summaryrefslogtreecommitdiff
path: root/lib/Transforms/Scalar/CodeGenPrepare.cpp
blob: a40d1330ad0b06f803c7378431cfe09aa7c74cc9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
//===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass munges the code in the input function to better prepare it for
// SelectionDAG-based code generation.  This works around limitations in it's
// basic-block-at-a-time approach.  It should eventually be removed.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "codegenprepare"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/Instructions.h"
#include "llvm/Pass.h"
#include "llvm/Target/TargetAsmInfo.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
using namespace llvm;

namespace {  
  class VISIBILITY_HIDDEN CodeGenPrepare : public FunctionPass {
    /// TLI - Keep a pointer of a TargetLowering to consult for determining
    /// transformation profitability.
    const TargetLowering *TLI;
  public:
    static const char ID; // Pass identifcation, replacement for typeid
    CodeGenPrepare(const TargetLowering *tli = 0) : FunctionPass((intptr_t)&ID),
      TLI(tli) {}
    bool runOnFunction(Function &F);
    
  private:
    bool EliminateMostlyEmptyBlocks(Function &F);
    bool CanMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
    void EliminateMostlyEmptyBlock(BasicBlock *BB);
    bool OptimizeBlock(BasicBlock &BB);
    bool OptimizeLoadStoreInst(Instruction *I, Value *Addr,
                               const Type *AccessTy,
                               DenseMap<Value*,Value*> &SunkAddrs);
  };
}

const char CodeGenPrepare::ID = 0;
static RegisterPass<CodeGenPrepare> X("codegenprepare",
                                      "Optimize for code generation");

FunctionPass *llvm::createCodeGenPreparePass(const TargetLowering *TLI) {
  return new CodeGenPrepare(TLI);
}


bool CodeGenPrepare::runOnFunction(Function &F) {
  bool EverMadeChange = false;
  
  // First pass, eliminate blocks that contain only PHI nodes and an
  // unconditional branch.
  EverMadeChange |= EliminateMostlyEmptyBlocks(F);
  
  bool MadeChange = true;
  while (MadeChange) {
    MadeChange = false;
    for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
      MadeChange |= OptimizeBlock(*BB);
    EverMadeChange |= MadeChange;
  }
  return EverMadeChange;
}

/// EliminateMostlyEmptyBlocks - eliminate blocks that contain only PHI nodes
/// and an unconditional branch.  Passes before isel (e.g. LSR/loopsimplify) 
/// often split edges in ways that are non-optimal for isel.  Start by
/// eliminating these blocks so we can split them the way we want them.
bool CodeGenPrepare::EliminateMostlyEmptyBlocks(Function &F) {
  bool MadeChange = false;
  // Note that this intentionally skips the entry block.
  for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ) {
    BasicBlock *BB = I++;

    // If this block doesn't end with an uncond branch, ignore it.
    BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
    if (!BI || !BI->isUnconditional())
      continue;
    
    // If the instruction before the branch isn't a phi node, then other stuff
    // is happening here.
    BasicBlock::iterator BBI = BI;
    if (BBI != BB->begin()) {
      --BBI;
      if (!isa<PHINode>(BBI)) continue;
    }
    
    // Do not break infinite loops.
    BasicBlock *DestBB = BI->getSuccessor(0);
    if (DestBB == BB)
      continue;
    
    if (!CanMergeBlocks(BB, DestBB))
      continue;
    
    EliminateMostlyEmptyBlock(BB);
    MadeChange = true;
  }
  return MadeChange;
}

/// CanMergeBlocks - Return true if we can merge BB into DestBB if there is a
/// single uncond branch between them, and BB contains no other non-phi
/// instructions.
bool CodeGenPrepare::CanMergeBlocks(const BasicBlock *BB,
                                    const BasicBlock *DestBB) const {
  // We only want to eliminate blocks whose phi nodes are used by phi nodes in
  // the successor.  If there are more complex condition (e.g. preheaders),
  // don't mess around with them.
  BasicBlock::const_iterator BBI = BB->begin();
  while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
    for (Value::use_const_iterator UI = PN->use_begin(), E = PN->use_end();
         UI != E; ++UI) {
      const Instruction *User = cast<Instruction>(*UI);
      if (User->getParent() != DestBB || !isa<PHINode>(User))
        return false;
      // If User is inside DestBB block and it is a PHINode then check 
      // incoming value. If incoming value is not from BB then this is 
      // a complex condition (e.g. preheaders) we want to avoid here.
      if (User->getParent() == DestBB) {
        if (const PHINode *UPN = dyn_cast<PHINode>(User))
          for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
            Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
            if (Insn && Insn->getParent() == BB &&
                Insn->getParent() != UPN->getIncomingBlock(I))
              return false;
          }
      }
    }
  }
  
