summaryrefslogtreecommitdiff
path: root/lib/Transforms/IPO/DeadArgumentElimination.cpp
blob: f355021a66fb1c27a69a71c9a17ff1c7c54d1d84 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
//===-- DeadArgumentElimination.cpp - Eliminate dead arguments ------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass deletes dead arguments from internal functions.  Dead argument
// elimination removes arguments which are directly dead, as well as arguments
// only passed into function calls as dead arguments of other functions.  This
// pass also deletes dead arguments in a similar way.
//
// This pass is often useful as a cleanup pass to run after aggressive
// interprocedural passes, which add possibly-dead arguments.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "deadargelim"
#include "llvm/Transforms/IPO.h"
#include "llvm/CallingConv.h"
#include "llvm/Constant.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Instructions.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Compiler.h"
#include <set>
using namespace llvm;

STATISTIC(NumArgumentsEliminated, "Number of unread args removed");
STATISTIC(NumRetValsEliminated  , "Number of unused return values removed");

namespace {
  /// DAE - The dead argument elimination pass.
  ///
  class VISIBILITY_HIDDEN DAE : public ModulePass {
    /// Liveness enum - During our initial pass over the program, we determine
    /// that things are either definately alive, definately dead, or in need of
    /// interprocedural analysis (MaybeLive).
    ///
    enum Liveness { Live, MaybeLive, Dead };

    /// LiveArguments, MaybeLiveArguments, DeadArguments - These sets contain
    /// all of the arguments in the program.  The Dead set contains arguments
    /// which are completely dead (never used in the function).  The MaybeLive
    /// set contains arguments which are only passed into other function calls,
    /// thus may be live and may be dead.  The Live set contains arguments which
    /// are known to be alive.
    ///
    std::set<Argument*> DeadArguments, MaybeLiveArguments, LiveArguments;

    /// DeadRetVal, MaybeLiveRetVal, LifeRetVal - These sets contain all of the
    /// functions in the program.  The Dead set contains functions whose return
    /// value is known to be dead.  The MaybeLive set contains functions whose
    /// return values are only used by return instructions, and the Live set
    /// contains functions whose return values are used, functions that are
    /// external, and functions that already return void.
    ///
    std::set<Function*> DeadRetVal, MaybeLiveRetVal, LiveRetVal;

    /// InstructionsToInspect - As we mark arguments and return values
    /// MaybeLive, we keep track of which instructions could make the values
    /// live here.  Once the entire program has had the return value and
    /// arguments analyzed, this set is scanned to promote the MaybeLive objects
    /// to be Live if they really are used.
    std::vector<Instruction*> InstructionsToInspect;

    /// CallSites - Keep track of the call sites of functions that have
    /// MaybeLive arguments or return values.
    std::multimap<Function*, CallSite> CallSites;

  public:
    static const char ID; // Pass identifcation, replacement for typeid
    DAE() : ModulePass((intptr_t)&ID) {}
    bool runOnModule(Module &M);

    virtual bool ShouldHackArguments() const { return false; }

  private:
    Liveness getArgumentLiveness(const Argument &A);
    bool isMaybeLiveArgumentNowLive(Argument *Arg);

    bool DeleteDeadVarargs(Function &Fn);
    void SurveyFunction(Function &Fn);

    void MarkArgumentLive(Argument *Arg);
    void MarkRetValLive(Function *F);
    void MarkReturnInstArgumentLive(ReturnInst *RI);

    void RemoveDeadArgumentsFromFunction(Function *F);
  };
  const char DAE::ID = 0;
  RegisterPass<DAE> X("deadargelim", "Dead Argument Elimination");

  /// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but
  /// deletes arguments to functions which are external.  This is only for use
  /// by bugpoint.
  struct DAH : public DAE {
    static const char ID;
    virtual bool ShouldHackArguments() const { return true; }
  };
  const char DAH::ID = 0;
  RegisterPass<DAH> Y("deadarghaX0r",
                      "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)");
}

/// createDeadArgEliminationPass - This pass removes arguments from functions
/// which are not used by the body of the function.
///
ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); }
ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); }

/// DeleteDeadVarargs - If this is an function that takes a ... list, and if
/// llvm.vastart is never called, the varargs list is dead for the function.
bool DAE::DeleteDeadVarargs(Function &Fn) {
  assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!");
  if (Fn.isDeclaration() || !Fn.hasInternalLinkage()) return false;
  
  // Ensure that the function is only directly called.
  for (Value::use_iterator I = Fn.use_begin(), E = Fn.use_end(); I != E; ++I) {
    // If this use is anything other than a call site, give up.
    CallSite CS = CallSite::get(*I);
    Instruction *TheCall = CS.getInstruction();
    if (!TheCall) return false;   // Not a direct call site?
   
