  unsigned Rs = MO1.getReg();
  if (Rs) {
    // Set shift operand (bit[7:4]).
    // LSL - 0001
    // LSR - 0011
    // ASR - 0101
    // ROR - 0111
    // RRX - 0110 and bit[11:8] clear.
    switch (SOpc) {
    default: llvm_unreachable("Unknown shift opc!");
    case ARM_AM::lsl: SBits = 0x1; break;
    case ARM_AM::lsr: SBits = 0x3; break;
    case ARM_AM::asr: SBits = 0x5; break;
    case ARM_AM::ror: SBits = 0x7; break;
    case ARM_AM::rrx: SBits = 0x6; break;
    }
  } else {
    // Set shift operand (bit[6:4]).
    // LSL - 000
    // LSR - 010
    // ASR - 100
    // ROR - 110
    switch (SOpc) {
    default: llvm_unreachable("Unknown shift opc!");
    case ARM_AM::lsl: SBits = 0x0; break;
    case ARM_AM::lsr: SBits = 0x2; break;
    case ARM_AM::asr: SBits = 0x4; break;
    case ARM_AM::ror: SBits = 0x6; break;
    }
  }
  Binary |= SBits << 4;
  if (SOpc == ARM_AM::rrx)
    return Binary;

  // Encode the shift operation Rs or shift_imm (except rrx).
  if (Rs) {
    // Encode Rs bit[11:8].
    assert(ARM_AM::getSORegOffset(MO2.getImm()) == 0);
    return Binary | (II->getRegisterInfo().getEncodingValue(Rs) << ARMII::RegRsShift);
  }

  // Encode shift_imm bit[11:7].
  return Binary | ARM_AM::getSORegOffset(MO2.getImm()) << 7;
}

unsigned ARMCodeEmitter::getMachineSoImmOpValue(unsigned SoImm) {
  int SoImmVal = ARM_AM::getSOImmVal(SoImm);
  assert(SoImmVal != -1 && "Not a valid so_imm value!");

  // Encode rotate_imm.
  unsigned Binary = (ARM_AM::getSOImmValRot((unsigned)SoImmVal) >> 1)
    << ARMII::SoRotImmShift;

  // Encode immed_8.
  Binary |= ARM_AM::getSOImmValImm((unsigned)SoImmVal);
  return Binary;
}

unsigned ARMCodeEmitter::getAddrModeSBit(const MachineInstr &MI,
                                         const MCInstrDesc &MCID) const {
  for (unsigned i = MI.getNumOperands(), e = MCID.getNumOperands(); i >= e;--i){
    const MachineOperand &MO = MI.getOperand(i-1);
    if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)
      return 1 << ARMII::S_BitShift;
  }
  return 0;
}

void ARMCodeEmitter::emitDataProcessingInstruction(const MachineInstr &MI,
                                                   unsigned ImplicitRd,
                                                   unsigned ImplicitRn) {
  const MCInstrDesc &MCID = MI.getDesc();

  // Part of binary is determined by TableGn.
  unsigned Binary = getBinaryCodeForInstr(MI);

  // Set the conditional execution predicate
  Binary |= II->getPredicate(&MI) << ARMII::CondShift;

  // Encode S bit if MI modifies CPSR.
  Binary |= getAddrModeSBit(MI, MCID);

  // Encode register def if there is one.
  unsigned NumDefs = MCID.getNumDefs();
  unsigned OpIdx = 0;
  if (NumDefs)
    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
  else if (ImplicitRd)
    // Special handling for implicit use (e.g. PC).
    Binary |= (II->getRegisterInfo().getEncodingValue(ImplicitRd) << ARMII::RegRdShift);

  if (MCID.Opcode == ARM::MOVi16) {
      // Get immediate from MI.
      unsigned Lo16 = getMovi32Value(MI, MI.getOperand(OpIdx),
                      ARM::reloc_arm_movw);
      // Encode imm which is the same as in emitMOVi32immInstruction().
      Binary |= Lo16 & 0xFFF;
      Binary |= ((Lo16 >> 12) & 0xF) << 16;
      emitWordLE(Binary);
      return;
  } else if(MCID.Opcode == ARM::MOVTi16) {
      unsigned Hi16 = (getMovi32Value(MI, MI.getOperand(OpIdx),
                       ARM::reloc_arm_movt) >> 16);
      Binary |= Hi16 & 0xFFF;
      Binary |= ((Hi16 >> 12) & 0xF) << 16;
      emitWordLE(Binary);
      return;
  } else if ((MCID.Opcode == ARM::BFC) || (MCID.Opcode == ARM::BFI)) {
      uint32_t v = ~MI.getOperand(2).getImm();
      int32_t lsb = CountTrailingZeros_32(v);
      int32_t msb = (32 - CountLeadingZeros_32(v)) - 1;
      // Instr{20-16} = msb, Instr{11-7} = lsb
      Binary |= (msb & 0x1F) << 16;
      Binary |= (lsb & 0x1F) << 7;
      emitWordLE(Binary);
      return;
  } else if ((MCID.Opcode == ARM::UBFX) || (MCID.Opcode == ARM::SBFX)) {
      // Encode Rn in Instr{0-3}
      Binary |= getMachineOpValue(MI, OpIdx++);

      uint32_t lsb = MI.getOperand(OpIdx++).getImm();
      uint32_t widthm1 = MI.getOperand(OpIdx++).getImm() - 1;

