summaryrefslogtreecommitdiff
path: root/lib/Transforms/Scalar/CondPropagate.cpp
blob: c1dd9edba944bcfe280d9914737cd2773290d9ce (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
//===-- CondPropagate.cpp - Propagate Conditional Expressions -------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass propagates information about conditional expressions through the
// program, allowing it to eliminate conditional branches in some cases.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "condprop"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Constants.h"
#include "llvm/Function.h"
#include "llvm/Instructions.h"
#include "llvm/Pass.h"
#include "llvm/Type.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Streams.h"
using namespace llvm;

STATISTIC(NumBrThread, "Number of CFG edges threaded through branches");
STATISTIC(NumSwThread, "Number of CFG edges threaded through switches");

namespace {
  struct VISIBILITY_HIDDEN CondProp : public FunctionPass {
    static const char ID; // Pass identifcation, replacement for typeid
    CondProp() : FunctionPass((intptr_t)&ID) {}

    virtual bool runOnFunction(Function &F);

    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.addRequiredID(BreakCriticalEdgesID);
      //AU.addRequired<DominanceFrontier>();
    }

  private:
    bool MadeChange;
    void SimplifyBlock(BasicBlock *BB);
    void SimplifyPredecessors(BranchInst *BI);
    void SimplifyPredecessors(SwitchInst *SI);
    void RevectorBlockTo(BasicBlock *FromBB, BasicBlock *ToBB);
  };
  
  const char CondProp::ID = 0;
  RegisterPass<CondProp> X("condprop", "Conditional Propagation");
}

FunctionPass *llvm::createCondPropagationPass() {
  return new CondProp();
}

bool CondProp::runOnFunction(Function &F) {
  bool EverMadeChange = false;

  // While we are simplifying blocks, keep iterating.
  do {
    MadeChange = false;
    for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
      SimplifyBlock(BB);
    EverMadeChange = MadeChange;
  } while (MadeChange);
  return EverMadeChange;
}

void CondProp::SimplifyBlock(BasicBlock *BB) {
  if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
    // If this is a conditional branch based on a phi node that is defined in
    // this block, see if we can simplify predecessors of this block.
    if (BI->isConditional() && isa<PHINode>(BI->getCondition()) &&
        cast<PHINode>(BI->getCondition())->getParent() == BB)
      SimplifyPredecessors(BI);

  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
    if (isa<PHINode>(SI->getCondition()) &&
        cast<PHINode>(SI->getCondition())->getParent() == BB)
      SimplifyPredecessors(SI);
  }

  // If possible, simplify the terminator of this block.
  if (ConstantFoldTerminator(BB))
    MadeChange = true;

  // If this block ends with an unconditional branch and the only successor has
  // only this block as a predecessor, merge the two blocks together.
  if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
    if (BI->isUnconditional() && BI->getSuccessor(0)->getSinglePredecessor() &&
        BB != BI->getSuccessor(0)) {
      BasicBlock *Succ = BI->getSuccessor(0);
      
      // If Succ has any PHI nodes, they are all single-entry PHI's.
      while (PHINode *PN = dyn_cast<PHINode>(Succ->begin())) {
        assert(PN->getNumIncomingValues() == 1 &&
               "PHI doesn't match parent block");
        PN->replaceAllUsesWith(PN->getIncomingValue(0));
        PN->eraseFromParent();
      }
      
      // Remove BI.
      BI->eraseFromParent();

      // Move over all of the instructions.
      BB->getInstList().splice(BB->end(), Succ->getInstList());

      // Any phi nodes that had entries for Succ now have entries from BB.
      Succ->replaceAllUsesWith(BB);

      // Succ is now dead, but we cannot delete it without potentially
      // invalidating iterators elsewhere.  Just insert an unreachable
      // instruction in it.
      new UnreachableInst(Succ);
      MadeChange = true;
    }
}