    // The addr of this function is passed to the call.
    if (I.getOperandNo() != 0) return false;
  }
  
  // Okay, we know we can transform this function if safe.  Scan its body
  // looking for calls to llvm.vastart.
  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
        if (II->getIntrinsicID() == Intrinsic::vastart)
          return false;
      }
    }
  }
  
  // If we get here, there are no calls to llvm.vastart in the function body,
  // remove the "..." and adjust all the calls.
  
  // Start by computing a new prototype for the function, which is the same as
  // the old function, but has fewer arguments.
  const FunctionType *FTy = Fn.getFunctionType();
  std::vector<const Type*> Params(FTy->param_begin(), FTy->param_end());
  FunctionType *NFTy = FunctionType::get(FTy->getReturnType(), Params, false);
  unsigned NumArgs = Params.size();
  
  // Create the new function body and insert it into the module...
  Function *NF = new Function(NFTy, Fn.getLinkage());
  NF->setCallingConv(Fn.getCallingConv());
  Fn.getParent()->getFunctionList().insert(&Fn, NF);
  NF->takeName(&Fn);
  
  // Loop over all of the callers of the function, transforming the call sites
  // to pass in a smaller number of arguments into the new function.
  //
  std::vector<Value*> Args;
  while (!Fn.use_empty()) {
    CallSite CS = CallSite::get(Fn.use_back());
    Instruction *Call = CS.getInstruction();
    
    // Loop over the operands, dropping extraneous ones at the end of the list.
    Args.assign(CS.arg_begin(), CS.arg_begin()+NumArgs);
    
    Instruction *New;
    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
      New = new InvokeInst(NF, II->getNormalDest(), II->getUnwindDest(),
                           &Args[0], Args.size(), "", Call);
      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
    } else {
      New = new CallInst(NF, &Args[0], Args.size(), "", Call);
      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
      if (cast<CallInst>(Call)->isTailCall())
        cast<CallInst>(New)->setTailCall();
    }
    Args.clear();
    
    if (!Call->use_empty())
      Call->replaceAllUsesWith(Constant::getNullValue(Call->getType()));
    
    New->takeName(Call);
    
    // Finally, remove the old call from the program, reducing the use-count of
    // F.
    Call->getParent()->getInstList().erase(Call);
  }
  
  // Since we have now created the new function, splice the body of the old
  // function right into the new function, leaving the old rotting hulk of the
  // function empty.
  NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList());
  
  // Loop over the argument list, transfering uses of the old arguments over to
  // the new arguments, also transfering over the names as well.  While we're at
  // it, remove the dead arguments from the DeadArguments list.
  //
  for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(),
       I2 = NF->arg_begin(); I != E; ++I, ++I2) {
    // Move the name and users over to the new version.
    I->replaceAllUsesWith(I2);
    I2->takeName(I);
  }
  
  // Finally, nuke the old function.
  Fn.eraseFromParent();
  return true;
}


static inline bool CallPassesValueThoughVararg(Instruction *Call,
                                               const Value *Arg) {
  CallSite CS = CallSite::get(Call);
  const Type *CalledValueTy = CS.getCalledValue()->getType();
  const Type *FTy = cast<PointerType>(CalledValueTy)->getElementType();
  unsigned NumFixedArgs = cast<FunctionType>(FTy)->getNumParams();
  for (CallSite::arg_iterator AI = CS.arg_begin()+NumFixedArgs;
       AI != CS.arg_end(); ++AI)
    if (AI->get() == Arg)
      return true;
  return false;
}

// getArgumentLiveness - Inspect an argument, determining if is known Live
// (used in a computation), MaybeLive (only passed as an argument to a call), or
// Dead (not used).
DAE::Liveness DAE::getArgumentLiveness(const Argument &A) {
  const FunctionType *FTy = A.getParent()->getFunctionType();
  
  // If this is the return value of a struct function, it's not really dead.
  if (FTy->isStructReturn() && &*A.getParent()->arg_begin() == &A)
    return Live;
  
  if (A.use_empty())  // First check, directly dead?
    return Dead;