      // Instr{20-16} = widthm1, Instr{11-7} = lsb
      Binary |= (widthm1 & 0x1F) << 16;
      Binary |= (lsb & 0x1F) << 7;
      emitWordLE(Binary);
      return;
  }

  // If this is a two-address operand, skip it. e.g. MOVCCr operand 1.
  if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
    ++OpIdx;

  // Encode first non-shifter register operand if there is one.
  bool isUnary = MCID.TSFlags & ARMII::UnaryDP;
  if (!isUnary) {
    if (ImplicitRn)
      // Special handling for implicit use (e.g. PC).
      Binary |= (II->getRegisterInfo().getEncodingValue(ImplicitRn) << ARMII::RegRnShift);
    else {
      Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRnShift;
      ++OpIdx;
    }
  }

  // Encode shifter operand.
  const MachineOperand &MO = MI.getOperand(OpIdx);
  if ((MCID.TSFlags & ARMII::FormMask) == ARMII::DPSoRegFrm) {
    // Encode SoReg.
    emitWordLE(Binary | getMachineSoRegOpValue(MI, MCID, MO, OpIdx));
    return;
  }

  if (MO.isReg()) {
    // Encode register Rm.
    emitWordLE(Binary | II->getRegisterInfo().getEncodingValue(MO.getReg()));
    return;
  }

  // Encode so_imm.
  Binary |= getMachineSoImmOpValue((unsigned)MO.getImm());

  emitWordLE(Binary);
}

void ARMCodeEmitter::emitLoadStoreInstruction(const MachineInstr &MI,
                                              unsigned ImplicitRd,
                                              unsigned ImplicitRn) {
  const MCInstrDesc &MCID = MI.getDesc();
  unsigned Form = MCID.TSFlags & ARMII::FormMask;
  bool IsPrePost = (MCID.TSFlags & ARMII::IndexModeMask) != 0;

  // Part of binary is determined by TableGn.
  unsigned Binary = getBinaryCodeForInstr(MI);

  // If this is an LDRi12, STRi12 or LDRcp, nothing more needs be done.
  if (MI.getOpcode() == ARM::LDRi12 || MI.getOpcode() == ARM::LDRcp ||
      MI.getOpcode() == ARM::STRi12) {
    emitWordLE(Binary);
    return;
  }

  // Set the conditional execution predicate
  Binary |= II->getPredicate(&MI) << ARMII::CondShift;

  unsigned OpIdx = 0;

  // Operand 0 of a pre- and post-indexed store is the address base
  // writeback. Skip it.
  bool Skipped = false;
  if (IsPrePost && Form == ARMII::StFrm) {
    ++OpIdx;
    Skipped = true;
  }

  // Set first operand
  if (ImplicitRd)
    // Special handling for implicit use (e.g. PC).
    Binary |= (II->getRegisterInfo().getEncodingValue(ImplicitRd) << ARMII::RegRdShift);
  else
    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;

  // Set second operand
  if (ImplicitRn)
    // Special handling for implicit use (e.g. PC).
    Binary |= (II->getRegisterInfo().getEncodingValue(ImplicitRn) << ARMII::RegRnShift);
  else
    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;

  // If this is a two-address operand, skip it. e.g. LDR_PRE.
  if (!Skipped && MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
    ++OpIdx;

  const MachineOperand &MO2 = MI.getOperand(OpIdx);
  unsigned AM2Opc = (ImplicitRn == ARM::PC)
    ? 0 : MI.getOperand(OpIdx+1).getImm();

  // Set bit U(23) according to sign of immed value (positive or negative).
  Binary |= ((ARM_AM::getAM2Op(AM2Opc) == ARM_AM::add ? 1 : 0) <<
             ARMII::U_BitShift);
  if (!MO2.getReg()) { // is immediate
    if (ARM_AM::getAM2Offset(AM2Opc))
      // Set the value of offset_12 field
      Binary |= ARM_AM::getAM2Offset(AM2Opc);
    emitWordLE(Binary);
    return;
  }

  // Set bit I(25), because this is not in immediate encoding.
  Binary |= 1 << ARMII::I_BitShift;
  assert(TargetRegisterInfo::isPhysicalRegister(MO2.getReg()));
  // Set bit[3:0] to the corresponding Rm register
  Binary |= II->getRegisterInfo().getEncodingValue(MO2.getReg());