  // If BB and DestBB contain any common predecessors, then the phi nodes in BB
  // and DestBB may have conflicting incoming values for the block.  If so, we
  // can't merge the block.
  const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
  if (!DestBBPN) return true;  // no conflict.
  
  // Collect the preds of BB.
  SmallPtrSet<BasicBlock*, 16> BBPreds;
  if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
    // It is faster to get preds from a PHI than with pred_iterator.
    for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
      BBPreds.insert(BBPN->getIncomingBlock(i));
  } else {
    BBPreds.insert(pred_begin(BB), pred_end(BB));
  }
  
  // Walk the preds of DestBB.
  for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
    BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
    if (BBPreds.count(Pred)) {   // Common predecessor?
      BBI = DestBB->begin();
      while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
        const Value *V1 = PN->getIncomingValueForBlock(Pred);
        const Value *V2 = PN->getIncomingValueForBlock(BB);
        
        // If V2 is a phi node in BB, look up what the mapped value will be.
        if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
          if (V2PN->getParent() == BB)
            V2 = V2PN->getIncomingValueForBlock(Pred);
        
        // If there is a conflict, bail out.
        if (V1 != V2) return false;
      }
    }
  }

  return true;
}


/// EliminateMostlyEmptyBlock - Eliminate a basic block that have only phi's and
/// an unconditional branch in it.
void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock *BB) {
  BranchInst *BI = cast<BranchInst>(BB->getTerminator());
  BasicBlock *DestBB = BI->getSuccessor(0);
  
  DOUT << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB;
  
  // If the destination block has a single pred, then this is a trivial edge,
  // just collapse it.
  if (DestBB->getSinglePredecessor()) {
    // If DestBB has single-entry PHI nodes, fold them.
    while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
      PN->replaceAllUsesWith(PN->getIncomingValue(0));
      PN->eraseFromParent();
    }
    
    // Splice all the PHI nodes from BB over to DestBB.
    DestBB->getInstList().splice(DestBB->begin(), BB->getInstList(),
                                 BB->begin(), BI);
    
    // Anything that branched to BB now branches to DestBB.
    BB->replaceAllUsesWith(DestBB);
    
    // Nuke BB.
    BB->eraseFromParent();
    
    DOUT << "AFTER:\n" << *DestBB << "\n\n\n";
    return;
  }
  
  // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB
  // to handle the new incoming edges it is about to have.
  PHINode *PN;
  for (BasicBlock::iterator BBI = DestBB->begin();
       (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
    // Remove the incoming value for BB, and remember it.
    Value *InVal = PN->removeIncomingValue(BB, false);
    
    // Two options: either the InVal is a phi node defined in BB or it is some
    // value that dominates BB.
    PHINode *InValPhi = dyn_cast<PHINode>(InVal);
    if (InValPhi && InValPhi->getParent() == BB) {
      // Add all of the input values of the input PHI as inputs of this phi.
      for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
        PN->addIncoming(InValPhi->getIncomingValue(i),
                        InValPhi->getIncomingBlock(i));
    } else {
      // Otherwise, add one instance of the dominating value for each edge that
      // we will be adding.
      if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
        for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
          PN->addIncoming(InVal, BBPN->getIncomingBlock(i));
      } else {
        for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
          PN->addIncoming(InVal, *PI);
      }
    }
  }
  
  // The PHIs are now updated, change everything that refers to BB to use
  // DestBB and remove BB.
  BB->replaceAllUsesWith(DestBB);
  BB->eraseFromParent();
  