  // Scan through all of the uses, looking for non-argument passing uses.
  for (Value::use_const_iterator I = A.use_begin(), E = A.use_end(); I!=E;++I) {
    // Return instructions do not immediately effect liveness.
    if (isa<ReturnInst>(*I))
      continue;

    CallSite CS = CallSite::get(const_cast<User*>(*I));
    if (!CS.getInstruction()) {
      // If its used by something that is not a call or invoke, it's alive!
      return Live;
    }
    // If it's an indirect call, mark it alive...
    Function *Callee = CS.getCalledFunction();
    if (!Callee) return Live;

    // Check to see if it's passed through a va_arg area: if so, we cannot
    // remove it.
    if (CallPassesValueThoughVararg(CS.getInstruction(), &A))
      return Live;   // If passed through va_arg area, we cannot remove it
  }

  return MaybeLive;  // It must be used, but only as argument to a function
}


// SurveyFunction - This performs the initial survey of the specified function,
// checking out whether or not it uses any of its incoming arguments or whether
// any callers use the return value.  This fills in the
// (Dead|MaybeLive|Live)(Arguments|RetVal) sets.
//
// We consider arguments of non-internal functions to be intrinsically alive as
// well as arguments to functions which have their "address taken".
//
void DAE::SurveyFunction(Function &F) {
  bool FunctionIntrinsicallyLive = false;
  Liveness RetValLiveness = F.getReturnType() == Type::VoidTy ? Live : Dead;

  if (!F.hasInternalLinkage() &&
      (!ShouldHackArguments() || F.getIntrinsicID()))
    FunctionIntrinsicallyLive = true;
  else
    for (Value::use_iterator I = F.use_begin(), E = F.use_end(); I != E; ++I) {
      // If this use is anything other than a call site, the function is alive.
      CallSite CS = CallSite::get(*I);
      Instruction *TheCall = CS.getInstruction();
      if (!TheCall) {   // Not a direct call site?
        FunctionIntrinsicallyLive = true;
        break;
      }

      // Check to see if the return value is used...
      if (RetValLiveness != Live)
        for (Value::use_iterator I = TheCall->use_begin(),
               E = TheCall->use_end(); I != E; ++I)
          if (isa<ReturnInst>(cast<Instruction>(*I))) {
            RetValLiveness = MaybeLive;
          } else if (isa<CallInst>(cast<Instruction>(*I)) ||
                     isa<InvokeInst>(cast<Instruction>(*I))) {
            if (CallPassesValueThoughVararg(cast<Instruction>(*I), TheCall) ||
                !CallSite::get(cast<Instruction>(*I)).getCalledFunction()) {
              RetValLiveness = Live;
              break;
            } else {
              RetValLiveness = MaybeLive;
            }
          } else {
            RetValLiveness = Live;
            break;
          }

      // If the function is PASSED IN as an argument, its address has been taken
      for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
           AI != E; ++AI)
        if (AI->get() == &F) {
          FunctionIntrinsicallyLive = true;
          break;
        }
      if (FunctionIntrinsicallyLive) break;
    }

  if (FunctionIntrinsicallyLive) {
    DOUT << "  Intrinsically live fn: " << F.getName() << "\n";
    for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
         AI != E; ++AI)
      LiveArguments.insert(AI);
    LiveRetVal.insert(&F);
    return;
  }

  switch (RetValLiveness) {
  case Live:      LiveRetVal.insert(&F); break;
  case MaybeLive: MaybeLiveRetVal.insert(&F); break;
  case Dead:      DeadRetVal.insert(&F); break;
  }

  DOUT << "  Inspecting args for fn: " << F.getName() << "\n";

  // If it is not intrinsically alive, we know that all users of the
  // function are call sites.  Mark all of the arguments live which are
  // directly used, and keep track of all of the call sites of this function
  // if there are any arguments we assume that are dead.
  //
  bool AnyMaybeLiveArgs = false;
  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
       AI != E; ++AI)
    switch (getArgumentLiveness(*AI)) {
    case Live:
      DOUT << "    Arg live by use: " << AI->getName() << "\n";
      LiveArguments.insert(AI);
      break;
    case Dead:
      DOUT << "    Arg definitely dead: " << AI->getName() <<"\n";
      DeadArguments.insert(AI);
      break;
    case MaybeLive:
      DOUT << "    Arg only passed to calls: " << AI->getName() << "\n";
      AnyMaybeLiveArgs = true;
      MaybeLiveArguments.insert(AI);
      break;
    }

