summaryrefslogtreecommitdiff
path: root/lib/Transforms/Scalar/CorrelatedValuePropagation.cpp
blob: 4c3631b27009d8e115e73fc281d55b23d763decf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
//===- CorrelatedValuePropagation.cpp - Propagate CFG-derived info --------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Correlated Value Propagation pass.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "correlated-value-propagation"
#include "llvm/Transforms/Scalar.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LazyValueInfo.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/Pass.h"
#include "llvm/Support/CFG.h"
#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;

STATISTIC(NumPhis,      "Number of phis propagated");
STATISTIC(NumSelects,   "Number of selects propagated");
STATISTIC(NumMemAccess, "Number of memory access targets propagated");
STATISTIC(NumCmps,      "Number of comparisons propagated");
STATISTIC(NumDeadCases, "Number of switch cases removed");

namespace {
  class CorrelatedValuePropagation : public FunctionPass {
    LazyValueInfo *LVI;

    bool processSelect(SelectInst *SI);
    bool processPHI(PHINode *P);
    bool processMemAccess(Instruction *I);
    bool processCmp(CmpInst *C);
    bool processSwitch(SwitchInst *SI);

  public:
    static char ID;
    CorrelatedValuePropagation(): FunctionPass(ID) {
     initializeCorrelatedValuePropagationPass(*PassRegistry::getPassRegistry());
    }

    bool runOnFunction(Function &F);

    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.addRequired<LazyValueInfo>();
    }
  };
}

char CorrelatedValuePropagation::ID = 0;
INITIALIZE_PASS_BEGIN(CorrelatedValuePropagation, "correlated-propagation",
                "Value Propagation", false, false)
INITIALIZE_PASS_DEPENDENCY(LazyValueInfo)
INITIALIZE_PASS_END(CorrelatedValuePropagation, "correlated-propagation",
                "Value Propagation", false, false)

// Public interface to the Value Propagation pass
Pass *llvm::createCorrelatedValuePropagationPass() {
  return new CorrelatedValuePropagation();
}

bool CorrelatedValuePropagation::processSelect(SelectInst *S) {
  if (S->getType()->isVectorTy()) return false;
  if (isa<Constant>(S->getOperand(0))) return false;

  Constant *C = LVI->getConstant(S->getOperand(0), S->getParent());
  if (!C) return false;

  ConstantInt *CI = dyn_cast<ConstantInt>(C);
  if (!CI) return false;

  Value *ReplaceWith = S->getOperand(1);
  Value *Other = S->getOperand(2);
  if (!CI->isOne()) std::swap(ReplaceWith, Other);
  if (ReplaceWith == S) ReplaceWith = UndefValue::get(S->getType());

  S->replaceAllUsesWith(ReplaceWith);
  S->eraseFromParent();

  ++NumSelects;

  return true;
}

bool CorrelatedValuePropagation::processPHI(PHINode *P) {
  bool Changed = false;

  BasicBlock *BB = P->getParent();
  for (unsigned i = 0, e = P->getNumIncomingValues(); i < e; ++i) {
    Value *Incoming = P->getIncomingValue(i);
    if (isa<Constant>(Incoming)) continue;

    Constant *C = LVI->getConstantOnEdge(P->getIncomingValue(i),
                                         P->getIncomingBlock(i),
                                         BB);
    if (!C) continue;

    P->setIncomingValue(i, C);
    Changed = true;
  }

  if (Value *V = SimplifyInstruction(P)) {
    P->replaceAllUsesWith(V);
    P->eraseFromParent();
    Changed = true;
  }

  if (Changed)
    ++NumPhis;

  return Changed;
}

bool CorrelatedValuePropagation::processMemAccess(Instruction *I) {
  Value *Pointer = 0;
  if (LoadInst *L = dyn_cast<LoadInst>(I))
    Pointer = L->getPointerOperand();
  else
    Pointer = cast<StoreInst>(I)->getPointerOperand();

  if (isa<Constant>(Pointer)) return false;

  Constant *C = LVI->getConstant(Pointer, I->getParent());
  if (!C) return false;

  ++NumMemAccess;
  I->replaceUsesOfWith(Pointer, C);
  return true;
}

/// processCmp - If the value of this comparison could be determined locally,
/// constant propagation would already have figured it out.  Instead, walk
/// the predecessors and statically evaluate the comparison based on information
/// available on that edge.  If a given static evaluation is true on ALL
/// incoming edges, then it's true universally and we can simplify the compare.
bool CorrelatedValuePropagation::processCmp(CmpInst *C) {
  Value *Op0 = C->getOperand(0);
  if (isa<Instruction>(Op0) &&
      cast<Instruction>(Op0)->getParent() == C->getParent())
    return false;

  Constant *Op1 = dyn_cast<Constant>(C->getOperand(1));
  if (!Op1) return false;

  pred_iterator PI = pred_begin(C->getParent()), PE = pred_end(C->getParent());
  if (PI == PE) return false;