// SimplifyPredecessors(branches) - We know that BI is a conditional branch
// based on a PHI node defined in this block.  If the phi node contains constant
// operands, then the blocks corresponding to those operands can be modified to
// jump directly to the destination instead of going through this block.
void CondProp::SimplifyPredecessors(BranchInst *BI) {
  // TODO: We currently only handle the most trival case, where the PHI node has
  // one use (the branch), and is the only instruction besides the branch in the
  // block.
  PHINode *PN = cast<PHINode>(BI->getCondition());
  if (!PN->hasOneUse()) return;

  BasicBlock *BB = BI->getParent();
  if (&*BB->begin() != PN || &*next(BB->begin()) != BI)
    return;

  // Ok, we have this really simple case, walk the PHI operands, looking for
  // constants.  Walk from the end to remove operands from the end when
  // possible, and to avoid invalidating "i".
  for (unsigned i = PN->getNumIncomingValues(); i != 0; --i)
    if (ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i-1))) {
      // If we have a constant, forward the edge from its current to its
      // ultimate destination.
      bool PHIGone = PN->getNumIncomingValues() == 2;
      RevectorBlockTo(PN->getIncomingBlock(i-1),
                      BI->getSuccessor(CB->isZero()));
      ++NumBrThread;

      // If there were two predecessors before this simplification, the PHI node
      // will be deleted.  Don't iterate through it the last time.
      if (PHIGone) return;
    }
}

// SimplifyPredecessors(switch) - We know that SI is switch based on a PHI node
// defined in this block.  If the phi node contains constant operands, then the
// blocks corresponding to those operands can be modified to jump directly to
// the destination instead of going through this block.
void CondProp::SimplifyPredecessors(SwitchInst *SI) {
  // TODO: We currently only handle the most trival case, where the PHI node has
  // one use (the branch), and is the only instruction besides the branch in the
  // block.
  PHINode *PN = cast<PHINode>(SI->getCondition());
  if (!PN->hasOneUse()) return;

  BasicBlock *BB = SI->getParent();
  if (&*BB->begin() != PN || &*next(BB->begin()) != SI)
    return;

  bool RemovedPreds = false;

  // Ok, we have this really simple case, walk the PHI operands, looking for
  // constants.  Walk from the end to remove operands from the end when
  // possible, and to avoid invalidating "i".
  for (unsigned i = PN->getNumIncomingValues(); i != 0; --i)
    if (ConstantInt *CI = dyn_cast<ConstantInt>(PN->getIncomingValue(i-1))) {
      // If we have a constant, forward the edge from its current to its
      // ultimate destination.
      bool PHIGone = PN->getNumIncomingValues() == 2;
      unsigned DestCase = SI->findCaseValue(CI);
      RevectorBlockTo(PN->getIncomingBlock(i-1),
                      SI->getSuccessor(DestCase));
      ++NumSwThread;
      RemovedPreds = true;

      // If there were two predecessors before this simplification, the PHI node
      // will be deleted.  Don't iterate through it the last time.
      if (PHIGone) return;
    }
}


// RevectorBlockTo - Revector the unconditional branch at the end of FromBB to
// the ToBB block, which is one of the successors of its current successor.
void CondProp::RevectorBlockTo(BasicBlock *FromBB, BasicBlock *ToBB) {
  BranchInst *FromBr = cast<BranchInst>(FromBB->getTerminator());
  assert(FromBr->isUnconditional() && "FromBB should end with uncond br!");

  // Get the old block we are threading through.
  BasicBlock *OldSucc = FromBr->getSuccessor(0);

  // OldSucc had multiple successors. If ToBB has multiple predecessors, then 
  // the edge between them would be critical, which we already took care of.
  // If ToBB has single operand PHI node then take care of it here.
  while (PHINode *PN = dyn_cast<PHINode>(ToBB->begin())) {
    assert(PN->getNumIncomingValues() == 1 && "Critical Edge Found!");    
    PN->replaceAllUsesWith(PN->getIncomingValue(0));
    PN->eraseFromParent();
  }

  // Update PHI nodes in OldSucc to know that FromBB no longer branches to it.
  OldSucc->removePredecessor(FromBB);

  // Change FromBr to branch to the new destination.
  FromBr->setSuccessor(0, ToBB);

  MadeChange = true;
}