summaryrefslogtreecommitdiff
path: root/lib/Transforms/Scalar/LoopRerollPass.cpp
blob: 1cd346f790b4e12fc3117aa20bd544eb9f27b8de (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
//===-- LoopReroll.cpp - Loop rerolling pass ------------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass implements a simple loop reroller.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "loop-reroll"
#include "llvm/Transforms/Scalar.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AliasSetTracker.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetLibraryInfo.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/LoopUtils.h"

using namespace llvm;

STATISTIC(NumRerolledLoops, "Number of rerolled loops");

static cl::opt<unsigned>
MaxInc("max-reroll-increment", cl::init(2048), cl::Hidden,
  cl::desc("The maximum increment for loop rerolling"));

// This loop re-rolling transformation aims to transform loops like this:
//
// int foo(int a);
// void bar(int *x) {
//   for (int i = 0; i < 500; i += 3) {
//     foo(i);
//     foo(i+1);
//     foo(i+2);
//   }
// }
//
// into a loop like this:
//
// void bar(int *x) {
//   for (int i = 0; i < 500; ++i)
//     foo(i);
// }
//
// It does this by looking for loops that, besides the latch code, are composed
// of isomorphic DAGs of instructions, with each DAG rooted at some increment
// to the induction variable, and where each DAG is isomorphic to the DAG
// rooted at the induction variable (excepting the sub-DAGs which root the
// other induction-variable increments). In other words, we're looking for loop
// bodies of the form:
//
// %iv = phi [ (preheader, ...), (body, %iv.next) ]
// f(%iv)
// %iv.1 = add %iv, 1                <-- a root increment
// f(%iv.1)
// %iv.2 = add %iv, 2                <-- a root increment
// f(%iv.2)
// %iv.scale_m_1 = add %iv, scale-1  <-- a root increment
// f(%iv.scale_m_1)
// ...
// %iv.next = add %iv, scale
// %cmp = icmp(%iv, ...)
// br %cmp, header, exit
//
// where each f(i) is a set of instructions that, collectively, are a function
// only of i (and other loop-invariant values).
//
// As a special case, we can also reroll loops like this:
//
// int foo(int);
// void bar(int *x) {
//   for (int i = 0; i < 500; ++i) {
//     x[3*i] = foo(0);
//     x[3*i+1] = foo(0);
//     x[3*i+2] = foo(0);
//   }
// }
//
// into this:
//
// void bar(int *x) {
//   for (int i = 0; i < 1500; ++i)
//     x[i] = foo(0);
// }
//
// in which case, we're looking for inputs like this:
//
// %iv = phi [ (preheader, ...), (body, %iv.next) ]
// %scaled.iv = mul %iv, scale
// f(%scaled.iv)
// %scaled.iv.1 = add %scaled.iv, 1
// f(%scaled.iv.1)
// %scaled.iv.2 = add %scaled.iv, 2
// f(%scaled.iv.2)
// %scaled.iv.scale_m_1 = add %scaled.iv, scale-1
// f(%scaled.iv.scale_m_1)
// ...
// %iv.next = add %iv, 1
// %cmp = icmp(%iv, ...)
// br %cmp, header, exit

namespace {
  class LoopReroll : public LoopPass {
  public:
    static char ID; // Pass ID, replacement for typeid
    LoopReroll() : LoopPass(ID) {
      initializeLoopRerollPass(*PassRegistry::getPassRegistry());
    }

    bool runOnLoop(Loop *L, LPPassManager &LPM);

    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.addRequired<AliasAnalysis>();
      AU.addRequired<LoopInfo>();
      AU.addPreserved<LoopInfo>();
      AU.addRequired<DominatorTreeWrapperPass>();
      AU.addPreserved<DominatorTreeWrapperPass>();
      AU.addRequired<ScalarEvolution>();
      AU.addRequired<TargetLibraryInfo>();
    }

protected:
    AliasAnalysis *AA;
    LoopInfo *LI;
    ScalarEvolution *SE;
    const DataLayout *DL;
    TargetLibraryInfo *TLI;
    DominatorTree *DT;

    typedef SmallVector<Instruction *, 16> SmallInstructionVector;
    typedef SmallSet<Instruction *, 16>   SmallInstructionSet;