  DOUT << "AFTER:\n" << *DestBB << "\n\n\n";
}


/// SplitEdgeNicely - Split the critical edge from TI to it's specified
/// successor if it will improve codegen.  We only do this if the successor has
/// phi nodes (otherwise critical edges are ok).  If there is already another
/// predecessor of the succ that is empty (and thus has no phi nodes), use it
/// instead of introducing a new block.
static void SplitEdgeNicely(TerminatorInst *TI, unsigned SuccNum, Pass *P) {
  BasicBlock *TIBB = TI->getParent();
  BasicBlock *Dest = TI->getSuccessor(SuccNum);
  assert(isa<PHINode>(Dest->begin()) &&
         "This should only be called if Dest has a PHI!");
  
  /// TIPHIValues - This array is lazily computed to determine the values of
  /// PHIs in Dest that TI would provide.
  std::vector<Value*> TIPHIValues;
  
  // Check to see if Dest has any blocks that can be used as a split edge for
  // this terminator.
  for (pred_iterator PI = pred_begin(Dest), E = pred_end(Dest); PI != E; ++PI) {
    BasicBlock *Pred = *PI;
    // To be usable, the pred has to end with an uncond branch to the dest.
    BranchInst *PredBr = dyn_cast<BranchInst>(Pred->getTerminator());
    if (!PredBr || !PredBr->isUnconditional() ||
        // Must be empty other than the branch.
        &Pred->front() != PredBr)
      continue;
    
    // Finally, since we know that Dest has phi nodes in it, we have to make
    // sure that jumping to Pred will have the same affect as going to Dest in
    // terms of PHI values.
    PHINode *PN;
    unsigned PHINo = 0;
    bool FoundMatch = true;
    for (BasicBlock::iterator I = Dest->begin();
         (PN = dyn_cast<PHINode>(I)); ++I, ++PHINo) {
      if (PHINo == TIPHIValues.size())
        TIPHIValues.push_back(PN->getIncomingValueForBlock(TIBB));
      
      // If the PHI entry doesn't work, we can't use this pred.
      if (TIPHIValues[PHINo] != PN->getIncomingValueForBlock(Pred)) {
        FoundMatch = false;
        break;
      }
    }
    
    // If we found a workable predecessor, change TI to branch to Succ.
    if (FoundMatch) {
      Dest->removePredecessor(TIBB);
      TI->setSuccessor(SuccNum, Pred);
      return;
    }
  }
  
  SplitCriticalEdge(TI, SuccNum, P, true);  
}

/// OptimizeNoopCopyExpression - If the specified cast instruction is a noop
/// copy (e.g. it's casting from one pointer type to another, int->uint, or
/// int->sbyte on PPC), sink it into user blocks to reduce the number of virtual
/// registers that must be created and coallesced.
///
/// Return true if any changes are made.
static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI){
  // If this is a noop copy, 
  MVT::ValueType SrcVT = TLI.getValueType(CI->getOperand(0)->getType());
  MVT::ValueType DstVT = TLI.getValueType(CI->getType());
  
  // This is an fp<->int conversion?
  if (MVT::isInteger(SrcVT) != MVT::isInteger(DstVT))
    return false;
  
  // If this is an extension, it will be a zero or sign extension, which
  // isn't a noop.
  if (SrcVT < DstVT) return false;
  
  // If these values will be promoted, find out what they will be promoted
  // to.  This helps us consider truncates on PPC as noop copies when they
  // are.
  if (TLI.getTypeAction(SrcVT) == TargetLowering::Promote)
    SrcVT = TLI.getTypeToTransformTo(SrcVT);
  if (TLI.getTypeAction(DstVT) == TargetLowering::Promote)
    DstVT = TLI.getTypeToTransformTo(DstVT);
  
  // If, after promotion, these are the same types, this is a noop copy.
  if (SrcVT != DstVT)
    return false;
  
  BasicBlock *DefBB = CI->getParent();
  
  /// InsertedCasts - Only insert a cast in each block once.
  std::map<BasicBlock*, CastInst*> InsertedCasts;
  
  bool MadeChange = false;
  for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end(); 
       UI != E; ) {
    Use &TheUse = UI.getUse();
    Instruction *User = cast<Instruction>(*UI);
    
    // Figure out which BB this cast is used in.  For PHI's this is the
    // appropriate predecessor block.
    BasicBlock *UserBB = User->getParent();
    if (PHINode *PN = dyn_cast<PHINode>(User)) {
      unsigned OpVal = UI.getOperandNo()/2;
      UserBB = PN->getIncomingBlock(OpVal);
    }
    
    // Preincrement use iterator so we don't invalidate it.
    ++UI;
    