  // If this instr is in scaled register offset/index instruction, set
  // shift_immed(bit[11:7]) and shift(bit[6:5]) fields.
  if (unsigned ShImm = ARM_AM::getAM2Offset(AM2Opc)) {
    Binary |= getShiftOp(AM2Opc) << ARMII::ShiftImmShift;  // shift
    Binary |= ShImm              << ARMII::ShiftShift;     // shift_immed
  }

  emitWordLE(Binary);
}

void ARMCodeEmitter::emitMiscLoadStoreInstruction(const MachineInstr &MI,
                                                  unsigned ImplicitRn) {
  const MCInstrDesc &MCID = MI.getDesc();
  unsigned Form = MCID.TSFlags & ARMII::FormMask;
  bool IsPrePost = (MCID.TSFlags & ARMII::IndexModeMask) != 0;

  // Part of binary is determined by TableGn.
  unsigned Binary = getBinaryCodeForInstr(MI);

  // Set the conditional execution predicate
  Binary |= II->getPredicate(&MI) << ARMII::CondShift;

  unsigned OpIdx = 0;

  // Operand 0 of a pre- and post-indexed store is the address base
  // writeback. Skip it.
  bool Skipped = false;
  if (IsPrePost && Form == ARMII::StMiscFrm) {
    ++OpIdx;
    Skipped = true;
  }

  // Set first operand
  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;

  // Skip LDRD and STRD's second operand.
  if (MCID.Opcode == ARM::LDRD || MCID.Opcode == ARM::STRD)
    ++OpIdx;

  // Set second operand
  if (ImplicitRn)
    // Special handling for implicit use (e.g. PC).
    Binary |= (II->getRegisterInfo().getEncodingValue(ImplicitRn) << ARMII::RegRnShift);
  else
    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;

  // If this is a two-address operand, skip it. e.g. LDRH_POST.
  if (!Skipped && MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
    ++OpIdx;

  const MachineOperand &MO2 = MI.getOperand(OpIdx);
  unsigned AM3Opc = (ImplicitRn == ARM::PC)
    ? 0 : MI.getOperand(OpIdx+1).getImm();

  // Set bit U(23) according to sign of immed value (positive or negative)
  Binary |= ((ARM_AM::getAM3Op(AM3Opc) == ARM_AM::add ? 1 : 0) <<
             ARMII::U_BitShift);

  // If this instr is in register offset/index encoding, set bit[3:0]
  // to the corresponding Rm register.
  if (MO2.getReg()) {
    Binary |= II->getRegisterInfo().getEncodingValue(MO2.getReg());
    emitWordLE(Binary);
    return;
  }

  // This instr is in immediate offset/index encoding, set bit 22 to 1.
  Binary |= 1 << ARMII::AM3_I_BitShift;
  if (unsigned ImmOffs = ARM_AM::getAM3Offset(AM3Opc)) {
    // Set operands
    Binary |= (ImmOffs >> 4) << ARMII::ImmHiShift;  // immedH
    Binary |= (ImmOffs & 0xF);                      // immedL
  }

  emitWordLE(Binary);
}

static unsigned getAddrModeUPBits(unsigned Mode) {
  unsigned Binary = 0;

  // Set addressing mode by modifying bits U(23) and P(24)
  // IA - Increment after  - bit U = 1 and bit P = 0
  // IB - Increment before - bit U = 1 and bit P = 1
  // DA - Decrement after  - bit U = 0 and bit P = 0
  // DB - Decrement before - bit U = 0 and bit P = 1
  switch (Mode) {
  default: llvm_unreachable("Unknown addressing sub-mode!");
  case ARM_AM::da:                                     break;
  case ARM_AM::db: Binary |= 0x1 << ARMII::P_BitShift; break;
  case ARM_AM::ia: Binary |= 0x1 << ARMII::U_BitShift; break;
  case ARM_AM::ib: Binary |= 0x3 << ARMII::U_BitShift; break;
  }

  return Binary;
}

void ARMCodeEmitter::emitLoadStoreMultipleInstruction(const MachineInstr &MI) {
  const MCInstrDesc &MCID = MI.getDesc();
  bool IsUpdating = (MCID.TSFlags & ARMII::IndexModeMask) != 0;

  // Part of binary is determined by TableGn.
  unsigned Binary = getBinaryCodeForInstr(MI);

  // Set the conditional execution predicate
  Binary |= II->getPredicate(&MI) << ARMII::CondShift;

  // Skip operand 0 of an instruction with base register update.
  unsigned OpIdx = 0;
  if (IsUpdating)
    ++OpIdx;

  // Set base address operand
  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;

  // Set addressing mode by modifying bits U(23) and P(24)
  ARM_AM::AMSubMode Mode = ARM_AM::getLoadStoreMultipleSubMode(MI.getOpcode());
  Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(Mode));

  // Set bit W(21)
  if (IsUpdating)
    Binary |= 0x1 << ARMII::W_BitShift;