    // A chain of isomorphic instructions, indentified by a single-use PHI,
    // representing a reduction. Only the last value may be used outside the
    // loop.
    struct SimpleLoopReduction {
      SimpleLoopReduction(Instruction *P, Loop *L)
        : Valid(false), Instructions(1, P) {
        assert(isa<PHINode>(P) && "First reduction instruction must be a PHI");
        add(L);
      }

      bool valid() const {
        return Valid;
      }

      Instruction *getPHI() const {
        assert(Valid && "Using invalid reduction");
        return Instructions.front();
      }

      Instruction *getReducedValue() const {
        assert(Valid && "Using invalid reduction");
        return Instructions.back();
      }

      Instruction *get(size_t i) const {
        assert(Valid && "Using invalid reduction");
        return Instructions[i+1];
      }

      Instruction *operator [] (size_t i) const { return get(i); }

      // The size, ignoring the initial PHI.
      size_t size() const {
        assert(Valid && "Using invalid reduction");
        return Instructions.size()-1;
      }

      typedef SmallInstructionVector::iterator iterator;
      typedef SmallInstructionVector::const_iterator const_iterator;

      iterator begin() {
        assert(Valid && "Using invalid reduction");
        return llvm::next(Instructions.begin());
      }

      const_iterator begin() const {
        assert(Valid && "Using invalid reduction");
        return llvm::next(Instructions.begin());
      }

      iterator end() { return Instructions.end(); }
      const_iterator end() const { return Instructions.end(); }

    protected:
      bool Valid;
      SmallInstructionVector Instructions;

      void add(Loop *L);
    };

    // The set of all reductions, and state tracking of possible reductions
    // during loop instruction processing.
    struct ReductionTracker {
      typedef SmallVector<SimpleLoopReduction, 16> SmallReductionVector;

      // Add a new possible reduction.
      void addSLR(SimpleLoopReduction &SLR) {
        PossibleReds.push_back(SLR);
      }

      // Setup to track possible reductions corresponding to the provided
      // rerolling scale. Only reductions with a number of non-PHI instructions
      // that is divisible by the scale are considered. Three instructions sets
      // are filled in:
      //   - A set of all possible instructions in eligible reductions.
      //   - A set of all PHIs in eligible reductions
      //   - A set of all reduced values (last instructions) in eligible reductions.
      void restrictToScale(uint64_t Scale,
                           SmallInstructionSet &PossibleRedSet,
                           SmallInstructionSet &PossibleRedPHISet,
                           SmallInstructionSet &PossibleRedLastSet) {
        PossibleRedIdx.clear();
        PossibleRedIter.clear();
        Reds.clear();

        for (unsigned i = 0, e = PossibleReds.size(); i != e; ++i)
          if (PossibleReds[i].size() % Scale == 0) {
            PossibleRedLastSet.insert(PossibleReds[i].getReducedValue());
            PossibleRedPHISet.insert(PossibleReds[i].getPHI());
      
            PossibleRedSet.insert(PossibleReds[i].getPHI());
            PossibleRedIdx[PossibleReds[i].getPHI()] = i;
            for (SimpleLoopReduction::iterator J = PossibleReds[i].begin(),
                 JE = PossibleReds[i].end(); J != JE; ++J) {
              PossibleRedSet.insert(*J);
              PossibleRedIdx[*J] = i;
            }
          }
      }

      // The functions below are used while processing the loop instructions.

      // Are the two instructions both from reductions, and furthermore, from
      // the same reduction?
      bool isPairInSame(Instruction *J1, Instruction *J2) {
        DenseMap<Instruction *, int>::iterator J1I = PossibleRedIdx.find(J1);
        if (J1I != PossibleRedIdx.end()) {
          DenseMap<Instruction *, int>::iterator J2I = PossibleRedIdx.find(J2);
          if (J2I != PossibleRedIdx.end() && J1I->second == J2I->second)
            return true;
        }

        return false;
      }

      // The two provided instructions, the first from the base iteration, and
      // the second from iteration i, form a matched pair. If these are part of
      // a reduction, record that fact.
      void recordPair(Instruction *J1, Instruction *J2, unsigned i) {
        if (PossibleRedIdx.count(J1)) {
          assert(PossibleRedIdx.count(J2) &&
                 "Recording reduction vs. non-reduction instruction?");

          PossibleRedIter[J1] = 0;
          PossibleRedIter[J2] = i;

          int Idx = PossibleRedIdx[J1];
          assert(Idx == PossibleRedIdx[J2] &&
                 "Recording pair from different reductions?");
          Reds.insert(Idx);
        }
      }

      // The functions below can be called after we've finished processing all
      // instructions in the loop, and we know which reductions were selected.

