summaryrefslogtreecommitdiff
path: root/lib/Target/R600/AMDILPeepholeOptimizer.cpp
blob: 4a748b8e9c884d6d3682ebe38b31c20b77258944 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
//===-- AMDILPeepholeOptimizer.cpp - AMDGPU Peephole optimizations ---------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
/// \file
//==-----------------------------------------------------------------------===//

#define DEBUG_TYPE "PeepholeOpt"
#ifdef DEBUG
#define DEBUGME (DebugFlag && isCurrentDebugType(DEBUG_TYPE))
#else
#define DEBUGME 0
#endif

#include "AMDILDevices.h"
#include "AMDGPUInstrInfo.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Constants.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionAnalysis.h"
#include "llvm/Function.h"
#include "llvm/Instructions.h"
#include "llvm/Module.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"

#include <sstream>

#if 0
STATISTIC(PointerAssignments, "Number of dynamic pointer "
    "assigments discovered");
STATISTIC(PointerSubtract, "Number of pointer subtractions discovered");
#endif

using namespace llvm;
// The Peephole optimization pass is used to do simple last minute optimizations
// that are required for correct code or to remove redundant functions
namespace {

class OpaqueType;

class LLVM_LIBRARY_VISIBILITY AMDGPUPeepholeOpt : public FunctionPass {
public:
  TargetMachine &TM;
  static char ID;
  AMDGPUPeepholeOpt(TargetMachine &tm);
  ~AMDGPUPeepholeOpt();
  const char *getPassName() const;
  bool runOnFunction(Function &F);
  bool doInitialization(Module &M);
  bool doFinalization(Module &M);
  void getAnalysisUsage(AnalysisUsage &AU) const;
protected:
private:
  // Function to initiate all of the instruction level optimizations.
  bool instLevelOptimizations(BasicBlock::iterator *inst);
  // Quick check to see if we need to dump all of the pointers into the
  // arena. If this is correct, then we set all pointers to exist in arena. This
  // is a workaround for aliasing of pointers in a struct/union.
  bool dumpAllIntoArena(Function &F);
  // Because I don't want to invalidate any pointers while in the
  // safeNestedForEachFunction. I push atomic conversions to a vector and handle
  // it later. This function does the conversions if required.
  void doAtomicConversionIfNeeded(Function &F);
  // Because __amdil_is_constant cannot be properly evaluated if
  // optimizations are disabled, the call's are placed in a vector
  // and evaluated after the __amdil_image* functions are evaluated
  // which should allow the __amdil_is_constant function to be
  // evaluated correctly.
  void doIsConstCallConversionIfNeeded();
  bool mChanged;
  bool mDebug;
  bool mConvertAtomics;
  CodeGenOpt::Level optLevel;
  // Run a series of tests to see if we can optimize a CALL instruction.
  bool optimizeCallInst(BasicBlock::iterator *bbb);
  // A peephole optimization to optimize bit extract sequences.
  bool optimizeBitExtract(Instruction *inst);
  // A peephole optimization to optimize bit insert sequences.
  bool optimizeBitInsert(Instruction *inst);
  bool setupBitInsert(Instruction *base, 
                      Instruction *&src, 
                      Constant *&mask, 
                      Constant *&shift);
  // Expand the bit field insert instruction on versions of OpenCL that
  // don't support it.
  bool expandBFI(CallInst *CI);
  // Expand the bit field mask instruction on version of OpenCL that 
  // don't support it.
  bool expandBFM(CallInst *CI);
  // On 7XX and 8XX operations, we do not have 24 bit signed operations. So in
  // this case we need to expand them. These functions check for 24bit functions
  // and then expand.
  bool isSigned24BitOps(CallInst *CI);
  void expandSigned24BitOps(CallInst *CI);
  // One optimization that can occur is that if the required workgroup size is
  // specified then the result of get_local_size is known at compile time and
  // can be returned accordingly.
  bool isRWGLocalOpt(CallInst *CI);
  // On northern island cards, the division is slightly less accurate than on
  // previous generations, so we need to utilize a more accurate division. So we
  // can translate the accurate divide to a normal divide on all other cards.
  bool convertAccurateDivide(CallInst *CI);
  void expandAccurateDivide(CallInst *CI);
  // If the alignment is set incorrectly, it can produce really inefficient
  // code. This checks for this scenario and fixes it if possible.
  bool correctMisalignedMemOp(Instruction *inst);

  // If we are in no opt mode, then we need to make sure that
  // local samplers are properly propagated as constant propagation 
  // doesn't occur and we need to know the value of kernel defined
  // samplers at compile time.
  bool propagateSamplerInst(CallInst *CI);

  // Helper functions

  // Group of functions that recursively calculate the size of a structure based
  // on it's sub-types.
  size_t getTypeSize(Type * const T, bool dereferencePtr = false);
  size_t getTypeSize(StructType * const ST, bool dereferencePtr = false);
  size_t getTypeSize(IntegerType * const IT, bool dereferencePtr = false);
  size_t getTypeSize(FunctionType * const FT,bool dereferencePtr = false);
  size_t getTypeSize(ArrayType * const AT, bool dereferencePtr = false);
  size_t getTypeSize(VectorType * const VT, bool dereferencePtr = false);
  size_t getTypeSize(PointerType * const PT, bool dereferencePtr = false);
  size_t getTypeSize(OpaqueType * const OT, bool dereferencePtr = false);

  LLVMContext *mCTX;
  Function *mF;
  const AMDGPUSubtarget *mSTM;
  SmallVector< std::pair<CallInst *, Function *>, 16> atomicFuncs;
  SmallVector<CallInst *, 16> isConstVec;
}; // class AMDGPUPeepholeOpt
  char AMDGPUPeepholeOpt::ID = 0;

