summaryrefslogtreecommitdiff
path: root/lib/Target/SystemZ/SystemZOperands.td
blob: 0abc3f7517e03d6c0ec969b2462676bf625574b6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
//===-- SystemZOperands.td - SystemZ instruction operands ----*- tblgen-*--===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// Class definitions
//===----------------------------------------------------------------------===//

class ImmediateAsmOperand<string name>
  : AsmOperandClass {
  let Name = name;
  let RenderMethod = "addImmOperands";
}

// Constructs both a DAG pattern and instruction operand for an immediate
// of type VT.  PRED returns true if a node is acceptable and XFORM returns
// the operand value associated with the node.  ASMOP is the name of the
// associated asm operand, and also forms the basis of the asm print method.
class Immediate<ValueType vt, code pred, SDNodeXForm xform, string asmop>
  : PatLeaf<(vt imm), pred, xform>, Operand<vt> {
  let PrintMethod = "print"##asmop##"Operand";
  let ParserMatchClass = !cast<AsmOperandClass>(asmop);
}

// Constructs both a DAG pattern and instruction operand for a PC-relative
// address with address size VT.  SELF is the name of the operand.
class PCRelAddress<ValueType vt, string self>
  : ComplexPattern<vt, 1, "selectPCRelAddress", [z_pcrel_wrapper]>,
    Operand<vt> {
  let MIOperandInfo = (ops !cast<Operand>(self));
}

// Constructs an AsmOperandClass for addressing mode FORMAT, treating the
// registers as having BITSIZE bits and displacements as having DISPSIZE bits.
class AddressAsmOperand<string format, string bitsize, string dispsize>
  : AsmOperandClass {
  let Name = format##bitsize##"Disp"##dispsize;
  let ParserMethod = "parse"##format##bitsize;
  let RenderMethod = "add"##format##"Operands";
}

// Constructs both a DAG pattern and instruction operand for an addressing mode.
// The mode is selected by custom code in selectTYPE...SUFFIX().  The address
// registers have BITSIZE bits and displacements have DISPSIZE bits.  NUMOPS is
// the number of operands that make up an address and OPERANDS lists the types
// of those operands using (ops ...).  FORMAT is the type of addressing mode,
// which needs to match the names used in AddressAsmOperand.
class AddressingMode<string type, string bitsize, string dispsize,
                     string suffix, int numops, string format, dag operands>
  : ComplexPattern<!cast<ValueType>("i"##bitsize), numops,
                   "select"##type##dispsize##suffix,
                   [add, sub, or, frameindex, z_adjdynalloc]>,
    Operand<!cast<ValueType>("i"##bitsize)> {
  let PrintMethod = "print"##format##"Operand";
  let MIOperandInfo = operands;
  let ParserMatchClass =
    !cast<AddressAsmOperand>(format##bitsize##"Disp"##dispsize);
}

// An addressing mode with a base and displacement but no index.
class BDMode<string type, string bitsize, string dispsize, string suffix>
  : AddressingMode<type, bitsize, dispsize, suffix, 2, "BDAddr",
                   (ops !cast<RegisterOperand>("ADDR"##bitsize),
                        !cast<Immediate>("disp"##dispsize##"imm"##bitsize))>;

// An addressing mode with a base, displacement and index.
class BDXMode<string type, string bitsize, string dispsize, string suffix>
  : AddressingMode<type, bitsize, dispsize, suffix, 3, "BDXAddr",
                   (ops !cast<RegisterOperand>("ADDR"##bitsize),
                        !cast<Immediate>("disp"##dispsize##"imm"##bitsize),
                        !cast<RegisterOperand>("ADDR"##bitsize))>;

//===----------------------------------------------------------------------===//
// Extracting immediate operands from nodes
// These all create MVT::i64 nodes to ensure the value is not sign-extended
// when converted from an SDNode to a MachineOperand later on.
//===----------------------------------------------------------------------===//

// Bits 0-15 (counting from the lsb).
def LL16 : SDNodeXForm<imm, [{
  uint64_t Value = N->getZExtValue() & 0x000000000000FFFFULL;
  return CurDAG->getTargetConstant(Value, MVT::i64);
}]>;

// Bits 16-31 (counting from the lsb).
def LH16 : SDNodeXForm<imm, [{
  uint64_t Value = (N->getZExtValue() & 0x00000000FFFF0000ULL) >> 16;
  return CurDAG->getTargetConstant(Value, MVT::i64);
}]>;

// Bits 32-47 (counting from the lsb).
def HL16 : SDNodeXForm<imm, [{
  uint64_t Value = (N->getZExtValue() & 0x0000FFFF00000000ULL) >> 32;
  return CurDAG->getTargetConstant(Value, MVT::i64);
}]>;