  // Set registers
  for (unsigned i = OpIdx+2, e = MI.getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = MI.getOperand(i);
    if (!MO.isReg() || MO.isImplicit())
      break;
    unsigned RegNum = II->getRegisterInfo().getEncodingValue(MO.getReg());
    assert(TargetRegisterInfo::isPhysicalRegister(MO.getReg()) &&
           RegNum < 16);
    Binary |= 0x1 << RegNum;
  }

  emitWordLE(Binary);
}

void ARMCodeEmitter::emitMulFrmInstruction(const MachineInstr &MI) {
  const MCInstrDesc &MCID = MI.getDesc();

  // Part of binary is determined by TableGn.
  unsigned Binary = getBinaryCodeForInstr(MI);

  // Set the conditional execution predicate
  Binary |= II->getPredicate(&MI) << ARMII::CondShift;

  // Encode S bit if MI modifies CPSR.
  Binary |= getAddrModeSBit(MI, MCID);

  // 32x32->64bit operations have two destination registers. The number
  // of register definitions will tell us if that's what we're dealing with.
  unsigned OpIdx = 0;
  if (MCID.getNumDefs() == 2)
    Binary |= getMachineOpValue (MI, OpIdx++) << ARMII::RegRdLoShift;

  // Encode Rd
  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdHiShift;

  // Encode Rm
  Binary |= getMachineOpValue(MI, OpIdx++);

  // Encode Rs
  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRsShift;

  // Many multiple instructions (e.g. MLA) have three src operands. Encode
  // it as Rn (for multiply, that's in the same offset as RdLo.
  if (MCID.getNumOperands() > OpIdx &&
      !MCID.OpInfo[OpIdx].isPredicate() &&
      !MCID.OpInfo[OpIdx].isOptionalDef())
    Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRdLoShift;

  emitWordLE(Binary);
}

void ARMCodeEmitter::emitExtendInstruction(const MachineInstr &MI) {
  const MCInstrDesc &MCID = MI.getDesc();

  // Part of binary is determined by TableGn.
  unsigned Binary = getBinaryCodeForInstr(MI);

  // Set the conditional execution predicate
  Binary |= II->getPredicate(&MI) << ARMII::CondShift;

  unsigned OpIdx = 0;

  // Encode Rd
  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;

  const MachineOperand &MO1 = MI.getOperand(OpIdx++);
  const MachineOperand &MO2 = MI.getOperand(OpIdx);
  if (MO2.isReg()) {
    // Two register operand form.
    // Encode Rn.
    Binary |= getMachineOpValue(MI, MO1) << ARMII::RegRnShift;

    // Encode Rm.
    Binary |= getMachineOpValue(MI, MO2);
    ++OpIdx;
  } else {
    Binary |= getMachineOpValue(MI, MO1);
  }

  // Encode rot imm (0, 8, 16, or 24) if it has a rotate immediate operand.
  if (MI.getOperand(OpIdx).isImm() &&
      !MCID.OpInfo[OpIdx].isPredicate() &&
      !MCID.OpInfo[OpIdx].isOptionalDef())
    Binary |= (getMachineOpValue(MI, OpIdx) / 8) << ARMII::ExtRotImmShift;

  emitWordLE(Binary);
}

void ARMCodeEmitter::emitMiscArithInstruction(const MachineInstr &MI) {
  const MCInstrDesc &MCID = MI.getDesc();

  // Part of binary is determined by TableGn.
  unsigned Binary = getBinaryCodeForInstr(MI);

  // Set the conditional execution predicate
  Binary |= II->getPredicate(&MI) << ARMII::CondShift;

  // PKH instructions are finished at this point
  if (MCID.Opcode == ARM::PKHBT || MCID.Opcode == ARM::PKHTB) {
    emitWordLE(Binary);
    return;
  }

  unsigned OpIdx = 0;

  // Encode Rd
  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;

  const MachineOperand &MO = MI.getOperand(OpIdx++);
  if (OpIdx == MCID.getNumOperands() ||
      MCID.OpInfo[OpIdx].isPredicate() ||
      MCID.OpInfo[OpIdx].isOptionalDef()) {
    // Encode Rm and it's done.
    Binary |= getMachineOpValue(MI, MO);
    emitWordLE(Binary);
    return;
  }

  // Encode Rn.
  Binary |= getMachineOpValue(MI, MO) << ARMII::RegRnShift;

  // Encode Rm.
  Binary |= getMachineOpValue(MI, OpIdx++);

  // Encode shift_imm.
  unsigned ShiftAmt = MI.getOperand(OpIdx).getImm();
  if (MCID.Opcode == ARM::PKHTB) {
    assert(ShiftAmt != 0 && "PKHTB shift_imm is 0!");
    if (ShiftAmt == 32)
      ShiftAmt = 0;
  }
  assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!");
  Binary |= ShiftAmt << ARMII::ShiftShift;

  emitWordLE(Binary);
}

void ARMCodeEmitter::emitSaturateInstruction(const MachineInstr &MI) {
  const MCInstrDesc &MCID = MI.getDesc();