    // If this user is in the same block as the cast, don't change the cast.
    if (UserBB == DefBB) continue;
    
    // If we have already inserted a cast into this block, use it.
    CastInst *&InsertedCast = InsertedCasts[UserBB];

    if (!InsertedCast) {
      BasicBlock::iterator InsertPt = UserBB->begin();
      while (isa<PHINode>(InsertPt)) ++InsertPt;
      
      InsertedCast = 
        CastInst::create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "", 
                         InsertPt);
      MadeChange = true;
    }
    
    // Replace a use of the cast with a use of the new casat.
    TheUse = InsertedCast;
  }
  
  // If we removed all uses, nuke the cast.
  if (CI->use_empty())
    CI->eraseFromParent();
  
  return MadeChange;
}

/// EraseDeadInstructions - Erase any dead instructions
static void EraseDeadInstructions(Value *V) {
  Instruction *I = dyn_cast<Instruction>(V);
  if (!I || !I->use_empty()) return;
  
  SmallPtrSet<Instruction*, 16> Insts;
  Insts.insert(I);
  
  while (!Insts.empty()) {
    I = *Insts.begin();
    Insts.erase(I);
    if (isInstructionTriviallyDead(I)) {
      for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
        if (Instruction *U = dyn_cast<Instruction>(I->getOperand(i)))
          Insts.insert(U);
      I->eraseFromParent();
    }
  }
}


/// ExtAddrMode - This is an extended version of TargetLowering::AddrMode which
/// holds actual Value*'s for register values.
struct ExtAddrMode : public TargetLowering::AddrMode {
  Value *BaseReg;
  Value *ScaledReg;
  ExtAddrMode() : BaseReg(0), ScaledReg(0) {}
  void dump() const;
};

static std::ostream &operator<<(std::ostream &OS, const ExtAddrMode &AM) {
  bool NeedPlus = false;
  OS << "[";
  if (AM.BaseGV)
    OS << (NeedPlus ? " + " : "")
       << "GV:%" << AM.BaseGV->getName(), NeedPlus = true;
  
  if (AM.BaseOffs)
    OS << (NeedPlus ? " + " : "") << AM.BaseOffs, NeedPlus = true;
  
  if (AM.BaseReg)
    OS << (NeedPlus ? " + " : "")
       << "Base:%" << AM.BaseReg->getName(), NeedPlus = true;
  if (AM.Scale)
    OS << (NeedPlus ? " + " : "")
       << AM.Scale << "*%" << AM.ScaledReg->getName(), NeedPlus = true;
  
  return OS << "]";
}

void ExtAddrMode::dump() const {
  cerr << *this << "\n";
}

static bool TryMatchingScaledValue(Value *ScaleReg, int64_t Scale,
                                   const Type *AccessTy, ExtAddrMode &AddrMode,
                                   SmallVector<Instruction*, 16> &AddrModeInsts,
                                   const TargetLowering &TLI, unsigned Depth);
  
/// FindMaximalLegalAddressingMode - If we can, try to merge the computation of
/// Addr into the specified addressing mode.  If Addr can't be added to AddrMode
/// this returns false.  This assumes that Addr is either a pointer type or
/// intptr_t for the target.
static bool FindMaximalLegalAddressingMode(Value *Addr, const Type *AccessTy,
                                           ExtAddrMode &AddrMode,
                                   SmallVector<Instruction*, 16> &AddrModeInsts,
                                           const TargetLowering &TLI,
                                           unsigned Depth) {
  
  // If this is a global variable, fold it into the addressing mode if possible.
  if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
    if (AddrMode.BaseGV == 0) {
      AddrMode.BaseGV = GV;
      if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
        return true;
      AddrMode.BaseGV = 0;
    }
  } else if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
    AddrMode.BaseOffs += CI->getSExtValue();
    if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
      return true;
    AddrMode.BaseOffs -= CI->getSExtValue();
  } else if (isa<ConstantPointerNull>(Addr)) {
    return true;
  }
  
  // Look through constant exprs and instructions.
  unsigned Opcode = ~0U;
  User *AddrInst = 0;
  if (Instruction *I = dyn_cast<Instruction>(Addr)) {
    Opcode = I->getOpcode();
    AddrInst = I;
  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
    Opcode = CE->getOpcode();
    AddrInst = CE;
  }