// Bits 48-63 (counting from the lsb).
def HH16 : SDNodeXForm<imm, [{
  uint64_t Value = (N->getZExtValue() & 0xFFFF000000000000ULL) >> 48;
  return CurDAG->getTargetConstant(Value, MVT::i64);
}]>;

// Low 32 bits.
def LF32 : SDNodeXForm<imm, [{
  uint64_t Value = N->getZExtValue() & 0x00000000FFFFFFFFULL;
  return CurDAG->getTargetConstant(Value, MVT::i64);
}]>;

// High 32 bits.
def HF32 : SDNodeXForm<imm, [{
  uint64_t Value = N->getZExtValue() >> 32;
  return CurDAG->getTargetConstant(Value, MVT::i64);
}]>;

// Truncate an immediate to a 8-bit signed quantity.
def SIMM8 : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant(int8_t(N->getZExtValue()), MVT::i64);
}]>;

// Truncate an immediate to a 8-bit unsigned quantity.
def UIMM8 : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant(uint8_t(N->getZExtValue()), MVT::i64);
}]>;

// Truncate an immediate to a 16-bit signed quantity.
def SIMM16 : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant(int16_t(N->getZExtValue()), MVT::i64);
}]>;

// Truncate an immediate to a 16-bit unsigned quantity.
def UIMM16 : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant(uint16_t(N->getZExtValue()), MVT::i64);
}]>;

// Truncate an immediate to a 32-bit signed quantity.
def SIMM32 : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant(int32_t(N->getZExtValue()), MVT::i64);
}]>;

// Truncate an immediate to a 32-bit unsigned quantity.
def UIMM32 : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant(uint32_t(N->getZExtValue()), MVT::i64);
}]>;

// Negate and then truncate an immediate to a 32-bit unsigned quantity.
def NEGIMM32 : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant(uint32_t(-N->getZExtValue()), MVT::i64);
}]>;

//===----------------------------------------------------------------------===//
// Immediate asm operands.
//===----------------------------------------------------------------------===//

def U4Imm  : ImmediateAsmOperand<"U4Imm">;
def U6Imm  : ImmediateAsmOperand<"U6Imm">;
def S8Imm  : ImmediateAsmOperand<"S8Imm">;
def U8Imm  : ImmediateAsmOperand<"U8Imm">;
def S16Imm : ImmediateAsmOperand<"S16Imm">;
def U16Imm : ImmediateAsmOperand<"U16Imm">;
def S32Imm : ImmediateAsmOperand<"S32Imm">;
def U32Imm : ImmediateAsmOperand<"U32Imm">;

//===----------------------------------------------------------------------===//
// 8-bit immediates
//===----------------------------------------------------------------------===//

def uimm8zx4 : Immediate<i8, [{
  return isUInt<4>(N->getZExtValue());
}], NOOP_SDNodeXForm, "U4Imm">;

def uimm8zx6 : Immediate<i8, [{
  return isUInt<6>(N->getZExtValue());
}], NOOP_SDNodeXForm, "U6Imm">;

def simm8    : Immediate<i8, [{}], SIMM8, "S8Imm">;
def uimm8    : Immediate<i8, [{}], UIMM8, "U8Imm">;

//===----------------------------------------------------------------------===//
// i32 immediates
//===----------------------------------------------------------------------===//

// Immediates for the lower and upper 16 bits of an i32, with the other
// bits of the i32 being zero.
def imm32ll16 : Immediate<i32, [{
  return SystemZ::isImmLL(N->getZExtValue());
}], LL16, "U16Imm">;

def imm32lh16 : Immediate<i32, [{
  return SystemZ::isImmLH(N->getZExtValue());
}], LH16, "U16Imm">;

// Immediates for the lower and upper 16 bits of an i32, with the other
// bits of the i32 being one.
def imm32ll16c : Immediate<i32, [{
  return SystemZ::isImmLL(uint32_t(~N->getZExtValue()));
}], LL16, "U16Imm">;

def imm32lh16c : Immediate<i32, [{
  return SystemZ::isImmLH(uint32_t(~N->getZExtValue()));
}], LH16, "U16Imm">;