  // Part of binary is determined by TableGen.
  unsigned Binary = getBinaryCodeForInstr(MI);

  // Set the conditional execution predicate
  Binary |= II->getPredicate(&MI) << ARMII::CondShift;

  // Encode Rd
  Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;

  // Encode saturate bit position.
  unsigned Pos = MI.getOperand(1).getImm();
  if (MCID.Opcode == ARM::SSAT || MCID.Opcode == ARM::SSAT16)
    Pos -= 1;
  assert((Pos < 16 || (Pos < 32 &&
                       MCID.Opcode != ARM::SSAT16 &&
                       MCID.Opcode != ARM::USAT16)) &&
         "saturate bit position out of range");
  Binary |= Pos << 16;

  // Encode Rm
  Binary |= getMachineOpValue(MI, 2);

  // Encode shift_imm.
  if (MCID.getNumOperands() == 4) {
    unsigned ShiftOp = MI.getOperand(3).getImm();
    ARM_AM::ShiftOpc Opc = ARM_AM::getSORegShOp(ShiftOp);
    if (Opc == ARM_AM::asr)
      Binary |= (1 << 6);
    unsigned ShiftAmt = MI.getOperand(3).getImm();
    if (ShiftAmt == 32 && Opc == ARM_AM::asr)
      ShiftAmt = 0;
    assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!");
    Binary |= ShiftAmt << ARMII::ShiftShift;
  }

  emitWordLE(Binary);
}

void ARMCodeEmitter::emitBranchInstruction(const MachineInstr &MI) {
  const MCInstrDesc &MCID = MI.getDesc();

  if (MCID.Opcode == ARM::TPsoft) {
    llvm_unreachable("ARM::TPsoft FIXME"); // FIXME
  }

  // Part of binary is determined by TableGn.
  unsigned Binary = getBinaryCodeForInstr(MI);

  // Set the conditional execution predicate
  Binary |= II->getPredicate(&MI) << ARMII::CondShift;

  // Set signed_immed_24 field
  Binary |= getMachineOpValue(MI, 0);

  emitWordLE(Binary);
}

void ARMCodeEmitter::emitInlineJumpTable(unsigned JTIndex) {
  // Remember the base address of the inline jump table.
  uintptr_t JTBase = MCE.getCurrentPCValue();
  JTI->addJumpTableBaseAddr(JTIndex, JTBase);
  DEBUG(errs() << "  ** Jump Table #" << JTIndex << " @ " << (void*)JTBase
               << '\n');

  // Now emit the jump table entries.
  const std::vector<MachineBasicBlock*> &MBBs = (*MJTEs)[JTIndex].MBBs;
  for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
    if (IsPIC)
      // DestBB address - JT base.
      emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_pic_jt, JTBase);
    else
      // Absolute DestBB address.
      emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_absolute);
    emitWordLE(0);
  }
}

void ARMCodeEmitter::emitMiscBranchInstruction(const MachineInstr &MI) {
  const MCInstrDesc &MCID = MI.getDesc();

  // Handle jump tables.
  if (MCID.Opcode == ARM::BR_JTr || MCID.Opcode == ARM::BR_JTadd) {
    // First emit a ldr pc, [] instruction.
    emitDataProcessingInstruction(MI, ARM::PC);

    // Then emit the inline jump table.
    unsigned JTIndex =
      (MCID.Opcode == ARM::BR_JTr)
      ? MI.getOperand(1).getIndex() : MI.getOperand(2).getIndex();
    emitInlineJumpTable(JTIndex);
    return;
  } else if (MCID.Opcode == ARM::BR_JTm) {
    // First emit a ldr pc, [] instruction.
    emitLoadStoreInstruction(MI, ARM::PC);

    // Then emit the inline jump table.
    emitInlineJumpTable(MI.getOperand(3).getIndex());
    return;
  }

  // Part of binary is determined by TableGn.
  unsigned Binary = getBinaryCodeForInstr(MI);

  // Set the conditional execution predicate
  Binary |= II->getPredicate(&MI) << ARMII::CondShift;

  if (MCID.Opcode == ARM::BX_RET || MCID.Opcode == ARM::MOVPCLR)
    // The return register is LR.
    Binary |= II->getRegisterInfo().getEncodingValue(ARM::LR);
  else
    // otherwise, set the return register
    Binary |= getMachineOpValue(MI, 0);

  emitWordLE(Binary);
}

unsigned ARMCodeEmitter::encodeVFPRd(const MachineInstr &MI,
                                     unsigned OpIdx) const {
  unsigned RegD = MI.getOperand(OpIdx).getReg();
  unsigned Binary = 0;
  bool isSPVFP = ARM::SPRRegClass.contains(RegD);
  RegD = II->getRegisterInfo().getEncodingValue(RegD);
  if (!isSPVFP)
    Binary |=   RegD               << ARMII::RegRdShift;
  else {
    Binary |= ((RegD & 0x1E) >> 1) << ARMII::RegRdShift;
    Binary |=  (RegD & 0x01)       << ARMII::D_BitShift;
  }
  return Binary;
}