// A template function that has two levels of looping before calling the
// function with a pointer to the current iterator.
template<class InputIterator, class SecondIterator, class Function>
Function safeNestedForEach(InputIterator First, InputIterator Last,
                              SecondIterator S, Function F) {
  for ( ; First != Last; ++First) {
    SecondIterator sf, sl;
    for (sf = First->begin(), sl = First->end();
         sf != sl; )  {
      if (!F(&sf)) {
        ++sf;
      } 
    }
  }
  return F;
}

} // anonymous namespace

namespace llvm {
  FunctionPass *
  createAMDGPUPeepholeOpt(TargetMachine &tm) {
    return new AMDGPUPeepholeOpt(tm);
  }
} // llvm namespace

AMDGPUPeepholeOpt::AMDGPUPeepholeOpt(TargetMachine &tm)
  : FunctionPass(ID), TM(tm)  {
  mDebug = DEBUGME;
  optLevel = TM.getOptLevel();

}

AMDGPUPeepholeOpt::~AMDGPUPeepholeOpt()  {
}

const char *
AMDGPUPeepholeOpt::getPassName() const  {
  return "AMDGPU PeepHole Optimization Pass";
}

bool 
containsPointerType(Type *Ty)  {
  if (!Ty) {
    return false;
  }
  switch(Ty->getTypeID()) {
  default:
    return false;
  case Type::StructTyID: {
    const StructType *ST = dyn_cast<StructType>(Ty);
    for (StructType::element_iterator stb = ST->element_begin(),
           ste = ST->element_end(); stb != ste; ++stb) {
      if (!containsPointerType(*stb)) {
        continue;
      }
      return true;
    }
    break;
  }
  case Type::VectorTyID:
  case Type::ArrayTyID:
    return containsPointerType(dyn_cast<SequentialType>(Ty)->getElementType());
  case Type::PointerTyID:
    return true;
  };
  return false;
}

bool 
AMDGPUPeepholeOpt::dumpAllIntoArena(Function &F)  {
  bool dumpAll = false;
  for (Function::const_arg_iterator cab = F.arg_begin(),
       cae = F.arg_end(); cab != cae; ++cab) {
    const Argument *arg = cab;
    const PointerType *PT = dyn_cast<PointerType>(arg->getType());
    if (!PT) {
      continue;
    }
    Type *DereferencedType = PT->getElementType();
    if (!dyn_cast<StructType>(DereferencedType) 
        ) {
      continue;
    }
    if (!containsPointerType(DereferencedType)) {
      continue;
    }
    // FIXME: Because a pointer inside of a struct/union may be aliased to
    // another pointer we need to take the conservative approach and place all
    // pointers into the arena until more advanced detection is implemented.
    dumpAll = true;
  }
  return dumpAll;
}
void
AMDGPUPeepholeOpt::doIsConstCallConversionIfNeeded() {
  if (isConstVec.empty()) {
    return;
  }
  for (unsigned x = 0, y = isConstVec.size(); x < y; ++x) {
    CallInst *CI = isConstVec[x];
    Constant *CV = dyn_cast<Constant>(CI->getOperand(0));
    Type *aType = Type::getInt32Ty(*mCTX);
    Value *Val = (CV != NULL) ? ConstantInt::get(aType, 1)
      : ConstantInt::get(aType, 0);
    CI->replaceAllUsesWith(Val);
    CI->eraseFromParent();
  }
  isConstVec.clear();
}
void 
AMDGPUPeepholeOpt::doAtomicConversionIfNeeded(Function &F)  {
  // Don't do anything if we don't have any atomic operations.
  if (atomicFuncs.empty()) {
    return;
  }
  // Change the function name for the atomic if it is required
  uint32_t size = atomicFuncs.size();
  for (uint32_t x = 0; x < size; ++x) {
    atomicFuncs[x].first->setOperand(
        atomicFuncs[x].first->getNumOperands()-1, 
        atomicFuncs[x].second);

  }
  mChanged = true;
  if (mConvertAtomics) {
    return;
  }
}

bool 
AMDGPUPeepholeOpt::runOnFunction(Function &MF)  {
  mChanged = false;
  mF = &MF;
  mSTM = &TM.getSubtarget<AMDGPUSubtarget>();
  if (mDebug) {
    MF.dump();
  }
  mCTX = &MF.getType()->getContext();
  mConvertAtomics = true;
  safeNestedForEach(MF.begin(), MF.end(), MF.begin()->begin(),
     std::bind1st(std::mem_fun(&AMDGPUPeepholeOpt::instLevelOptimizations),
                  this));

  doAtomicConversionIfNeeded(MF);
  doIsConstCallConversionIfNeeded();

  if (mDebug) {
    MF.dump();
  }
  return mChanged;
}

bool 
AMDGPUPeepholeOpt::optimizeCallInst(BasicBlock::iterator *bbb)  {
  Instruction *inst = (*bbb);
  CallInst *CI = dyn_cast<CallInst>(inst);
  if (!CI) {
    return false;
  }
  if (isSigned24BitOps(CI)) {
    expandSigned24BitOps(CI);
    ++(*bbb);
    CI->eraseFromParent();
    return true;
  }
  if (propagateSamplerInst(CI)) {
    return false;
  }
  if (expandBFI(CI) || expandBFM(CI)) {
    ++(*bbb);
    CI->eraseFromParent();
    return true;
  }
  if (convertAccurateDivide(CI)) {
    expandAccurateDivide(CI);
    ++(*bbb);
    CI->eraseFromParent();
    return true;
  }