  // If there are any "MaybeLive" arguments, we need to check callees of
  // this function when/if they become alive.  Record which functions are
  // callees...
  if (AnyMaybeLiveArgs || RetValLiveness == MaybeLive)
    for (Value::use_iterator I = F.use_begin(), E = F.use_end();
         I != E; ++I) {
      if (AnyMaybeLiveArgs)
        CallSites.insert(std::make_pair(&F, CallSite::get(*I)));

      if (RetValLiveness == MaybeLive)
        for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
             UI != E; ++UI)
          InstructionsToInspect.push_back(cast<Instruction>(*UI));
    }
}

// isMaybeLiveArgumentNowLive - Check to see if Arg is alive.  At this point, we
// know that the only uses of Arg are to be passed in as an argument to a
// function call or return.  Check to see if the formal argument passed in is in
// the LiveArguments set.  If so, return true.
//
bool DAE::isMaybeLiveArgumentNowLive(Argument *Arg) {
  for (Value::use_iterator I = Arg->use_begin(), E = Arg->use_end(); I!=E; ++I){
    if (isa<ReturnInst>(*I)) {
      if (LiveRetVal.count(Arg->getParent())) return true;
      continue;
    }

    CallSite CS = CallSite::get(*I);

    // We know that this can only be used for direct calls...
    Function *Callee = CS.getCalledFunction();

    // Loop over all of the arguments (because Arg may be passed into the call
    // multiple times) and check to see if any are now alive...
    CallSite::arg_iterator CSAI = CS.arg_begin();
    for (Function::arg_iterator AI = Callee->arg_begin(), E = Callee->arg_end();
         AI != E; ++AI, ++CSAI)
      // If this is the argument we are looking for, check to see if it's alive
      if (*CSAI == Arg && LiveArguments.count(AI))
        return true;
  }
  return false;
}

/// MarkArgumentLive - The MaybeLive argument 'Arg' is now known to be alive.
/// Mark it live in the specified sets and recursively mark arguments in callers
/// live that are needed to pass in a value.
///
void DAE::MarkArgumentLive(Argument *Arg) {
  std::set<Argument*>::iterator It = MaybeLiveArguments.lower_bound(Arg);
  if (It == MaybeLiveArguments.end() || *It != Arg) return;

  DOUT << "  MaybeLive argument now live: " << Arg->getName() <<"\n";
  MaybeLiveArguments.erase(It);
  LiveArguments.insert(Arg);

  // Loop over all of the call sites of the function, making any arguments
  // passed in to provide a value for this argument live as necessary.
  //
  Function *Fn = Arg->getParent();
  unsigned ArgNo = std::distance(Fn->arg_begin(), Function::arg_iterator(Arg));

  std::multimap<Function*, CallSite>::iterator I = CallSites.lower_bound(Fn);
  for (; I != CallSites.end() && I->first == Fn; ++I) {
    CallSite CS = I->second;
    Value *ArgVal = *(CS.arg_begin()+ArgNo);
    if (Argument *ActualArg = dyn_cast<Argument>(ArgVal)) {
      MarkArgumentLive(ActualArg);
    } else {
      // If the value passed in at this call site is a return value computed by
      // some other call site, make sure to mark the return value at the other
      // call site as being needed.
      CallSite ArgCS = CallSite::get(ArgVal);
      if (ArgCS.getInstruction())
        if (Function *Fn = ArgCS.getCalledFunction())
          MarkRetValLive(Fn);
    }
  }
}

/// MarkArgumentLive - The MaybeLive return value for the specified function is
/// now known to be alive.  Propagate this fact to the return instructions which
/// produce it.
void DAE::MarkRetValLive(Function *F) {
  assert(F && "Shame shame, we can't have null pointers here!");

  // Check to see if we already knew it was live
  std::set<Function*>::iterator I = MaybeLiveRetVal.lower_bound(F);
  if (I == MaybeLiveRetVal.end() || *I != F) return;  // It's already alive!

  DOUT << "  MaybeLive retval now live: " << F->getName() << "\n";

  MaybeLiveRetVal.erase(I);
  LiveRetVal.insert(F);        // It is now known to be live!