unsigned ARMCodeEmitter::encodeVFPRn(const MachineInstr &MI,
                                     unsigned OpIdx) const {
  unsigned RegN = MI.getOperand(OpIdx).getReg();
  unsigned Binary = 0;
  bool isSPVFP = ARM::SPRRegClass.contains(RegN);
  RegN = II->getRegisterInfo().getEncodingValue(RegN);
  if (!isSPVFP)
    Binary |=   RegN               << ARMII::RegRnShift;
  else {
    Binary |= ((RegN & 0x1E) >> 1) << ARMII::RegRnShift;
    Binary |=  (RegN & 0x01)       << ARMII::N_BitShift;
  }
  return Binary;
}

unsigned ARMCodeEmitter::encodeVFPRm(const MachineInstr &MI,
                                     unsigned OpIdx) const {
  unsigned RegM = MI.getOperand(OpIdx).getReg();
  unsigned Binary = 0;
  bool isSPVFP = ARM::SPRRegClass.contains(RegM);
  RegM = II->getRegisterInfo().getEncodingValue(RegM);
  if (!isSPVFP)
    Binary |=   RegM;
  else {
    Binary |= ((RegM & 0x1E) >> 1);
    Binary |=  (RegM & 0x01)       << ARMII::M_BitShift;
  }
  return Binary;
}

void ARMCodeEmitter::emitVFPArithInstruction(const MachineInstr &MI) {
  const MCInstrDesc &MCID = MI.getDesc();

  // Part of binary is determined by TableGn.
  unsigned Binary = getBinaryCodeForInstr(MI);

  // Set the conditional execution predicate
  Binary |= II->getPredicate(&MI) << ARMII::CondShift;

  unsigned OpIdx = 0;
  assert((Binary & ARMII::D_BitShift) == 0 &&
         (Binary & ARMII::N_BitShift) == 0 &&
         (Binary & ARMII::M_BitShift) == 0 && "VFP encoding bug!");

  // Encode Dd / Sd.
  Binary |= encodeVFPRd(MI, OpIdx++);

  // If this is a two-address operand, skip it, e.g. FMACD.
  if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
    ++OpIdx;

  // Encode Dn / Sn.
  if ((MCID.TSFlags & ARMII::FormMask) == ARMII::VFPBinaryFrm)
    Binary |= encodeVFPRn(MI, OpIdx++);

  if (OpIdx == MCID.getNumOperands() ||
      MCID.OpInfo[OpIdx].isPredicate() ||
      MCID.OpInfo[OpIdx].isOptionalDef()) {
    // FCMPEZD etc. has only one operand.
    emitWordLE(Binary);
    return;
  }

  // Encode Dm / Sm.
  Binary |= encodeVFPRm(MI, OpIdx);

  emitWordLE(Binary);
}

void ARMCodeEmitter::emitVFPConversionInstruction(const MachineInstr &MI) {
  const MCInstrDesc &MCID = MI.getDesc();
  unsigned Form = MCID.TSFlags & ARMII::FormMask;

  // Part of binary is determined by TableGn.
  unsigned Binary = getBinaryCodeForInstr(MI);

  // Set the conditional execution predicate
  Binary |= II->getPredicate(&MI) << ARMII::CondShift;

  switch (Form) {
  default: break;
  case ARMII::VFPConv1Frm:
  case ARMII::VFPConv2Frm:
  case ARMII::VFPConv3Frm:
    // Encode Dd / Sd.
    Binary |= encodeVFPRd(MI, 0);
    break;
  case ARMII::VFPConv4Frm:
    // Encode Dn / Sn.
    Binary |= encodeVFPRn(MI, 0);
    break;
  case ARMII::VFPConv5Frm:
    // Encode Dm / Sm.
    Binary |= encodeVFPRm(MI, 0);
    break;
  }

  switch (Form) {
  default: break;
  case ARMII::VFPConv1Frm:
    // Encode Dm / Sm.
    Binary |= encodeVFPRm(MI, 1);
    break;
  case ARMII::VFPConv2Frm:
  case ARMII::VFPConv3Frm:
    // Encode Dn / Sn.
    Binary |= encodeVFPRn(MI, 1);
    break;
  case ARMII::VFPConv4Frm:
  case ARMII::VFPConv5Frm:
    // Encode Dd / Sd.
    Binary |= encodeVFPRd(MI, 1);
    break;
  }

  if (Form == ARMII::VFPConv5Frm)
    // Encode Dn / Sn.
    Binary |= encodeVFPRn(MI, 2);
  else if (Form == ARMII::VFPConv3Frm)
    // Encode Dm / Sm.
    Binary |= encodeVFPRm(MI, 2);

  emitWordLE(Binary);
}

void ARMCodeEmitter::emitVFPLoadStoreInstruction(const MachineInstr &MI) {
  // Part of binary is determined by TableGn.
  unsigned Binary = getBinaryCodeForInstr(MI);