  StringRef calleeName = CI->getOperand(CI->getNumOperands()-1)->getName();
  if (calleeName.startswith("__amdil_is_constant")) {
    // If we do not have optimizations, then this
    // cannot be properly evaluated, so we add the
    // call instruction to a vector and process
    // them at the end of processing after the
    // samplers have been correctly handled.
    if (optLevel == CodeGenOpt::None) {
      isConstVec.push_back(CI);
      return false;
    } else {
      Constant *CV = dyn_cast<Constant>(CI->getOperand(0));
      Type *aType = Type::getInt32Ty(*mCTX);
      Value *Val = (CV != NULL) ? ConstantInt::get(aType, 1)
        : ConstantInt::get(aType, 0);
      CI->replaceAllUsesWith(Val);
      ++(*bbb);
      CI->eraseFromParent();
      return true;
    }
  }

  if (calleeName.equals("__amdil_is_asic_id_i32")) {
    ConstantInt *CV = dyn_cast<ConstantInt>(CI->getOperand(0));
    Type *aType = Type::getInt32Ty(*mCTX);
    Value *Val = CV;
    if (Val) {
      Val = ConstantInt::get(aType, 
          mSTM->device()->getDeviceFlag() & CV->getZExtValue());
    } else {
      Val = ConstantInt::get(aType, 0);
    }
    CI->replaceAllUsesWith(Val);
    ++(*bbb);
    CI->eraseFromParent();
    return true;
  }
  Function *F = dyn_cast<Function>(CI->getOperand(CI->getNumOperands()-1));
  if (!F) {
    return false;
  } 
  if (F->getName().startswith("__atom") && !CI->getNumUses() 
      && F->getName().find("_xchg") == StringRef::npos) {
    std::string buffer(F->getName().str() + "_noret");
    F = dyn_cast<Function>(
          F->getParent()->getOrInsertFunction(buffer, F->getFunctionType()));
    atomicFuncs.push_back(std::make_pair <CallInst*, Function*>(CI, F));
  }
  
  if (!mSTM->device()->isSupported(AMDGPUDeviceInfo::ArenaSegment)
      && !mSTM->device()->isSupported(AMDGPUDeviceInfo::MultiUAV)) {
    return false;
  }
  if (!mConvertAtomics) {
    return false;
  }
  StringRef name = F->getName();
  if (name.startswith("__atom") && name.find("_g") != StringRef::npos) {
    mConvertAtomics = false;
  }
  return false;
}