// Short immediates
def imm32sx8 : Immediate<i32, [{
  return isInt<8>(N->getSExtValue());
}], SIMM8, "S8Imm">;

def imm32zx8 : Immediate<i32, [{
  return isUInt<8>(N->getZExtValue());
}], UIMM8, "U8Imm">;

def imm32zx8trunc : Immediate<i32, [{}], UIMM8, "U8Imm">;

def imm32sx16 : Immediate<i32, [{
  return isInt<16>(N->getSExtValue());
}], SIMM16, "S16Imm">;

def imm32zx16 : Immediate<i32, [{
  return isUInt<16>(N->getZExtValue());
}], UIMM16, "U16Imm">;

def imm32sx16trunc : Immediate<i32, [{}], SIMM16, "S16Imm">;

// Full 32-bit immediates.  we need both signed and unsigned versions
// because the assembler is picky.  E.g. AFI requires signed operands
// while NILF requires unsigned ones.
def simm32 : Immediate<i32, [{}], SIMM32, "S32Imm">;
def uimm32 : Immediate<i32, [{}], UIMM32, "U32Imm">;

def imm32 : ImmLeaf<i32, [{}]>;

//===----------------------------------------------------------------------===//
// 64-bit immediates
//===----------------------------------------------------------------------===//

// Immediates for 16-bit chunks of an i64, with the other bits of the
// i32 being zero.
def imm64ll16 : Immediate<i64, [{
  return SystemZ::isImmLL(N->getZExtValue());
}], LL16, "U16Imm">;

def imm64lh16 : Immediate<i64, [{
  return SystemZ::isImmLH(N->getZExtValue());
}], LH16, "U16Imm">;

def imm64hl16 : Immediate<i64, [{
  return SystemZ::isImmHL(N->getZExtValue());
}], HL16, "U16Imm">;

def imm64hh16 : Immediate<i64, [{
  return SystemZ::isImmHH(N->getZExtValue());
}], HH16, "U16Imm">;

// Immediates for 16-bit chunks of an i64, with the other bits of the
// i32 being one.
def imm64ll16c : Immediate<i64, [{
  return SystemZ::isImmLL(uint64_t(~N->getZExtValue()));
}], LL16, "U16Imm">;

def imm64lh16c : Immediate<i64, [{
  return SystemZ::isImmLH(uint64_t(~N->getZExtValue()));
}], LH16, "U16Imm">;

def imm64hl16c : Immediate<i64, [{
  return SystemZ::isImmHL(uint64_t(~N->getZExtValue()));
}], HL16, "U16Imm">;

def imm64hh16c : Immediate<i64, [{
  return SystemZ::isImmHH(uint64_t(~N->getZExtValue()));
}], HH16, "U16Imm">;

// Immediates for the lower and upper 32 bits of an i64, with the other
// bits of the i32 being zero.
def imm64lf32 : Immediate<i64, [{
  return SystemZ::isImmLF(N->getZExtValue());
}], LF32, "U32Imm">;

def imm64hf32 : Immediate<i64, [{
  return SystemZ::isImmHF(N->getZExtValue());
}], HF32, "U32Imm">;

// Immediates for the lower and upper 32 bits of an i64, with the other
// bits of the i32 being one.
def imm64lf32c : Immediate<i64, [{
  return SystemZ::isImmLF(uint64_t(~N->getZExtValue()));
}], LF32, "U32Imm">;

def imm64hf32c : Immediate<i64, [{
  return SystemZ::isImmHF(uint64_t(~N->getZExtValue()));
}], HF32, "U32Imm">;

// Short immediates.
def imm64sx8 : Immediate<i64, [{
  return isInt<8>(N->getSExtValue());
}], SIMM8, "S8Imm">;

def imm64sx16 : Immediate<i64, [{
  return isInt<16>(N->getSExtValue());
}], SIMM16, "S16Imm">;

def imm64zx16 : Immediate<i64, [{
  return isUInt<16>(N->getZExtValue());
}], UIMM16, "U16Imm">;

def imm64sx32 : Immediate<i64, [{
  return isInt<32>(N->getSExtValue());
}], SIMM32, "S32Imm">;

def imm64zx32 : Immediate<i64, [{
  return isUInt<32>(N->getZExtValue());
}], UIMM32, "U32Imm">;

def imm64zx32n : Immediate<i64, [{
  return isUInt<32>(-N->getSExtValue());
}], NEGIMM32, "U32Imm">;

def imm64 : ImmLeaf<i64, [{}]>;

//===----------------------------------------------------------------------===//
// Floating-point immediates
//===----------------------------------------------------------------------===//

// Floating-point zero.
def fpimm0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(+0.0); }]>;

// Floating point negative zero.
def fpimmneg0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(-0.0); }]>;

//===----------------------------------------------------------------------===//
// Symbolic address operands
//===----------------------------------------------------------------------===//