  // Limit recursion to avoid exponential behavior.
  if (Depth == 5) { AddrInst = 0; Opcode = ~0U; }

  // If this is really an instruction, add it to our list of related
  // instructions.
  if (Instruction *I = dyn_cast_or_null<Instruction>(AddrInst))
    AddrModeInsts.push_back(I);

  switch (Opcode) {
  case Instruction::PtrToInt:
    // PtrToInt is always a noop, as we know that the int type is pointer sized.
    if (FindMaximalLegalAddressingMode(AddrInst->getOperand(0), AccessTy,
                                       AddrMode, AddrModeInsts, TLI, Depth))
      return true;
    break;
  case Instruction::IntToPtr:
    // This inttoptr is a no-op if the integer type is pointer sized.
    if (TLI.getValueType(AddrInst->getOperand(0)->getType()) ==
        TLI.getPointerTy()) {
      if (FindMaximalLegalAddressingMode(AddrInst->getOperand(0), AccessTy,
                                         AddrMode, AddrModeInsts, TLI, Depth))
        return true;
    }
    break;
  case Instruction::Add: {
    // Check to see if we can merge in the RHS then the LHS.  If so, we win.
    ExtAddrMode BackupAddrMode = AddrMode;
    unsigned OldSize = AddrModeInsts.size();
    if (FindMaximalLegalAddressingMode(AddrInst->getOperand(1), AccessTy,
                                       AddrMode, AddrModeInsts, TLI, Depth+1) &&
        FindMaximalLegalAddressingMode(AddrInst->getOperand(0), AccessTy,
                                       AddrMode, AddrModeInsts, TLI, Depth+1))
      return true;

    // Restore the old addr mode info.
    AddrMode = BackupAddrMode;
    AddrModeInsts.resize(OldSize);
    
    // Otherwise this was over-aggressive.  Try merging in the LHS then the RHS.
    if (FindMaximalLegalAddressingMode(AddrInst->getOperand(0), AccessTy,
                                       AddrMode, AddrModeInsts, TLI, Depth+1) &&
        FindMaximalLegalAddressingMode(AddrInst->getOperand(1), AccessTy,
                                       AddrMode, AddrModeInsts, TLI, Depth+1))
      return true;
    
    // Otherwise we definitely can't merge the ADD in.
    AddrMode = BackupAddrMode;
    AddrModeInsts.resize(OldSize);
    break;    
  }
  case Instruction::Or: {
    ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
    if (!RHS) break;
    // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
    break;
  }
  case Instruction::Mul:
  case Instruction::Shl: {
    // Can only handle X*C and X << C, and can only handle this when the scale
    // field is available.
    ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
    if (!RHS) break;
    int64_t Scale = RHS->getSExtValue();
    if (Opcode == Instruction::Shl)
      Scale = 1 << Scale;
    
    if (TryMatchingScaledValue(AddrInst->getOperand(0), Scale, AccessTy,
                               AddrMode, AddrModeInsts, TLI, Depth))
      return true;
    break;
  }
  case Instruction::GetElementPtr: {
    // Scan the GEP.  We check it if it contains constant offsets and at most
    // one variable offset.
    int VariableOperand = -1;
    unsigned VariableScale = 0;
    
    int64_t ConstantOffset = 0;
    const TargetData *TD = TLI.getTargetData();
    gep_type_iterator GTI = gep_type_begin(AddrInst);
    for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
      if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
        const StructLayout *SL = TD->getStructLayout(STy);
        unsigned Idx =
          cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
        ConstantOffset += SL->getElementOffset(Idx);
      } else {
        uint64_t TypeSize = TD->getTypeSize(GTI.getIndexedType());
        if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
          ConstantOffset += CI->getSExtValue()*TypeSize;
        } else if (TypeSize) {  // Scales of zero don't do anything.
          // We only allow one variable index at the moment.
          if (VariableOperand != -1) {
            VariableOperand = -2;
            break;
          }
          
          // Remember the variable index.
          VariableOperand = i;
          VariableScale = TypeSize;
        }
      }
    }

    // If the GEP had multiple variable indices, punt.
    if (VariableOperand == -2)
      break;