bool
AMDGPUPeepholeOpt::setupBitInsert(Instruction *base, 
    Instruction *&src, 
    Constant *&mask, 
    Constant *&shift) {
  if (!base) {
    if (mDebug) {
      dbgs() << "Null pointer passed into function.\n";
    }
    return false;
  }
  bool andOp = false;
  if (base->getOpcode() == Instruction::Shl) {
    shift = dyn_cast<Constant>(base->getOperand(1));
  } else if (base->getOpcode() == Instruction::And) {
    mask = dyn_cast<Constant>(base->getOperand(1));
    andOp = true;
  } else {
    if (mDebug) {
      dbgs() << "Failed setup with no Shl or And instruction on base opcode!\n";
    }
    // If the base is neither a Shl or a And, we don't fit any of the patterns above.
    return false;
  }
  src = dyn_cast<Instruction>(base->getOperand(0));
  if (!src) {
    if (mDebug) {
      dbgs() << "Failed setup since the base operand is not an instruction!\n";
    }
    return false;
  }
  // If we find an 'and' operation, then we don't need to
  // find the next operation as we already know the
  // bits that are valid at this point.
  if (andOp) {
    return true;
  }
  if (src->getOpcode() == Instruction::Shl && !shift) {
    shift = dyn_cast<Constant>(src->getOperand(1));
    src = dyn_cast<Instruction>(src->getOperand(0));
  } else if (src->getOpcode() == Instruction::And && !mask) {
    mask = dyn_cast<Constant>(src->getOperand(1));
  }
  if (!mask && !shift) {
    if (mDebug) {
      dbgs() << "Failed setup since both mask and shift are NULL!\n";
    }
    // Did not find a constant mask or a shift.
    return false;
  }
  return true;
}
bool
AMDGPUPeepholeOpt::optimizeBitInsert(Instruction *inst)  {
  if (!inst) {
    return false;
  }
  if (!inst->isBinaryOp()) {
    return false;
  }
  if (inst->getOpcode() != Instruction::Or) {
    return false;
  }
  if (optLevel == CodeGenOpt::None) {
    return false;
  }
  // We want to do an optimization on a sequence of ops that in the end equals a
  // single ISA instruction.
  // The base pattern for this optimization is - ((A & B) << C) | ((D & E) << F)
  // Some simplified versions of this pattern are as follows:
  // (A & B) | (D & E) when B & E == 0 && C == 0 && F == 0
  // ((A & B) << C) | (D & E) when B ^ E == 0 && (1 << C) >= E
  // (A & B) | ((D & E) << F) when B ^ E == 0 && (1 << F) >= B
  // (A & B) | (D << F) when (1 << F) >= B
  // (A << C) | (D & E) when (1 << C) >= E
  if (mSTM->device()->getGeneration() == AMDGPUDeviceInfo::HD4XXX) {
    // The HD4XXX hardware doesn't support the ubit_insert instruction.
    return false;
  }
  Type *aType = inst->getType();
  bool isVector = aType->isVectorTy();
  int numEle = 1;
  // This optimization only works on 32bit integers.
  if (aType->getScalarType()
      != Type::getInt32Ty(inst->getContext())) {
    return false;
  }
  if (isVector) {
    const VectorType *VT = dyn_cast<VectorType>(aType);
    numEle = VT->getNumElements();
    // We currently cannot support more than 4 elements in a intrinsic and we
    // cannot support Vec3 types.
    if (numEle > 4 || numEle == 3) {
      return false;
    }
  }
  // TODO: Handle vectors.
  if (isVector) {
    if (mDebug) {
      dbgs() << "!!! Vectors are not supported yet!\n";
    }
    return false;
  }
  Instruction *LHSSrc = NULL, *RHSSrc = NULL;
  Constant *LHSMask = NULL, *RHSMask = NULL;
  Constant *LHSShift = NULL, *RHSShift = NULL;
  Instruction *LHS = dyn_cast<Instruction>(inst->getOperand(0));
  Instruction *RHS = dyn_cast<Instruction>(inst->getOperand(1));
  if (!setupBitInsert(LHS, LHSSrc, LHSMask, LHSShift)) {
    if (mDebug) {
      dbgs() << "Found an OR Operation that failed setup!\n";
      inst->dump();
      if (LHS) { LHS->dump(); }
      if (LHSSrc) { LHSSrc->dump(); }
      if (LHSMask) { LHSMask->dump(); }
      if (LHSShift) { LHSShift->dump(); }
    }
    // There was an issue with the setup for BitInsert.
    return false;
  }
  if (!setupBitInsert(RHS, RHSSrc, RHSMask, RHSShift)) {
    if (mDebug) {
      dbgs() << "Found an OR Operation that failed setup!\n";
      inst->dump();
      if (RHS) { RHS->dump(); }
      if (RHSSrc) { RHSSrc->dump(); }
      if (RHSMask) { RHSMask->dump(); }
      if (RHSShift) { RHSShift->dump(); }
    }
    // There was an issue with the setup for BitInsert.
    return false;
  }
  if (mDebug) {
    dbgs() << "Found an OR operation that can possible be optimized to ubit insert!\n";
    dbgs() << "Op:        "; inst->dump();
    dbgs() << "LHS:       "; if (LHS) { LHS->dump(); } else { dbgs() << "(None)\n"; }
    dbgs() << "LHS Src:   "; if (LHSSrc) { LHSSrc->dump(); } else { dbgs() << "(None)\n"; }
    dbgs() << "LHS Mask:  "; if (LHSMask) { LHSMask->dump(); } else { dbgs() << "(None)\n"; }
    dbgs() << "LHS Shift: "; if (LHSShift) { LHSShift->dump(); } else { dbgs() << "(None)\n"; }
    dbgs() << "RHS:       "; if (RHS) { RHS->dump(); } else { dbgs() << "(None)\n"; }
    dbgs() << "RHS Src:   "; if (RHSSrc) { RHSSrc->dump(); } else { dbgs() << "(None)\n"; }
    dbgs() << "RHS Mask:  "; if (RHSMask) { RHSMask->dump(); } else { dbgs() << "(None)\n"; }
    dbgs() << "RHS Shift: "; if (RHSShift) { RHSShift->dump(); } else { dbgs() << "(None)\n"; }
  }
  Constant *offset = NULL;
  Constant *width = NULL;
  uint32_t lhsMaskVal = 0, rhsMaskVal = 0;
  uint32_t lhsShiftVal = 0, rhsShiftVal = 0;
  uint32_t lhsMaskWidth = 0, rhsMaskWidth = 0;
  uint32_t lhsMaskOffset = 0, rhsMaskOffset = 0;
  lhsMaskVal = (LHSMask 
      ? dyn_cast<ConstantInt>(LHSMask)->getZExtValue() : 0);
  rhsMaskVal = (RHSMask 
      ? dyn_cast<ConstantInt>(RHSMask)->getZExtValue() : 0);
  lhsShiftVal = (LHSShift 
      ? dyn_cast<ConstantInt>(LHSShift)->getZExtValue() : 0);
  rhsShiftVal = (RHSShift 
      ? dyn_cast<ConstantInt>(RHSShift)->getZExtValue() : 0);
  lhsMaskWidth = lhsMaskVal ? CountPopulation_32(lhsMaskVal) : 32 - lhsShiftVal;
  rhsMaskWidth = rhsMaskVal ? CountPopulation_32(rhsMaskVal) : 32 - rhsShiftVal;
  lhsMaskOffset = lhsMaskVal ? CountTrailingZeros_32(lhsMaskVal) : lhsShiftVal;
  rhsMaskOffset = rhsMaskVal ? CountTrailingZeros_32(rhsMaskVal) : rhsShiftVal;
  // TODO: Handle the case of A & B | D & ~B(i.e. inverted masks).
  if ((lhsMaskVal || rhsMaskVal) && !(lhsMaskVal ^ rhsMaskVal)) {
    return false;
  }
  if (lhsMaskOffset >= (rhsMaskWidth + rhsMaskOffset)) {
    offset = ConstantInt::get(aType, lhsMaskOffset, false);
    width = ConstantInt::get(aType, lhsMaskWidth, false);
    RHSSrc = RHS;
    if (!isMask_32(lhsMaskVal) && !isShiftedMask_32(lhsMaskVal)) {
      return false;
    }
    if (!LHSShift) {
      LHSSrc = BinaryOperator::Create(Instruction::LShr, LHSSrc, offset,
          "MaskShr", LHS);
    } else if (lhsShiftVal != lhsMaskOffset) {
      LHSSrc = BinaryOperator::Create(Instruction::LShr, LHSSrc, offset,
          "MaskShr", LHS);
    }
    if (mDebug) {
      dbgs() << "Optimizing LHS!\n";
    }
  } else if (rhsMaskOffset >= (lhsMaskWidth + lhsMaskOffset)) {
    offset = ConstantInt::get(aType, rhsMaskOffset, false);
    width = ConstantInt::get(aType, rhsMaskWidth, false);
    LHSSrc = RHSSrc;
    RHSSrc = LHS;
    if (!isMask_32(rhsMaskVal) && !isShiftedMask_32(rhsMaskVal)) {
      return false;
    }
    if (!RHSShift) {
      LHSSrc = BinaryOperator::Create(Instruction::LShr, LHSSrc, offset,
          "MaskShr", RHS);
    } else if (rhsShiftVal != rhsMaskOffset) {
      LHSSrc = BinaryOperator::Create(Instruction::LShr, LHSSrc, offset,
          "MaskShr", RHS);
    }
    if (mDebug) {
      dbgs() << "Optimizing RHS!\n";
    }
  } else {
    if (mDebug) {
      dbgs() << "Failed constraint 3!\n";
    }
    return false;
  }
  if (mDebug) {
    dbgs() << "Width:  "; if (width) { width->dump(); } else { dbgs() << "(0)\n"; }
    dbgs() << "Offset: "; if (offset) { offset->dump(); } else { dbgs() << "(0)\n"; }
    dbgs() << "LHSSrc: "; if (LHSSrc) { LHSSrc->dump(); } else { dbgs() << "(0)\n"; }
    dbgs() << "RHSSrc: "; if (RHSSrc) { RHSSrc->dump(); } else { dbgs() << "(0)\n"; }
  }
  if (!offset || !width) {
    if (mDebug) {
      dbgs() << "Either width or offset are NULL, failed detection!\n";
    }
    return false;
  }
  // Lets create the function signature.
  std::vector<Type *> callTypes;
  callTypes.push_back(aType);
  callTypes.push_back(aType);
  callTypes.push_back(aType);
  callTypes.push_back(aType);
  FunctionType *funcType = FunctionType::get(aType, callTypes, false);
  std::string name = "__amdil_ubit_insert";
  if (isVector) { name += "_v" + itostr(numEle) + "u32"; } else { name += "_u32"; }
  Function *Func = 
    dyn_cast<Function>(inst->getParent()->getParent()->getParent()->
        getOrInsertFunction(llvm::StringRef(name), funcType));
  Value *Operands[4] = {
    width,
    offset,
    LHSSrc,
    RHSSrc
  };
  CallInst *CI = CallInst::Create(Func, Operands, "BitInsertOpt");
  if (mDebug) {
    dbgs() << "Old Inst: ";
    inst->dump();
    dbgs() << "New Inst: ";
    CI->dump();
    dbgs() << "\n\n";
  }
  CI->insertBefore(inst);
  inst->replaceAllUsesWith(CI);
  return true;
}