// PC-relative offsets of a basic block.  The offset is sign-extended
// and multiplied by 2.
def brtarget16 : Operand<OtherVT> {
  let EncoderMethod = "getPC16DBLEncoding";
}
def brtarget32 : Operand<OtherVT> {
  let EncoderMethod = "getPC32DBLEncoding";
}

// A PC-relative offset of a global value.  The offset is sign-extended
// and multiplied by 2.
def pcrel32 : PCRelAddress<i64, "pcrel32"> {
  let EncoderMethod = "getPC32DBLEncoding";
}

// A PC-relative offset of a global value when the value is used as a
// call target.  The offset is sign-extended and multiplied by 2.
def pcrel16call : PCRelAddress<i64, "pcrel16call"> {
  let PrintMethod = "printCallOperand";
  let EncoderMethod = "getPLT16DBLEncoding";
}
def pcrel32call : PCRelAddress<i64, "pcrel32call"> {
  let PrintMethod = "printCallOperand";
  let EncoderMethod = "getPLT32DBLEncoding";
}

//===----------------------------------------------------------------------===//
// Addressing modes
//===----------------------------------------------------------------------===//

// 12-bit displacement operands.
def disp12imm32 : Operand<i32>;
def disp12imm64 : Operand<i64>;

// 20-bit displacement operands.
def disp20imm32 : Operand<i32>;
def disp20imm64 : Operand<i64>;

def BDAddr32Disp12  : AddressAsmOperand<"BDAddr",  "32", "12">;
def BDAddr32Disp20  : AddressAsmOperand<"BDAddr",  "32", "20">;
def BDAddr64Disp12  : AddressAsmOperand<"BDAddr",  "64", "12">;
def BDAddr64Disp20  : AddressAsmOperand<"BDAddr",  "64", "20">;
def BDXAddr64Disp12 : AddressAsmOperand<"BDXAddr", "64", "12">;
def BDXAddr64Disp20 : AddressAsmOperand<"BDXAddr", "64", "20">;

// DAG patterns and operands for addressing modes.  Each mode has
// the form <type><range><group> where:
//
// <type> is one of:
//   shift    : base + displacement (32-bit)
//   bdaddr   : base + displacement
//   bdxaddr  : base + displacement + index
//   laaddr   : like bdxaddr, but used for Load Address operations
//   dynalloc : base + displacement + index + ADJDYNALLOC
//
// <range> is one of:
//   12       : the displacement is an unsigned 12-bit value
//   20       : the displacement is a signed 20-bit value
//
// <group> is one of:
//   pair     : used when there is an equivalent instruction with the opposite
//              range value (12 or 20)
//   only     : used when there is no equivalent instruction with the opposite
//              range value
def shift12only      : BDMode <"BDAddr",   "32", "12", "Only">;
def shift20only      : BDMode <"BDAddr",   "32", "20", "Only">;
def bdaddr12only     : BDMode <"BDAddr",   "64", "12", "Only">;
def bdaddr12pair     : BDMode <"BDAddr",   "64", "12", "Pair">;
def bdaddr20only     : BDMode <"BDAddr",   "64", "20", "Only">;
def bdaddr20pair     : BDMode <"BDAddr",   "64", "20", "Pair">;
def bdxaddr12only    : BDXMode<"BDXAddr",  "64", "12", "Only">;
def bdxaddr12pair    : BDXMode<"BDXAddr",  "64", "12", "Pair">;
def bdxaddr20only    : BDXMode<"BDXAddr",  "64", "20", "Only">;
def bdxaddr20only128 : BDXMode<"BDXAddr",  "64", "20", "Only128">;
def bdxaddr20pair    : BDXMode<"BDXAddr",  "64", "20", "Pair">;
def dynalloc12only   : BDXMode<"DynAlloc", "64", "12", "Only">;
def laaddr12pair     : BDXMode<"LAAddr",   "64", "12", "Pair">;
def laaddr20pair     : BDXMode<"LAAddr",   "64", "20", "Pair">;

//===----------------------------------------------------------------------===//
// Miscellaneous
//===----------------------------------------------------------------------===//

// Access registers.  At present we just use them for accessing the thread
// pointer, so we don't expose them as register to LLVM.
def AccessReg : AsmOperandClass {
  let Name = "AccessReg";
  let ParserMethod = "parseAccessReg";
}
def access_reg : Immediate<i8, [{ return N->getZExtValue() < 16; }],
                           NOOP_SDNodeXForm, "AccessReg"> {
  let ParserMatchClass = AccessReg;
}

// A 4-bit condition-code mask.
def cond4 : PatLeaf<(i8 imm), [{ return (N->getZExtValue() < 16); }]>,
            Operand<i8> {
  let PrintMethod = "printCond4Operand";
}