    // A common case is for the GEP to only do a constant offset.  In this case,
    // just add it to the disp field and check validity.
    if (VariableOperand == -1) {
      AddrMode.BaseOffs += ConstantOffset;
      if (ConstantOffset == 0 || TLI.isLegalAddressingMode(AddrMode, AccessTy)){
        // Check to see if we can fold the base pointer in too.
        if (FindMaximalLegalAddressingMode(AddrInst->getOperand(0), AccessTy,
                                           AddrMode, AddrModeInsts, TLI,
                                           Depth+1))
          return true;
      }
      AddrMode.BaseOffs -= ConstantOffset;
    } else {
      // Check that this has no base reg yet.  If so, we won't have a place to
      // put the base of the GEP (assuming it is not a null ptr).
      bool SetBaseReg = false;
      if (AddrMode.HasBaseReg) {
        if (!isa<ConstantPointerNull>(AddrInst->getOperand(0)))
          break;
      } else {
        AddrMode.HasBaseReg = true;
        AddrMode.BaseReg = AddrInst->getOperand(0);
        SetBaseReg = true;
      }
      
      // See if the scale amount is valid for this target.
      AddrMode.BaseOffs += ConstantOffset;
      if (TryMatchingScaledValue(AddrInst->getOperand(VariableOperand),
                                 VariableScale, AccessTy, AddrMode, 
                                 AddrModeInsts, TLI, Depth)) {
        if (!SetBaseReg) return true;

        // If this match succeeded, we know that we can form an address with the
        // GepBase as the basereg.  See if we can match *more*.
        AddrMode.HasBaseReg = false;
        AddrMode.BaseReg = 0;
        if (FindMaximalLegalAddressingMode(AddrInst->getOperand(0), AccessTy,
                                           AddrMode, AddrModeInsts, TLI,
                                           Depth+1))
          return true;
        // Strange, shouldn't happen.  Restore the base reg and succeed the easy
        // way.        
        AddrMode.HasBaseReg = true;
        AddrMode.BaseReg = AddrInst->getOperand(0);
        return true;
      }
      
      AddrMode.BaseOffs -= ConstantOffset;
      if (SetBaseReg) {
        AddrMode.HasBaseReg = false;
        AddrMode.BaseReg = 0;
      }
    }
    break;    
  }
  }
  
  if (Instruction *I = dyn_cast_or_null<Instruction>(AddrInst)) {
    assert(AddrModeInsts.back() == I && "Stack imbalance");
    AddrModeInsts.pop_back();
  }
  
  // Worse case, the target should support [reg] addressing modes. :)
  if (!AddrMode.HasBaseReg) {
    AddrMode.HasBaseReg = true;
    // Still check for legality in case the target supports [imm] but not [i+r].
    if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) {
      AddrMode.BaseReg = Addr;
      return true;
    }
    AddrMode.HasBaseReg = false;
  }
  
  // If the base register is already taken, see if we can do [r+r].
  if (AddrMode.Scale == 0) {
    AddrMode.Scale = 1;
    if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) {
      AddrMode.ScaledReg = Addr;
      return true;
    }
    AddrMode.Scale = 0;
  }
  // Couldn't match.
  return false;
}

/// TryMatchingScaledValue - Try adding ScaleReg*Scale to the specified
/// addressing mode.  Return true if this addr mode is legal for the target,
/// false if not.
static bool TryMatchingScaledValue(Value *ScaleReg, int64_t Scale,
                                   const Type *AccessTy, ExtAddrMode &AddrMode,
                                   SmallVector<Instruction*, 16> &AddrModeInsts,
                                   const TargetLowering &TLI, unsigned Depth) {
  // If we already have a scale of this value, we can add to it, otherwise, we
  // need an available scale field.
  if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
    return false;
  
  ExtAddrMode InputAddrMode = AddrMode;
  
  // Add scale to turn X*4+X*3 -> X*7.  This could also do things like
  // [A+B + A*7] -> [B+A*8].
  AddrMode.Scale += Scale;
  AddrMode.ScaledReg = ScaleReg;
  
  if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) {
    // Okay, we decided that we can add ScaleReg+Scale to AddrMode.  Check now
    // to see if ScaleReg is actually X+C.  If so, we can turn this into adding
    // X*Scale + C*Scale to addr mode.
    BinaryOperator *BinOp = dyn_cast<BinaryOperator>(ScaleReg);
    if (BinOp && BinOp->getOpcode() == Instruction::Add &&
        isa<ConstantInt>(BinOp->getOperand(1)) && InputAddrMode.ScaledReg ==0) {
      