bool 
AMDGPUPeepholeOpt::optimizeBitExtract(Instruction *inst)  {
  if (!inst) {
    return false;
  }
  if (!inst->isBinaryOp()) {
    return false;
  }
  if (inst->getOpcode() != Instruction::And) {
    return false;
  }
  if (optLevel == CodeGenOpt::None) {
    return false;
  }
  // We want to do some simple optimizations on Shift right/And patterns. The
  // basic optimization is to turn (A >> B) & C where A is a 32bit type, B is a
  // value smaller than 32 and C is a mask. If C is a constant value, then the
  // following transformation can occur. For signed integers, it turns into the
  // function call dst = __amdil_ibit_extract(log2(C), B, A) For unsigned
  // integers, it turns into the function call dst =
  // __amdil_ubit_extract(log2(C), B, A) The function __amdil_[u|i]bit_extract
  // can be found in Section 7.9 of the ATI IL spec of the stream SDK for
  // Evergreen hardware.
  if (mSTM->device()->getGeneration() == AMDGPUDeviceInfo::HD4XXX) {
    // This does not work on HD4XXX hardware.
    return false;
  }
  Type *aType = inst->getType();
  bool isVector = aType->isVectorTy();

  // XXX Support vector types
  if (isVector) {
    return false;
  }
  int numEle = 1;
  // This only works on 32bit integers
  if (aType->getScalarType()
      != Type::getInt32Ty(inst->getContext())) {
    return false;
  }
  if (isVector) {
    const VectorType *VT = dyn_cast<VectorType>(aType);
    numEle = VT->getNumElements();
    // We currently cannot support more than 4 elements in a intrinsic and we
    // cannot support Vec3 types.
    if (numEle > 4 || numEle == 3) {
      return false;
    }
  }
  BinaryOperator *ShiftInst = dyn_cast<BinaryOperator>(inst->getOperand(0));
  // If the first operand is not a shift instruction, then we can return as it
  // doesn't match this pattern.
  if (!ShiftInst || !ShiftInst->isShift()) {
    return false;
  }
  // If we are a shift left, then we need don't match this pattern.
  if (ShiftInst->getOpcode() == Instruction::Shl) {
    return false;
  }
  bool isSigned = ShiftInst->isArithmeticShift();
  Constant *AndMask = dyn_cast<Constant>(inst->getOperand(1));
  Constant *ShrVal = dyn_cast<Constant>(ShiftInst->getOperand(1));
  // Lets make sure that the shift value and the and mask are constant integers.
  if (!AndMask || !ShrVal) {
    return false;
  }
  Constant *newMaskConst;
  Constant *shiftValConst;
  if (isVector) {
    // Handle the vector case
    std::vector<Constant *> maskVals;
    std::vector<Constant *> shiftVals;
    ConstantVector *AndMaskVec = dyn_cast<ConstantVector>(AndMask);
    ConstantVector *ShrValVec = dyn_cast<ConstantVector>(ShrVal);
    Type *scalarType = AndMaskVec->getType()->getScalarType();
    assert(AndMaskVec->getNumOperands() ==
           ShrValVec->getNumOperands() && "cannot have a "
           "combination where the number of elements to a "
           "shift and an and are different!");
    for (size_t x = 0, y = AndMaskVec->getNumOperands(); x < y; ++x) {
      ConstantInt *AndCI = dyn_cast<ConstantInt>(AndMaskVec->getOperand(x));
      ConstantInt *ShiftIC = dyn_cast<ConstantInt>(ShrValVec->getOperand(x));
      if (!AndCI || !ShiftIC) {
        return false;
      }
      uint32_t maskVal = (uint32_t)AndCI->getZExtValue();
      if (!isMask_32(maskVal)) {
        return false;
      }
      maskVal = (uint32_t)CountTrailingOnes_32(maskVal);
      uint32_t shiftVal = (uint32_t)ShiftIC->getZExtValue();
      // If the mask or shiftval is greater than the bitcount, then break out.
      if (maskVal >= 32 || shiftVal >= 32) {
        return false;
      }
      // If the mask val is greater than the the number of original bits left
      // then this optimization is invalid.
      if (maskVal > (32 - shiftVal)) {
        return false;
      }
      maskVals.push_back(ConstantInt::get(scalarType, maskVal, isSigned));
      shiftVals.push_back(ConstantInt::get(scalarType, shiftVal, isSigned));
    }
    newMaskConst = ConstantVector::get(maskVals);
    shiftValConst = ConstantVector::get(shiftVals);
  } else {
    // Handle the scalar case
    uint32_t maskVal = (uint32_t)dyn_cast<ConstantInt>(AndMask)->getZExtValue();
    // This must be a mask value where all lower bits are set to 1 and then any
    // bit higher is set to 0.
    if (!isMask_32(maskVal)) {
      return false;
    }
    maskVal = (uint32_t)CountTrailingOnes_32(maskVal);
    // Count the number of bits set in the mask, this is the width of the
    // resulting bit set that is extracted from the source value.
    uint32_t shiftVal = (uint32_t)dyn_cast<ConstantInt>(ShrVal)->getZExtValue();
    // If the mask or shift val is greater than the bitcount, then break out.
    if (maskVal >= 32 || shiftVal >= 32) {
      return false;
    }
    // If the mask val is greater than the the number of original bits left then
    // this optimization is invalid.
    if (maskVal > (32 - shiftVal)) {
      return false;
    }
    newMaskConst = ConstantInt::get(aType, maskVal, isSigned);
    shiftValConst = ConstantInt::get(aType, shiftVal, isSigned);
  }
  // Lets create the function signature.
  std::vector<Type *> callTypes;
  callTypes.push_back(aType);
  callTypes.push_back(aType);
  callTypes.push_back(aType);
  FunctionType *funcType = FunctionType::get(aType, callTypes, false);
  std::string name = "llvm.AMDGPU.bit.extract.u32";
  if (isVector) {
    name += ".v" + itostr(numEle) + "i32";
  } else {
    name += ".";
  }
  // Lets create the function.
  Function *Func = 
    dyn_cast<Function>(inst->getParent()->getParent()->getParent()->
                       getOrInsertFunction(llvm::StringRef(name), funcType));
  Value *Operands[3] = {
    ShiftInst->getOperand(0),
    shiftValConst,
    newMaskConst
  };
  // Lets create the Call with the operands
  CallInst *CI = CallInst::Create(Func, Operands, "ByteExtractOpt");
  CI->setDoesNotAccessMemory();
  CI->insertBefore(inst);
  inst->replaceAllUsesWith(CI);
  return true;
}