  // Set the conditional execution predicate
  Binary |= II->getPredicate(&MI) << ARMII::CondShift;

  unsigned OpIdx = 0;

  // Encode Dd / Sd.
  Binary |= encodeVFPRd(MI, OpIdx++);

  // Encode address base.
  const MachineOperand &Base = MI.getOperand(OpIdx++);
  Binary |= getMachineOpValue(MI, Base) << ARMII::RegRnShift;

  // If there is a non-zero immediate offset, encode it.
  if (Base.isReg()) {
    const MachineOperand &Offset = MI.getOperand(OpIdx);
    if (unsigned ImmOffs = ARM_AM::getAM5Offset(Offset.getImm())) {
      if (ARM_AM::getAM5Op(Offset.getImm()) == ARM_AM::add)
        Binary |= 1 << ARMII::U_BitShift;
      Binary |= ImmOffs;
      emitWordLE(Binary);
      return;
    }
  }

  // If immediate offset is omitted, default to +0.
  Binary |= 1 << ARMII::U_BitShift;

  emitWordLE(Binary);
}

void
ARMCodeEmitter::emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI) {
  const MCInstrDesc &MCID = MI.getDesc();
  bool IsUpdating = (MCID.TSFlags & ARMII::IndexModeMask) != 0;

  // Part of binary is determined by TableGn.
  unsigned Binary = getBinaryCodeForInstr(MI);

  // Set the conditional execution predicate
  Binary |= II->getPredicate(&MI) << ARMII::CondShift;

  // Skip operand 0 of an instruction with base register update.
  unsigned OpIdx = 0;
  if (IsUpdating)
    ++OpIdx;

  // Set base address operand
  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;

  // Set addressing mode by modifying bits U(23) and P(24)
  ARM_AM::AMSubMode Mode = ARM_AM::getLoadStoreMultipleSubMode(MI.getOpcode());
  Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(Mode));

  // Set bit W(21)
  if (IsUpdating)
    Binary |= 0x1 << ARMII::W_BitShift;

  // First register is encoded in Dd.
  Binary |= encodeVFPRd(MI, OpIdx+2);

  // Count the number of registers.
  unsigned NumRegs = 1;
  for (unsigned i = OpIdx+3, e = MI.getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = MI.getOperand(i);
    if (!MO.isReg() || MO.isImplicit())
      break;
    ++NumRegs;
  }
  // Bit 8 will be set if <list> is consecutive 64-bit registers (e.g., D0)
  // Otherwise, it will be 0, in the case of 32-bit registers.
  if(Binary & 0x100)
    Binary |= NumRegs * 2;
  else
    Binary |= NumRegs;

  emitWordLE(Binary);
}

unsigned ARMCodeEmitter::encodeNEONRd(const MachineInstr &MI,
                                      unsigned OpIdx) const {
  unsigned RegD = MI.getOperand(OpIdx).getReg();
  unsigned Binary = 0;
  RegD = II->getRegisterInfo().getEncodingValue(RegD);
  Binary |= (RegD & 0xf) << ARMII::RegRdShift;
  Binary |= ((RegD >> 4) & 1) << ARMII::D_BitShift;
  return Binary;
}

unsigned ARMCodeEmitter::encodeNEONRn(const MachineInstr &MI,
                                      unsigned OpIdx) const {
  unsigned RegN = MI.getOperand(OpIdx).getReg();
  unsigned Binary = 0;
  RegN = II->getRegisterInfo().getEncodingValue(RegN);
  Binary |= (RegN & 0xf) << ARMII::RegRnShift;
  Binary |= ((RegN >> 4) & 1) << ARMII::N_BitShift;
  return Binary;
}

unsigned ARMCodeEmitter::encodeNEONRm(const MachineInstr &MI,
                                      unsigned OpIdx) const {
  unsigned RegM = MI.getOperand(OpIdx).getReg();
  unsigned Binary = 0;
  RegM = II->getRegisterInfo().getEncodingValue(RegM);
  Binary |= (RegM & 0xf);
  Binary |= ((RegM >> 4) & 1) << ARMII::M_BitShift;
  return Binary;
}