      // Is the provided instruction the PHI of a reduction selected for
      // rerolling?
      bool isSelectedPHI(Instruction *J) {
        if (!isa<PHINode>(J))
          return false;

        for (DenseSet<int>::iterator RI = Reds.begin(), RIE = Reds.end();
             RI != RIE; ++RI) {
          int i = *RI;
          if (cast<Instruction>(J) == PossibleReds[i].getPHI())
            return true;
        }

        return false;
      }

      bool validateSelected();
      void replaceSelected();

    protected:
      // The vector of all possible reductions (for any scale).
      SmallReductionVector PossibleReds;

      DenseMap<Instruction *, int> PossibleRedIdx;
      DenseMap<Instruction *, int> PossibleRedIter;
      DenseSet<int> Reds;
    };

    void collectPossibleIVs(Loop *L, SmallInstructionVector &PossibleIVs);
    void collectPossibleReductions(Loop *L,
           ReductionTracker &Reductions);
    void collectInLoopUserSet(Loop *L,
           const SmallInstructionVector &Roots,
           const SmallInstructionSet &Exclude,
           const SmallInstructionSet &Final,
           DenseSet<Instruction *> &Users);
    void collectInLoopUserSet(Loop *L,
           Instruction * Root,
           const SmallInstructionSet &Exclude,
           const SmallInstructionSet &Final,
           DenseSet<Instruction *> &Users);
    bool findScaleFromMul(Instruction *RealIV, uint64_t &Scale,
                          Instruction *&IV,
                          SmallInstructionVector &LoopIncs);
    bool collectAllRoots(Loop *L, uint64_t Inc, uint64_t Scale, Instruction *IV,
                         SmallVector<SmallInstructionVector, 32> &Roots,
                         SmallInstructionSet &AllRoots,
                         SmallInstructionVector &LoopIncs);
    bool reroll(Instruction *IV, Loop *L, BasicBlock *Header, const SCEV *IterCount,
                ReductionTracker &Reductions);
  };
}

char LoopReroll::ID = 0;
INITIALIZE_PASS_BEGIN(LoopReroll, "loop-reroll", "Reroll loops", false, false)
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
INITIALIZE_PASS_DEPENDENCY(LoopInfo)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
INITIALIZE_PASS_END(LoopReroll, "loop-reroll", "Reroll loops", false, false)

Pass *llvm::createLoopRerollPass() {
  return new LoopReroll;
}

// Returns true if the provided instruction is used outside the given loop.
// This operates like Instruction::isUsedOutsideOfBlock, but considers PHIs in
// non-loop blocks to be outside the loop.
static bool hasUsesOutsideLoop(Instruction *I, Loop *L) {
  for (Value::use_iterator UI = I->use_begin(),
       UIE = I->use_end(); UI != UIE; ++UI) {
    Instruction *User = cast<Instruction>(*UI);
    if (!L->contains(User))
      return true;
  }

  return false;
}

// Collect the list of loop induction variables with respect to which it might
// be possible to reroll the loop.
void LoopReroll::collectPossibleIVs(Loop *L,
                                    SmallInstructionVector &PossibleIVs) {
  BasicBlock *Header = L->getHeader();
  for (BasicBlock::iterator I = Header->begin(),
       IE = Header->getFirstInsertionPt(); I != IE; ++I) {
    if (!isa<PHINode>(I))
      continue;
    if (!I->getType()->isIntegerTy())
      continue;

    if (const SCEVAddRecExpr *PHISCEV =
        dyn_cast<SCEVAddRecExpr>(SE->getSCEV(I))) {
      if (PHISCEV->getLoop() != L)
        continue;
      if (!PHISCEV->isAffine())
        continue;
      if (const SCEVConstant *IncSCEV =
          dyn_cast<SCEVConstant>(PHISCEV->getStepRecurrence(*SE))) {
        if (!IncSCEV->getValue()->getValue().isStrictlyPositive())
          continue;
        if (IncSCEV->getValue()->uge(MaxInc))
          continue;

        DEBUG(dbgs() << "LRR: Possible IV: " << *I << " = " <<
              *PHISCEV << "\n");
        PossibleIVs.push_back(I);
      }
    }
  }
}

// Add the remainder of the reduction-variable chain to the instruction vector
// (the initial PHINode has already been added). If successful, the object is
// marked as valid.
void LoopReroll::SimpleLoopReduction::add(Loop *L) {
  assert(!Valid && "Cannot add to an already-valid chain");