bool
AMDGPUPeepholeOpt::expandBFI(CallInst *CI) {
  if (!CI) {
    return false;
  }
  Value *LHS = CI->getOperand(CI->getNumOperands() - 1);
  if (!LHS->getName().startswith("__amdil_bfi")) {
    return false;
  }
  Type* type = CI->getOperand(0)->getType();
  Constant *negOneConst = NULL;
  if (type->isVectorTy()) {
    std::vector<Constant *> negOneVals;
    negOneConst = ConstantInt::get(CI->getContext(), 
        APInt(32, StringRef("-1"), 10));
    for (size_t x = 0,
        y = dyn_cast<VectorType>(type)->getNumElements(); x < y; ++x) {
      negOneVals.push_back(negOneConst);
    }
    negOneConst = ConstantVector::get(negOneVals);
  } else {
    negOneConst = ConstantInt::get(CI->getContext(), 
        APInt(32, StringRef("-1"), 10));
  }
  // __amdil_bfi => (A & B) | (~A & C)
  BinaryOperator *lhs = 
    BinaryOperator::Create(Instruction::And, CI->getOperand(0),
        CI->getOperand(1), "bfi_and", CI);
  BinaryOperator *rhs =
    BinaryOperator::Create(Instruction::Xor, CI->getOperand(0), negOneConst,
        "bfi_not", CI);
  rhs = BinaryOperator::Create(Instruction::And, rhs, CI->getOperand(2),
      "bfi_and", CI);
  lhs = BinaryOperator::Create(Instruction::Or, lhs, rhs, "bfi_or", CI);
  CI->replaceAllUsesWith(lhs);
  return true;
}

bool
AMDGPUPeepholeOpt::expandBFM(CallInst *CI) {
  if (!CI) {
    return false;
  }
  Value *LHS = CI->getOperand(CI->getNumOperands() - 1);
  if (!LHS->getName().startswith("__amdil_bfm")) {
    return false;
  }
  // __amdil_bfm => ((1 << (src0 & 0x1F)) - 1) << (src1 & 0x1f)
  Constant *newMaskConst = NULL;
  Constant *newShiftConst = NULL;
  Type* type = CI->getOperand(0)->getType();
  if (type->isVectorTy()) {
    std::vector<Constant*> newMaskVals, newShiftVals;
    newMaskConst = ConstantInt::get(Type::getInt32Ty(*mCTX), 0x1F);
    newShiftConst = ConstantInt::get(Type::getInt32Ty(*mCTX), 1);
    for (size_t x = 0,
        y = dyn_cast<VectorType>(type)->getNumElements(); x < y; ++x) {
      newMaskVals.push_back(newMaskConst);
      newShiftVals.push_back(newShiftConst);
    }
    newMaskConst = ConstantVector::get(newMaskVals);
    newShiftConst = ConstantVector::get(newShiftVals);
  } else {
    newMaskConst = ConstantInt::get(Type::getInt32Ty(*mCTX), 0x1F);
    newShiftConst = ConstantInt::get(Type::getInt32Ty(*mCTX), 1);
  }
  BinaryOperator *lhs =
    BinaryOperator::Create(Instruction::And, CI->getOperand(0),
        newMaskConst, "bfm_mask", CI);
  lhs = BinaryOperator::Create(Instruction::Shl, newShiftConst,
      lhs, "bfm_shl", CI);
  lhs = BinaryOperator::Create(Instruction::Sub, lhs,
      newShiftConst, "bfm_sub", CI);
  BinaryOperator *rhs =
    BinaryOperator::Create(Instruction::And, CI->getOperand(1),
        newMaskConst, "bfm_mask", CI);
  lhs = BinaryOperator::Create(Instruction::Shl, lhs, rhs, "bfm_shl", CI);
  CI->replaceAllUsesWith(lhs);
  return true;
}