  // Loop over all of the functions, noticing that the return value is now live.
  for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
    if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
      MarkReturnInstArgumentLive(RI);
}

void DAE::MarkReturnInstArgumentLive(ReturnInst *RI) {
  Value *Op = RI->getOperand(0);
  if (Argument *A = dyn_cast<Argument>(Op)) {
    MarkArgumentLive(A);
  } else if (CallInst *CI = dyn_cast<CallInst>(Op)) {
    if (Function *F = CI->getCalledFunction())
      MarkRetValLive(F);
  } else if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
    if (Function *F = II->getCalledFunction())
      MarkRetValLive(F);
  }
}

// RemoveDeadArgumentsFromFunction - We know that F has dead arguments, as
// specified by the DeadArguments list.  Transform the function and all of the
// callees of the function to not have these arguments.
//
void DAE::RemoveDeadArgumentsFromFunction(Function *F) {
  // Start by computing a new prototype for the function, which is the same as
  // the old function, but has fewer arguments.
  const FunctionType *FTy = F->getFunctionType();
  std::vector<const Type*> Params;

  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
    if (!DeadArguments.count(I))
      Params.push_back(I->getType());

  const Type *RetTy = FTy->getReturnType();
  if (DeadRetVal.count(F)) {
    RetTy = Type::VoidTy;
    DeadRetVal.erase(F);
  }

  // Work around LLVM bug PR56: the CWriter cannot emit varargs functions which
  // have zero fixed arguments.
  //
  bool ExtraArgHack = false;
  if (Params.empty() && FTy->isVarArg()) {
    ExtraArgHack = true;
    Params.push_back(Type::Int32Ty);
  }

  FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());

  // Create the new function body and insert it into the module...
  Function *NF = new Function(NFTy, F->getLinkage());
  NF->setCallingConv(F->getCallingConv());
  F->getParent()->getFunctionList().insert(F, NF);
  NF->takeName(F);

  // Loop over all of the callers of the function, transforming the call sites
  // to pass in a smaller number of arguments into the new function.
  //
  std::vector<Value*> Args;
  while (!F->use_empty()) {
    CallSite CS = CallSite::get(F->use_back());
    Instruction *Call = CS.getInstruction();

    // Loop over the operands, deleting dead ones...
    CallSite::arg_iterator AI = CS.arg_begin();
    for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
         I != E; ++I, ++AI)
      if (!DeadArguments.count(I))      // Remove operands for dead arguments
        Args.push_back(*AI);

    if (ExtraArgHack)
      Args.push_back(UndefValue::get(Type::Int32Ty));

    // Push any varargs arguments on the list
    for (; AI != CS.arg_end(); ++AI)
      Args.push_back(*AI);

    Instruction *New;
    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
      New = new InvokeInst(NF, II->getNormalDest(), II->getUnwindDest(),
                           &Args[0], Args.size(), "", Call);
      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
    } else {
      New = new CallInst(NF, &Args[0], Args.size(), "", Call);
      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
      if (cast<CallInst>(Call)->isTailCall())
        cast<CallInst>(New)->setTailCall();
    }
    Args.clear();

    if (!Call->use_empty()) {
      if (New->getType() == Type::VoidTy)
        Call->replaceAllUsesWith(Constant::getNullValue(Call->getType()));
      else {
        Call->replaceAllUsesWith(New);
        New->takeName(Call);
      }
    }

    // Finally, remove the old call from the program, reducing the use-count of
    // F.
    Call->getParent()->getInstList().erase(Call);
  }

  // Since we have now created the new function, splice the body of the old
  // function right into the new function, leaving the old rotting hulk of the
  // function empty.
  NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());

  // Loop over the argument list, transfering uses of the old arguments over to
  // the new arguments, also transfering over the names as well.  While we're at
  // it, remove the dead arguments from the DeadArguments list.
  //
  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
         I2 = NF->arg_begin();
       I != E; ++I)
    if (!DeadArguments.count(I)) {
      // If this is a live argument, move the name and users over to the new
      // version.
      I->replaceAllUsesWith(I2);
      I2->takeName(I);
      ++I2;
    } else {
      // If this argument is dead, replace any uses of it with null constants
      // (these are guaranteed to only be operands to call instructions which
      // will later be simplified).
      I->replaceAllUsesWith(Constant::getNullValue(I->getType()));
      DeadArguments.erase(I);
    }