  // The reduction variable must be a chain of single-use instructions
  // (including the PHI), except for the last value (which is used by the PHI
  // and also outside the loop).
  Instruction *C = Instructions.front();

  do {
    C = cast<Instruction>(*C->use_begin());
    if (C->hasOneUse()) {
      if (!C->isBinaryOp())
        return;

      if (!(isa<PHINode>(Instructions.back()) ||
            C->isSameOperationAs(Instructions.back())))
        return;

      Instructions.push_back(C);
    }
  } while (C->hasOneUse());

  if (Instructions.size() < 2 ||
      !C->isSameOperationAs(Instructions.back()) ||
      C->use_begin() == C->use_end())
    return;

  // C is now the (potential) last instruction in the reduction chain.
  for (Value::use_iterator UI = C->use_begin(), UIE = C->use_end();
       UI != UIE; ++UI) {
    // The only in-loop user can be the initial PHI.
    if (L->contains(cast<Instruction>(*UI)))
      if (cast<Instruction>(*UI ) != Instructions.front())
        return;
  }

  Instructions.push_back(C);
  Valid = true;
}

// Collect the vector of possible reduction variables.
void LoopReroll::collectPossibleReductions(Loop *L,
  ReductionTracker &Reductions) {
  BasicBlock *Header = L->getHeader();
  for (BasicBlock::iterator I = Header->begin(),
       IE = Header->getFirstInsertionPt(); I != IE; ++I) {
    if (!isa<PHINode>(I))
      continue;
    if (!I->getType()->isSingleValueType())
      continue;

    SimpleLoopReduction SLR(I, L);
    if (!SLR.valid())
      continue;

    DEBUG(dbgs() << "LRR: Possible reduction: " << *I << " (with " <<
          SLR.size() << " chained instructions)\n");
    Reductions.addSLR(SLR);
  }
}

// Collect the set of all users of the provided root instruction. This set of
// users contains not only the direct users of the root instruction, but also
// all users of those users, and so on. There are two exceptions:
//
//   1. Instructions in the set of excluded instructions are never added to the
//   use set (even if they are users). This is used, for example, to exclude
//   including root increments in the use set of the primary IV.
//
//   2. Instructions in the set of final instructions are added to the use set
//   if they are users, but their users are not added. This is used, for
//   example, to prevent a reduction update from forcing all later reduction
//   updates into the use set.
void LoopReroll::collectInLoopUserSet(Loop *L,
  Instruction *Root, const SmallInstructionSet &Exclude,
  const SmallInstructionSet &Final,
  DenseSet<Instruction *> &Users) {
  SmallInstructionVector Queue(1, Root);
  while (!Queue.empty()) {
    Instruction *I = Queue.pop_back_val();
    if (!Users.insert(I).second)
      continue;

    if (!Final.count(I))
      for (Value::use_iterator UI = I->use_begin(),
           UIE = I->use_end(); UI != UIE; ++UI) {
        Instruction *User = cast<Instruction>(*UI);
        if (PHINode *PN = dyn_cast<PHINode>(User)) {
          // Ignore "wrap-around" uses to PHIs of this loop's header.
          if (PN->getIncomingBlock(UI) == L->getHeader())
            continue;
        }
  
        if (L->contains(User) && !Exclude.count(User)) {
          Queue.push_back(User);
        }
      }

    // We also want to collect single-user "feeder" values.
    for (User::op_iterator OI = I->op_begin(),
         OIE = I->op_end(); OI != OIE; ++OI) {
      if (Instruction *Op = dyn_cast<Instruction>(*OI))
        if (Op->hasOneUse() && L->contains(Op) && !Exclude.count(Op) &&
            !Final.count(Op))
          Queue.push_back(Op);
    }
  }
}

// Collect all of the users of all of the provided root instructions (combined
// into a single set).
void LoopReroll::collectInLoopUserSet(Loop *L,
  const SmallInstructionVector &Roots,
  const SmallInstructionSet &Exclude,
  const SmallInstructionSet &Final,
  DenseSet<Instruction *> &Users) {
  for (SmallInstructionVector::const_iterator I = Roots.begin(),
       IE = Roots.end(); I != IE; ++I)
    collectInLoopUserSet(L, *I, Exclude, Final, Users);
}

static bool isSimpleLoadStore(Instruction *I) {
  if (LoadInst *LI = dyn_cast<LoadInst>(I))
    return LI->isSimple();
  if (StoreInst *SI = dyn_cast<StoreInst>(I))
    return SI->isSimple();
  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
    return !MI->isVolatile();
  return false;
}