bool
AMDGPUPeepholeOpt::instLevelOptimizations(BasicBlock::iterator *bbb)  {
  Instruction *inst = (*bbb);
  if (optimizeCallInst(bbb)) {
    return true;
  }
  if (optimizeBitExtract(inst)) {
    return false;
  }
  if (optimizeBitInsert(inst)) {
    return false;
  }
  if (correctMisalignedMemOp(inst)) {
    return false;
  }
  return false;
}
bool
AMDGPUPeepholeOpt::correctMisalignedMemOp(Instruction *inst) {
  LoadInst *linst = dyn_cast<LoadInst>(inst);
  StoreInst *sinst = dyn_cast<StoreInst>(inst);
  unsigned alignment;
  Type* Ty = inst->getType();
  if (linst) {
    alignment = linst->getAlignment();
    Ty = inst->getType();
  } else if (sinst) {
    alignment = sinst->getAlignment();
    Ty = sinst->getValueOperand()->getType();
  } else {
    return false;
  }
  unsigned size = getTypeSize(Ty);
  if (size == alignment || size < alignment) {
    return false;
  }
  if (!Ty->isStructTy()) {
    return false;
  }
  if (alignment < 4) {
    if (linst) {
      linst->setAlignment(0);
      return true;
    } else if (sinst) {
      sinst->setAlignment(0);
      return true;
    }
  }
  return false;
}
bool 
AMDGPUPeepholeOpt::isSigned24BitOps(CallInst *CI)  {
  if (!CI) {
    return false;
  }
  Value *LHS = CI->getOperand(CI->getNumOperands() - 1);
  std::string namePrefix = LHS->getName().substr(0, 14);
  if (namePrefix != "__amdil_imad24" && namePrefix != "__amdil_imul24"
      && namePrefix != "__amdil__imul24_high") {
    return false;
  }
  if (mSTM->device()->usesHardware(AMDGPUDeviceInfo::Signed24BitOps)) {
    return false;
  }
  return true;
}

void 
AMDGPUPeepholeOpt::expandSigned24BitOps(CallInst *CI)  {
  assert(isSigned24BitOps(CI) && "Must be a "
      "signed 24 bit operation to call this function!");
  Value *LHS = CI->getOperand(CI->getNumOperands()-1);
  // On 7XX and 8XX we do not have signed 24bit, so we need to
  // expand it to the following:
  // imul24 turns into 32bit imul
  // imad24 turns into 32bit imad
  // imul24_high turns into 32bit imulhigh
  if (LHS->getName().substr(0, 14) == "__amdil_imad24") {
    Type *aType = CI->getOperand(0)->getType();
    bool isVector = aType->isVectorTy();
    int numEle = isVector ? dyn_cast<VectorType>(aType)->getNumElements() : 1;
    std::vector<Type*> callTypes;
    callTypes.push_back(CI->getOperand(0)->getType());
    callTypes.push_back(CI->getOperand(1)->getType());
    callTypes.push_back(CI->getOperand(2)->getType());
    FunctionType *funcType =
      FunctionType::get(CI->getOperand(0)->getType(), callTypes, false);
    std::string name = "__amdil_imad";
    if (isVector) {
      name += "_v" + itostr(numEle) + "i32";
    } else {
      name += "_i32";
    }
    Function *Func = dyn_cast<Function>(
                       CI->getParent()->getParent()->getParent()->
                       getOrInsertFunction(llvm::StringRef(name), funcType));
    Value *Operands[3] = {
      CI->getOperand(0),
      CI->getOperand(1),
      CI->getOperand(2)
    };
    CallInst *nCI = CallInst::Create(Func, Operands, "imad24");
    nCI->insertBefore(CI);
    CI->replaceAllUsesWith(nCI);
  } else if (LHS->getName().substr(0, 14) == "__amdil_imul24") {
    BinaryOperator *mulOp =
      BinaryOperator::Create(Instruction::Mul, CI->getOperand(0),
          CI->getOperand(1), "imul24", CI);
    CI->replaceAllUsesWith(mulOp);
  } else if (LHS->getName().substr(0, 19) == "__amdil_imul24_high") {
    Type *aType = CI->getOperand(0)->getType();

    bool isVector = aType->isVectorTy();
    int numEle = isVector ? dyn_cast<VectorType>(aType)->getNumElements() : 1;
    std::vector<Type*> callTypes;
    callTypes.push_back(CI->getOperand(0)->getType());
    callTypes.push_back(CI->getOperand(1)->getType());
    FunctionType *funcType =
      FunctionType::get(CI->getOperand(0)->getType(), callTypes, false);
    std::string name = "__amdil_imul_high";
    if (isVector) {
      name += "_v" + itostr(numEle) + "i32";
    } else {
      name += "_i32";
    }
    Function *Func = dyn_cast<Function>(
                       CI->getParent()->getParent()->getParent()->
                       getOrInsertFunction(llvm::StringRef(name), funcType));
    Value *Operands[2] = {
      CI->getOperand(0),
      CI->getOperand(1)
    };
    CallInst *nCI = CallInst::Create(Func, Operands, "imul24_high");
    nCI->insertBefore(CI);
    CI->replaceAllUsesWith(nCI);
  }
}

bool 
AMDGPUPeepholeOpt::isRWGLocalOpt(CallInst *CI)  {
  return (CI != NULL
          && CI->getOperand(CI->getNumOperands() - 1)->getName() 
          == "__amdil_get_local_size_int");
}

bool 
AMDGPUPeepholeOpt::convertAccurateDivide(CallInst *CI)  {
  if (!CI) {
    return false;
  }
  if (mSTM->device()->getGeneration() == AMDGPUDeviceInfo::HD6XXX
      && (mSTM->getDeviceName() == "cayman")) {
    return false;
  }
  return CI->getOperand(CI->getNumOperands() - 1)->getName().substr(0, 20) 
      == "__amdil_improved_div";
}

