summaryrefslogtreecommitdiff
path: root/lib/Target/SystemZ/SystemZRegisterInfo.td
blob: ffffe721cb7d477c70b21af67c5f08c973242d6f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
//==- SystemZRegisterInfo.td - SystemZ register definitions -*- tablegen -*-==//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// Class definitions.
//===----------------------------------------------------------------------===//

class SystemZReg<string n> : Register<n> {
  let Namespace = "SystemZ";
}

class SystemZRegWithSubregs<string n, list<Register> subregs>
  : RegisterWithSubRegs<n, subregs> {
  let Namespace = "SystemZ";
}

let Namespace = "SystemZ" in {
def subreg_32bit  : SubRegIndex<32>; // could also be named "subreg_high32"
// Indices are used in a variety of ways, so don't set an Offset.
def subreg_high   : SubRegIndex<64, -1>;
def subreg_low    : SubRegIndex<64, -1>;
def subreg_low32  : ComposedSubRegIndex<subreg_low, subreg_32bit>;
}

// Define a register class that contains values of type TYPE and an
// associated operand called NAME.  SIZE is the size and alignment
// of the registers and REGLIST is the list of individual registers.
multiclass SystemZRegClass<string name, ValueType type, int size, dag regList> {
  def AsmOperand : AsmOperandClass {
    let Name = name;
    let ParserMethod = "parse"##name;
    let RenderMethod = "addRegOperands";
  }
  def Bit : RegisterClass<"SystemZ", [type], size, regList> {
    let Size = size;
  }
  def "" : RegisterOperand<!cast<RegisterClass>(name##"Bit")> {
    let ParserMatchClass = !cast<AsmOperandClass>(name##"AsmOperand");
  }
}

//===----------------------------------------------------------------------===//
// General-purpose registers
//===----------------------------------------------------------------------===//

// Lower 32 bits of one of the 16 64-bit general-purpose registers
class GPR32<bits<16> num, string n> : SystemZReg<n> {
  let HWEncoding = num;
}

// One of the 16 64-bit general-purpose registers.
class GPR64<bits<16> num, string n, GPR32 low>
 : SystemZRegWithSubregs<n, [low]> {
  let HWEncoding = num;
  let SubRegIndices = [subreg_32bit];
}

// 8 even-odd pairs of GPR64s.
class GPR128<bits<16> num, string n, GPR64 high, GPR64 low>
 : SystemZRegWithSubregs<n, [high, low]> {
  let HWEncoding = num;
  let SubRegIndices = [subreg_high, subreg_low];
}

// General-purpose registers
foreach I = 0-15 in {
  def R#I#W : GPR32<I, "r"#I>;
  def R#I#D : GPR64<I, "r"#I, !cast<GPR32>("R"#I#"W")>, DwarfRegNum<[I]>;
}

foreach I = [0, 2, 4, 6, 8, 10, 12, 14] in {
  def R#I#Q : GPR128<I, "r"#I, !cast<GPR64>("R"#I#"D"),
                     !cast<GPR64>("R"#!add(I, 1)#"D")>;
}

/// Allocate the callee-saved R6-R13 backwards. That way they can be saved
/// together with R14 and R15 in one prolog instruction.
defm GR32 : SystemZRegClass<"GR32", i32, 32, (add (sequence "R%uW",  0, 5),
                                                  (sequence "R%uW", 15, 6))>;
defm GR64 : SystemZRegClass<"GR64", i64, 64, (add (sequence "R%uD",  0, 5),
                                                  (sequence "R%uD", 15, 6))>;

// The architecture doesn't really have any i128 support, so model the
// register pairs as untyped instead.
defm GR128 : SystemZRegClass<"GR128", untyped, 128, (add R0Q, R2Q, R4Q,
                                                         R12Q, R10Q, R8Q, R6Q,
                                                         R14Q)>;

// Base and index registers.  Everything except R0, which in an address
// context evaluates as 0.
defm ADDR32 : SystemZRegClass<"ADDR32", i32, 32, (sub GR32Bit, R0W)>;
defm ADDR64 : SystemZRegClass<"ADDR64", i64, 64, (sub GR64Bit, R0D)>;

// Not used directly, but needs to exist for ADDR32 and ADDR64 subregs
// of a GR128.
defm ADDR128 : SystemZRegClass<"ADDR128", untyped, 128, (sub GR128Bit, R0Q)>;

//===----------------------------------------------------------------------===//
// Floating-point registers
//===----------------------------------------------------------------------===//

// Lower 32 bits of one of the 16 64-bit floating-point registers
class FPR32<bits<16> num, string n> : SystemZReg<n> {
  let HWEncoding = num;
}

// One of the 16 64-bit floating-point registers
class FPR64<bits<16> num, string n, FPR32 low>
 : SystemZRegWithSubregs<n, [low]> {
  let HWEncoding = num;
  let SubRegIndices = [subreg_32bit];
}

// 8 pairs of FPR64s, with a one-register gap inbetween.
class FPR128<bits<16> num, string n, FPR64 high, FPR64 low>
 : SystemZRegWithSubregs<n, [high, low]> {
  let HWEncoding = num;
  let SubRegIndices = [subreg_high, subreg_low];
}

// Floating-point registers
foreach I = 0-15 in {
  def F#I#S : FPR32<I, "f"#I>;
  def F#I#D : FPR64<I, "f"#I, !cast<FPR32>("F"#I#"S")>,
              DwarfRegNum<[!add(I, 16)]>;
}

foreach I = [0, 1, 4, 5, 8, 9, 12, 13] in {
  def F#I#Q  : FPR128<I, "f"#I, !cast<FPR64>("F"#I#"D"),
                     !cast<FPR64>("F"#!add(I, 2)#"D")>;
}

// There's no store-multiple instruction for FPRs, so we're not fussy
// about the order in which call-saved registers are allocated.
defm FP32  : SystemZRegClass<"FP32", f32, 32, (sequence "F%uS", 0, 15)>;
defm FP64  : SystemZRegClass<"FP64", f64, 64, (sequence "F%uD", 0, 15)>;
defm FP128 : SystemZRegClass<"FP128", f128, 128, (add F0Q, F1Q, F4Q, F5Q,
                                                      F8Q, F9Q, F12Q, F13Q)>;

//===----------------------------------------------------------------------===//
// Other registers
//===----------------------------------------------------------------------===//

// The 2-bit condition code field of the PSW.  Every register named in an
// inline asm needs a class associated with it.
def CC : SystemZReg<"cc">;
def CCRegs : RegisterClass<"SystemZ", [i32], 32, (add CC)>;