  // If we change the return value of the function we must rewrite any return
  // instructions.  Check this now.
  if (F->getReturnType() != NF->getReturnType())
    for (Function::iterator BB = NF->begin(), E = NF->end(); BB != E; ++BB)
      if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
        new ReturnInst(0, RI);
        BB->getInstList().erase(RI);
      }

  // Now that the old function is dead, delete it.
  F->getParent()->getFunctionList().erase(F);
}

bool DAE::runOnModule(Module &M) {
  // First phase: loop through the module, determining which arguments are live.
  // We assume all arguments are dead unless proven otherwise (allowing us to
  // determine that dead arguments passed into recursive functions are dead).
  //
  DOUT << "DAE - Determining liveness\n";
  for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
    Function &F = *I++;
    if (F.getFunctionType()->isVarArg())
      if (DeleteDeadVarargs(F))
        continue;
      
    SurveyFunction(F);
  }

  // Loop over the instructions to inspect, propagating liveness among arguments
  // and return values which are MaybeLive.

  while (!InstructionsToInspect.empty()) {
    Instruction *I = InstructionsToInspect.back();
    InstructionsToInspect.pop_back();

    if (ReturnInst *RI = dyn_cast<ReturnInst>(I)) {
      // For return instructions, we just have to check to see if the return
      // value for the current function is known now to be alive.  If so, any
      // arguments used by it are now alive, and any call instruction return
      // value is alive as well.
      if (LiveRetVal.count(RI->getParent()->getParent()))
        MarkReturnInstArgumentLive(RI);

    } else {
      CallSite CS = CallSite::get(I);
      assert(CS.getInstruction() && "Unknown instruction for the I2I list!");

      Function *Callee = CS.getCalledFunction();

      // If we found a call or invoke instruction on this list, that means that
      // an argument of the function is a call instruction.  If the argument is
      // live, then the return value of the called instruction is now live.
      //
      CallSite::arg_iterator AI = CS.arg_begin();  // ActualIterator
      for (Function::arg_iterator FI = Callee->arg_begin(),
             E = Callee->arg_end(); FI != E; ++AI, ++FI) {
        // If this argument is another call...
        CallSite ArgCS = CallSite::get(*AI);
        if (ArgCS.getInstruction() && LiveArguments.count(FI))
          if (Function *Callee = ArgCS.getCalledFunction())
            MarkRetValLive(Callee);
      }
    }
  }

  // Now we loop over all of the MaybeLive arguments, promoting them to be live
  // arguments if one of the calls that uses the arguments to the calls they are
  // passed into requires them to be live.  Of course this could make other
  // arguments live, so process callers recursively.
  //
  // Because elements can be removed from the MaybeLiveArguments set, copy it to
  // a temporary vector.
  //
  std::vector<Argument*> TmpArgList(MaybeLiveArguments.begin(),
                                    MaybeLiveArguments.end());
  for (unsigned i = 0, e = TmpArgList.size(); i != e; ++i) {
    Argument *MLA = TmpArgList[i];
    if (MaybeLiveArguments.count(MLA) &&
        isMaybeLiveArgumentNowLive(MLA))
      MarkArgumentLive(MLA);
  }

  // Recover memory early...
  CallSites.clear();

  // At this point, we know that all arguments in DeadArguments and
  // MaybeLiveArguments are dead.  If the two sets are empty, there is nothing
  // to do.
  if (MaybeLiveArguments.empty() && DeadArguments.empty() &&
      MaybeLiveRetVal.empty() && DeadRetVal.empty())
    return false;

  // Otherwise, compact into one set, and start eliminating the arguments from
  // the functions.
  DeadArguments.insert(MaybeLiveArguments.begin(), MaybeLiveArguments.end());
  MaybeLiveArguments.clear();
  DeadRetVal.insert(MaybeLiveRetVal.begin(), MaybeLiveRetVal.end());
  MaybeLiveRetVal.clear();

  LiveArguments.clear();
  LiveRetVal.clear();

  NumArgumentsEliminated += DeadArguments.size();
  NumRetValsEliminated   += DeadRetVal.size();
  while (!DeadArguments.empty())
    RemoveDeadArgumentsFromFunction((*DeadArguments.begin())->getParent());

  while (!DeadRetVal.empty())
    RemoveDeadArgumentsFromFunction(*DeadRetVal.begin());
  return true;
}