void 
AMDGPUPeepholeOpt::expandAccurateDivide(CallInst *CI)  {
  assert(convertAccurateDivide(CI)
         && "expanding accurate divide can only happen if it is expandable!");
  BinaryOperator *divOp =
    BinaryOperator::Create(Instruction::FDiv, CI->getOperand(0),
                           CI->getOperand(1), "fdiv32", CI);
  CI->replaceAllUsesWith(divOp);
}

bool
AMDGPUPeepholeOpt::propagateSamplerInst(CallInst *CI) {
  if (optLevel != CodeGenOpt::None) {
    return false;
  }

  if (!CI) {
    return false;
  }

  unsigned funcNameIdx = 0;
  funcNameIdx = CI->getNumOperands() - 1;
  StringRef calleeName = CI->getOperand(funcNameIdx)->getName();
  if (calleeName != "__amdil_image2d_read_norm"
   && calleeName != "__amdil_image2d_read_unnorm"
   && calleeName != "__amdil_image3d_read_norm"
   && calleeName != "__amdil_image3d_read_unnorm") {
    return false;
  }

  unsigned samplerIdx = 2;
  samplerIdx = 1;
  Value *sampler = CI->getOperand(samplerIdx);
  LoadInst *lInst = dyn_cast<LoadInst>(sampler);
  if (!lInst) {
    return false;
  }

  if (lInst->getPointerAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS) {
    return false;
  }

  GlobalVariable *gv = dyn_cast<GlobalVariable>(lInst->getPointerOperand());
  // If we are loading from what is not a global value, then we
  // fail and return.
  if (!gv) {
    return false;
  }

  // If we don't have an initializer or we have an initializer and
  // the initializer is not a 32bit integer, we fail.
  if (!gv->hasInitializer() 
      || !gv->getInitializer()->getType()->isIntegerTy(32)) {
      return false;
  }

  // Now that we have the global variable initializer, lets replace
  // all uses of the load instruction with the samplerVal and
  // reparse the __amdil_is_constant() function.
  Constant *samplerVal = gv->getInitializer();
  lInst->replaceAllUsesWith(samplerVal);
  return true;
}

bool 
AMDGPUPeepholeOpt::doInitialization(Module &M)  {
  return false;
}

bool 
AMDGPUPeepholeOpt::doFinalization(Module &M)  {
  return false;
}

void 
AMDGPUPeepholeOpt::getAnalysisUsage(AnalysisUsage &AU) const  {
  AU.addRequired<MachineFunctionAnalysis>();
  FunctionPass::getAnalysisUsage(AU);
  AU.setPreservesAll();
}

size_t AMDGPUPeepholeOpt::getTypeSize(Type * const T, bool dereferencePtr) {
  size_t size = 0;
  if (!T) {
    return size;
  }
  switch (T->getTypeID()) {
  case Type::X86_FP80TyID:
  case Type::FP128TyID:
  case Type::PPC_FP128TyID:
  case Type::LabelTyID:
    assert(0 && "These types are not supported by this backend");
  default:
  case Type::FloatTyID:
  case Type::DoubleTyID:
    size = T->getPrimitiveSizeInBits() >> 3;
    break;
  case Type::PointerTyID:
    size = getTypeSize(dyn_cast<PointerType>(T), dereferencePtr);
    break;
  case Type::IntegerTyID:
    size = getTypeSize(dyn_cast<IntegerType>(T), dereferencePtr);
    break;
  case Type::StructTyID:
    size = getTypeSize(dyn_cast<StructType>(T), dereferencePtr);
    break;
  case Type::ArrayTyID:
    size = getTypeSize(dyn_cast<ArrayType>(T), dereferencePtr);
    break;
  case Type::FunctionTyID:
    size = getTypeSize(dyn_cast<FunctionType>(T), dereferencePtr);
    break;
  case Type::VectorTyID:
    size = getTypeSize(dyn_cast<VectorType>(T), dereferencePtr);
    break;
  };
  return size;
}

size_t AMDGPUPeepholeOpt::getTypeSize(StructType * const ST,
    bool dereferencePtr) {
  size_t size = 0;
  if (!ST) {
    return size;
  }
  Type *curType;
  StructType::element_iterator eib;
  StructType::element_iterator eie;
  for (eib = ST->element_begin(), eie = ST->element_end(); eib != eie; ++eib) {
    curType = *eib;
    size += getTypeSize(curType, dereferencePtr);
  }
  return size;
}

size_t AMDGPUPeepholeOpt::getTypeSize(IntegerType * const IT,
    bool dereferencePtr) {
  return IT ? (IT->getBitWidth() >> 3) : 0;
}

size_t AMDGPUPeepholeOpt::getTypeSize(FunctionType * const FT,
    bool dereferencePtr) {
    assert(0 && "Should not be able to calculate the size of an function type");
    return 0;
}

size_t AMDGPUPeepholeOpt::getTypeSize(ArrayType * const AT,
    bool dereferencePtr) {
  return (size_t)(AT ? (getTypeSize(AT->getElementType(),
                                    dereferencePtr) * AT->getNumElements())
                     : 0);
}

size_t AMDGPUPeepholeOpt::getTypeSize(VectorType * const VT,
    bool dereferencePtr) {
  return VT ? (VT->getBitWidth() >> 3) : 0;
}

size_t AMDGPUPeepholeOpt::getTypeSize(PointerType * const PT,
    bool dereferencePtr) {
  if (!PT) {
    return 0;
  }
  Type *CT = PT->getElementType();
  if (CT->getTypeID() == Type::StructTyID &&
      PT->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) {
    return getTypeSize(dyn_cast<StructType>(CT));
  } else if (dereferencePtr) {
    size_t size = 0;
    for (size_t x = 0, y = PT->getNumContainedTypes(); x < y; ++x) {
      size += getTypeSize(PT->getContainedType(x), dereferencePtr);
    }
    return size;
  } else {
    return 4;
  }
}

size_t AMDGPUPeepholeOpt::getTypeSize(OpaqueType * const OT,
    bool dereferencePtr) {
  //assert(0 && "Should not be able to calculate the size of an opaque type");
  return 4;
}