/// convertNEONDataProcToThumb - Convert the ARM mode encoding for a NEON
/// data-processing instruction to the corresponding Thumb encoding.
static unsigned convertNEONDataProcToThumb(unsigned Binary) {
  assert((Binary & 0xfe000000) == 0xf2000000 &&
         "not an ARM NEON data-processing instruction");
  unsigned UBit = (Binary >> 24) & 1;
  return 0xef000000 | (UBit << 28) | (Binary & 0xffffff);
}

void ARMCodeEmitter::emitNEONLaneInstruction(const MachineInstr &MI) {
  unsigned Binary = getBinaryCodeForInstr(MI);

  unsigned RegTOpIdx, RegNOpIdx, LnOpIdx;
  const MCInstrDesc &MCID = MI.getDesc();
  if ((MCID.TSFlags & ARMII::FormMask) == ARMII::NGetLnFrm) {
    RegTOpIdx = 0;
    RegNOpIdx = 1;
    LnOpIdx = 2;
  } else { // ARMII::NSetLnFrm
    RegTOpIdx = 2;
    RegNOpIdx = 0;
    LnOpIdx = 3;
  }

  // Set the conditional execution predicate
  Binary |= (IsThumb ? ARMCC::AL : II->getPredicate(&MI)) << ARMII::CondShift;

  unsigned RegT = MI.getOperand(RegTOpIdx).getReg();
  RegT = II->getRegisterInfo().getEncodingValue(RegT);
  Binary |= (RegT << ARMII::RegRdShift);
  Binary |= encodeNEONRn(MI, RegNOpIdx);

  unsigned LaneShift;
  if ((Binary & (1 << 22)) != 0)
    LaneShift = 0; // 8-bit elements
  else if ((Binary & (1 << 5)) != 0)
    LaneShift = 1; // 16-bit elements
  else
    LaneShift = 2; // 32-bit elements

  unsigned Lane = MI.getOperand(LnOpIdx).getImm() << LaneShift;
  unsigned Opc1 = Lane >> 2;
  unsigned Opc2 = Lane & 3;
  assert((Opc1 & 3) == 0 && "out-of-range lane number operand");
  Binary |= (Opc1 << 21);
  Binary |= (Opc2 << 5);

  emitWordLE(Binary);
}

void ARMCodeEmitter::emitNEONDupInstruction(const MachineInstr &MI) {
  unsigned Binary = getBinaryCodeForInstr(MI);

  // Set the conditional execution predicate
  Binary |= (IsThumb ? ARMCC::AL : II->getPredicate(&MI)) << ARMII::CondShift;

  unsigned RegT = MI.getOperand(1).getReg();
  RegT = II->getRegisterInfo().getEncodingValue(RegT);
  Binary |= (RegT << ARMII::RegRdShift);
  Binary |= encodeNEONRn(MI, 0);
  emitWordLE(Binary);
}

void ARMCodeEmitter::emitNEON1RegModImmInstruction(const MachineInstr &MI) {
  unsigned Binary = getBinaryCodeForInstr(MI);
  // Destination register is encoded in Dd.
  Binary |= encodeNEONRd(MI, 0);
  // Immediate fields: Op, Cmode, I, Imm3, Imm4
  unsigned Imm = MI.getOperand(1).getImm();
  unsigned Op = (Imm >> 12) & 1;
  unsigned Cmode = (Imm >> 8) & 0xf;
  unsigned I = (Imm >> 7) & 1;
  unsigned Imm3 = (Imm >> 4) & 0x7;
  unsigned Imm4 = Imm & 0xf;
  Binary |= (I << 24) | (Imm3 << 16) | (Cmode << 8) | (Op << 5) | Imm4;
  if (IsThumb)
    Binary = convertNEONDataProcToThumb(Binary);
  emitWordLE(Binary);
}

void ARMCodeEmitter::emitNEON2RegInstruction(const MachineInstr &MI) {
  const MCInstrDesc &MCID = MI.getDesc();
  unsigned Binary = getBinaryCodeForInstr(MI);
  // Destination register is encoded in Dd; source register in Dm.
  unsigned OpIdx = 0;
  Binary |= encodeNEONRd(MI, OpIdx++);
  if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
    ++OpIdx;
  Binary |= encodeNEONRm(MI, OpIdx);
  if (IsThumb)
    Binary = convertNEONDataProcToThumb(Binary);
  // FIXME: This does not handle VDUPfdf or VDUPfqf.
  emitWordLE(Binary);
}

void ARMCodeEmitter::emitNEON3RegInstruction(const MachineInstr &MI) {
  const MCInstrDesc &MCID = MI.getDesc();
  unsigned Binary = getBinaryCodeForInstr(MI);
  // Destination register is encoded in Dd; source registers in Dn and Dm.
  unsigned OpIdx = 0;
  Binary |= encodeNEONRd(MI, OpIdx++);
  if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
    ++OpIdx;
  Binary |= encodeNEONRn(MI, OpIdx++);
  if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
    ++OpIdx;
  Binary |= encodeNEONRm(MI, OpIdx);
  if (IsThumb)
    Binary = convertNEONDataProcToThumb(Binary);
  // FIXME: This does not handle VMOVDneon or VMOVQ.
  emitWordLE(Binary);
}

#include "ARMGenCodeEmitter.inc"