      InputAddrMode.Scale = Scale;
      InputAddrMode.ScaledReg = BinOp->getOperand(0);
      InputAddrMode.BaseOffs += 
        cast<ConstantInt>(BinOp->getOperand(1))->getSExtValue()*Scale;
      if (TLI.isLegalAddressingMode(InputAddrMode, AccessTy)) {
        AddrModeInsts.push_back(BinOp);
        AddrMode = InputAddrMode;
        return true;
      }
    }

    // Otherwise, not (x+c)*scale, just return what we have.
    return true;
  }
  
  // Otherwise, back this attempt out.
  AddrMode.Scale -= Scale;
  if (AddrMode.Scale == 0) AddrMode.ScaledReg = 0;
  
  return false;
}


/// IsNonLocalValue - Return true if the specified values are defined in a
/// different basic block than BB.
static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
  if (Instruction *I = dyn_cast<Instruction>(V))
    return I->getParent() != BB;
  return false;
}

/// OptimizeLoadStoreInst - Load and Store Instructions have often have
/// addressing modes that can do significant amounts of computation.  As such,
/// instruction selection will try to get the load or store to do as much
/// computation as possible for the program.  The problem is that isel can only
/// see within a single block.  As such, we sink as much legal addressing mode
/// stuff into the block as possible.
bool CodeGenPrepare::OptimizeLoadStoreInst(Instruction *LdStInst, Value *Addr,
                                           const Type *AccessTy,
                                           DenseMap<Value*,Value*> &SunkAddrs) {
  // Figure out what addressing mode will be built up for this operation.
  SmallVector<Instruction*, 16> AddrModeInsts;
  ExtAddrMode AddrMode;
  bool Success = FindMaximalLegalAddressingMode(Addr, AccessTy, AddrMode,
                                                AddrModeInsts, *TLI, 0);
  Success = Success; assert(Success && "Couldn't select *anything*?");
  
  // Check to see if any of the instructions supersumed by this addr mode are
  // non-local to I's BB.
  bool AnyNonLocal = false;
  for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) {
    if (IsNonLocalValue(AddrModeInsts[i], LdStInst->getParent())) {
      AnyNonLocal = true;
      break;
    }
  }
  
  // If all the instructions matched are already in this BB, don't do anything.
  if (!AnyNonLocal) {
    DEBUG(cerr << "CGP: Found      local addrmode: " << AddrMode << "\n");
    return false;
  }
  
  // Insert this computation right after this user.  Since our caller is
  // scanning from the top of the BB to the bottom, reuse of the expr are
  // guaranteed to happen later.
  BasicBlock::iterator InsertPt = LdStInst;
  
  // Now that we determined the addressing expression we want to use and know
  // that we have to sink it into this block.  Check to see if we have already
  // done this for some other load/store instr in this block.  If so, reuse the
  // computation.
  Value *&SunkAddr = SunkAddrs[Addr];
  if (SunkAddr) {
    DEBUG(cerr << "CGP: Reusing nonlocal addrmode: " << AddrMode << "\n");
    if (SunkAddr->getType() != Addr->getType())
      SunkAddr = new BitCastInst(SunkAddr, Addr->getType(), "tmp", InsertPt);
  } else {
    DEBUG(cerr << "CGP: SINKING nonlocal addrmode: " << AddrMode << "\n");
    const Type *IntPtrTy = TLI->getTargetData()->getIntPtrType();
    
    Value *Result = 0;
    // Start with the scale value.
    if (AddrMode.Scale) {
      Value *V = AddrMode.ScaledReg;
      if (V->getType() == IntPtrTy) {
        // done.
      } else if (isa<PointerType>(V->getType())) {
        V = new PtrToIntInst(V, IntPtrTy, "sunkaddr", InsertPt);
      } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
                 cast<IntegerType>(V->getType())->getBitWidth()) {
        V = new TruncInst(V, IntPtrTy, "sunkaddr", InsertPt);
      } else {
        V = new SExtInst(V, IntPtrTy, "sunkaddr", InsertPt);
      }
      if (AddrMode.Scale != 1)
        V = BinaryOperator::createMul(V, ConstantInt::get(IntPtrTy,
                                                          AddrMode.Scale),
                                      "sunkaddr", InsertPt);
      Result = V;
    }