  LazyValueInfo::Tristate Result = LVI->getPredicateOnEdge(C->getPredicate(),
                                    C->getOperand(0), Op1, *PI, C->getParent());
  if (Result == LazyValueInfo::Unknown) return false;

  ++PI;
  while (PI != PE) {
    LazyValueInfo::Tristate Res = LVI->getPredicateOnEdge(C->getPredicate(),
                                    C->getOperand(0), Op1, *PI, C->getParent());
    if (Res != Result) return false;
    ++PI;
  }

  ++NumCmps;

  if (Result == LazyValueInfo::True)
    C->replaceAllUsesWith(ConstantInt::getTrue(C->getContext()));
  else
    C->replaceAllUsesWith(ConstantInt::getFalse(C->getContext()));

  C->eraseFromParent();

  return true;
}

/// processSwitch - Simplify a switch instruction by removing cases which can
/// never fire.  If the uselessness of a case could be determined locally then
/// constant propagation would already have figured it out.  Instead, walk the
/// predecessors and statically evaluate cases based on information available
/// on that edge.  Cases that cannot fire no matter what the incoming edge can
/// safely be removed.  If a case fires on every incoming edge then the entire
/// switch can be removed and replaced with a branch to the case destination.
bool CorrelatedValuePropagation::processSwitch(SwitchInst *SI) {
  Value *Cond = SI->getCondition();
  BasicBlock *BB = SI->getParent();

  // If the condition was defined in same block as the switch then LazyValueInfo
  // currently won't say anything useful about it, though in theory it could.
  if (isa<Instruction>(Cond) && cast<Instruction>(Cond)->getParent() == BB)
    return false;

  // If the switch is unreachable then trying to improve it is a waste of time.
  pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
  if (PB == PE) return false;

  // Analyse each switch case in turn.  This is done in reverse order so that
  // removing a case doesn't cause trouble for the iteration.
  bool Changed = false;
  for (SwitchInst::CaseIt CI = SI->case_end(), CE = SI->case_begin(); CI-- != CE;
       ) {
    ConstantInt *Case = CI.getCaseValue();

    // Check to see if the switch condition is equal to/not equal to the case
    // value on every incoming edge, equal/not equal being the same each time.
    LazyValueInfo::Tristate State = LazyValueInfo::Unknown;
    for (pred_iterator PI = PB; PI != PE; ++PI) {
      // Is the switch condition equal to the case value?
      LazyValueInfo::Tristate Value = LVI->getPredicateOnEdge(CmpInst::ICMP_EQ,
                                                              Cond, Case, *PI, BB);
      // Give up on this case if nothing is known.
      if (Value == LazyValueInfo::Unknown) {
        State = LazyValueInfo::Unknown;
        break;
      }

      // If this was the first edge to be visited, record that all other edges
      // need to give the same result.
      if (PI == PB) {
        State = Value;
        continue;
      }

      // If this case is known to fire for some edges and known not to fire for
      // others then there is nothing we can do - give up.
      if (Value != State) {
        State = LazyValueInfo::Unknown;
        break;
      }
    }

    if (State == LazyValueInfo::False) {
      // This case never fires - remove it.
      CI.getCaseSuccessor()->removePredecessor(BB);
      SI->removeCase(CI); // Does not invalidate the iterator.

      // The condition can be modified by removePredecessor's PHI simplification
      // logic.
      Cond = SI->getCondition();

      ++NumDeadCases;
      Changed = true;
    } else if (State == LazyValueInfo::True) {
      // This case always fires.  Arrange for the switch to be turned into an
      // unconditional branch by replacing the switch condition with the case
      // value.
      SI->setCondition(Case);
      NumDeadCases += SI->getNumCases();
      Changed = true;
      break;
    }
  }

  if (Changed)
    // If the switch has been simplified to the point where it can be replaced
    // by a branch then do so now.
    ConstantFoldTerminator(BB);

  return Changed;
}

bool CorrelatedValuePropagation::runOnFunction(Function &F) {
  LVI = &getAnalysis<LazyValueInfo>();

  bool FnChanged = false;

  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) {
    bool BBChanged = false;
    for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); BI != BE; ) {
      Instruction *II = BI++;
      switch (II->getOpcode()) {
      case Instruction::Select:
        BBChanged |= processSelect(cast<SelectInst>(II));
        break;
      case Instruction::PHI:
        BBChanged |= processPHI(cast<PHINode>(II));
        break;
      case Instruction::ICmp:
      case Instruction::FCmp:
        BBChanged |= processCmp(cast<CmpInst>(II));
        break;
      case Instruction::Load:
      case Instruction::Store:
        BBChanged |= processMemAccess(II);
        break;
      }
    }

    Instruction *Term = FI->getTerminator();
    switch (Term->getOpcode()) {
    case Instruction::Switch:
      BBChanged |= processSwitch(cast<SwitchInst>(Term));
      break;
    }

    FnChanged |= BBChanged;
  }

  return FnChanged;
}