    // Add in the base register.
    if (AddrMode.BaseReg) {
      Value *V = AddrMode.BaseReg;
      if (V->getType() != IntPtrTy)
        V = new PtrToIntInst(V, IntPtrTy, "sunkaddr", InsertPt);
      if (Result)
        Result = BinaryOperator::createAdd(Result, V, "sunkaddr", InsertPt);
      else
        Result = V;
    }
    
    // Add in the BaseGV if present.
    if (AddrMode.BaseGV) {
      Value *V = new PtrToIntInst(AddrMode.BaseGV, IntPtrTy, "sunkaddr",
                                  InsertPt);
      if (Result)
        Result = BinaryOperator::createAdd(Result, V, "sunkaddr", InsertPt);
      else
        Result = V;
    }
    
    // Add in the Base Offset if present.
    if (AddrMode.BaseOffs) {
      Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
      if (Result)
        Result = BinaryOperator::createAdd(Result, V, "sunkaddr", InsertPt);
      else
        Result = V;
    }

    if (Result == 0)
      SunkAddr = Constant::getNullValue(Addr->getType());
    else
      SunkAddr = new IntToPtrInst(Result, Addr->getType(), "sunkaddr",InsertPt);
  }
  
  LdStInst->replaceUsesOfWith(Addr, SunkAddr);
  
  if (Addr->use_empty())
    EraseDeadInstructions(Addr);
  return true;
}

// In this pass we look for GEP and cast instructions that are used
// across basic blocks and rewrite them to improve basic-block-at-a-time
// selection.
bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB) {
  bool MadeChange = false;
  
  // Split all critical edges where the dest block has a PHI and where the phi
  // has shared immediate operands.
  TerminatorInst *BBTI = BB.getTerminator();
  if (BBTI->getNumSuccessors() > 1) {
    for (unsigned i = 0, e = BBTI->getNumSuccessors(); i != e; ++i)
      if (isa<PHINode>(BBTI->getSuccessor(i)->begin()) &&
          isCriticalEdge(BBTI, i, true))
        SplitEdgeNicely(BBTI, i, this);
  }
  
  
  // Keep track of non-local addresses that have been sunk into this block.
  // This allows us to avoid inserting duplicate code for blocks with multiple
  // load/stores of the same address.
  DenseMap<Value*, Value*> SunkAddrs;
  
  for (BasicBlock::iterator BBI = BB.begin(), E = BB.end(); BBI != E; ) {
    Instruction *I = BBI++;
    
    if (CastInst *CI = dyn_cast<CastInst>(I)) {
      // If the source of the cast is a constant, then this should have
      // already been constant folded.  The only reason NOT to constant fold
      // it is if something (e.g. LSR) was careful to place the constant
      // evaluation in a block other than then one that uses it (e.g. to hoist
      // the address of globals out of a loop).  If this is the case, we don't
      // want to forward-subst the cast.
      if (isa<Constant>(CI->getOperand(0)))
        continue;
      
      if (TLI)
        MadeChange |= OptimizeNoopCopyExpression(CI, *TLI);
    } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
      if (TLI)
        MadeChange |= OptimizeLoadStoreInst(I, I->getOperand(0), LI->getType(),
                                            SunkAddrs);
    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
      if (TLI)
        MadeChange |= OptimizeLoadStoreInst(I, SI->getOperand(1),
                                            SI->getOperand(0)->getType(),
                                            SunkAddrs);
    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
      if (GEPI->hasAllZeroIndices()) {
        /// The GEP operand must be a pointer, so must its result -> BitCast
        Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 
                                          GEPI->getName(), GEPI);
        GEPI->replaceAllUsesWith(NC);
        GEPI->eraseFromParent();
        MadeChange = true;
        BBI = NC;
      }
    } else if (CallInst *CI = dyn_cast<CallInst>(I)) {
      // If we found an inline asm expession, and if the target knows how to
      // lower it to normal LLVM code, do so now.
      if (TLI && isa<InlineAsm>(CI->getCalledValue()))
        if (const TargetAsmInfo *TAI = 
            TLI->getTargetMachine().getTargetAsmInfo()) {
          if (TAI->ExpandInlineAsm(CI))
            BBI = BB.begin();
        }
    }
  }
    
  return MadeChange;
}