// Recognize loops that are setup like this:
//
// %iv = phi [ (preheader, ...), (body, %iv.next) ]
// %scaled.iv = mul %iv, scale
// f(%scaled.iv)
// %scaled.iv.1 = add %scaled.iv, 1
// f(%scaled.iv.1)
// %scaled.iv.2 = add %scaled.iv, 2
// f(%scaled.iv.2)
// %scaled.iv.scale_m_1 = add %scaled.iv, scale-1
// f(%scaled.iv.scale_m_1)
// ...
// %iv.next = add %iv, 1
// %cmp = icmp(%iv, ...)
// br %cmp, header, exit
//
// and, if found, set IV = %scaled.iv, and add %iv.next to LoopIncs.
bool LoopReroll::findScaleFromMul(Instruction *RealIV, uint64_t &Scale,
                                  Instruction *&IV,
                                  SmallInstructionVector &LoopIncs) {
  // This is a special case: here we're looking for all uses (except for
  // the increment) to be multiplied by a common factor. The increment must
  // be by one. This is to capture loops like:
  //   for (int i = 0; i < 500; ++i) {
  //     foo(3*i); foo(3*i+1); foo(3*i+2);
  //   }
  if (RealIV->getNumUses() != 2)
    return false;
  const SCEVAddRecExpr *RealIVSCEV = cast<SCEVAddRecExpr>(SE->getSCEV(RealIV));
  Instruction *User1 = cast<Instruction>(*RealIV->use_begin()),
              *User2 = cast<Instruction>(*llvm::next(RealIV->use_begin()));
  if (!SE->isSCEVable(User1->getType()) || !SE->isSCEVable(User2->getType()))
    return false;
  const SCEVAddRecExpr *User1SCEV =
                         dyn_cast<SCEVAddRecExpr>(SE->getSCEV(User1)),
                       *User2SCEV =
                         dyn_cast<SCEVAddRecExpr>(SE->getSCEV(User2));
  if (!User1SCEV || !User1SCEV->isAffine() ||
      !User2SCEV || !User2SCEV->isAffine())
    return false;

  // We assume below that User1 is the scale multiply and User2 is the
  // increment. If this can't be true, then swap them.
  if (User1SCEV == RealIVSCEV->getPostIncExpr(*SE)) {
    std::swap(User1, User2);
    std::swap(User1SCEV, User2SCEV);
  }

  if (User2SCEV != RealIVSCEV->getPostIncExpr(*SE))
    return false;
  assert(User2SCEV->getStepRecurrence(*SE)->isOne() &&
         "Invalid non-unit step for multiplicative scaling");
  LoopIncs.push_back(User2);

  if (const SCEVConstant *MulScale =
      dyn_cast<SCEVConstant>(User1SCEV->getStepRecurrence(*SE))) {
    // Make sure that both the start and step have the same multiplier.
    if (RealIVSCEV->getStart()->getType() != MulScale->getType())
      return false;
    if (SE->getMulExpr(RealIVSCEV->getStart(), MulScale) !=
        User1SCEV->getStart())
      return false;

    ConstantInt *MulScaleCI = MulScale->getValue();
    if (!MulScaleCI->uge(2) || MulScaleCI->uge(MaxInc))
      return false;
    Scale = MulScaleCI->getZExtValue();
    IV = User1;
  } else
    return false;

  DEBUG(dbgs() << "LRR: Found possible scaling " << *User1 << "\n");
  return true;
}

// Collect all root increments with respect to the provided induction variable
// (normally the PHI, but sometimes a multiply). A root increment is an
// instruction, normally an add, with a positive constant less than Scale. In a
// rerollable loop, each of these increments is the root of an instruction
// graph isomorphic to the others. Also, we collect the final induction
// increment (the increment equal to the Scale), and its users in LoopIncs.
bool LoopReroll::collectAllRoots(Loop *L, uint64_t Inc, uint64_t Scale,
                                 Instruction *IV,
                                 SmallVector<SmallInstructionVector, 32> &Roots,
                                 SmallInstructionSet &AllRoots,
                                 SmallInstructionVector &LoopIncs) {
  for (Value::use_iterator UI = IV->use_begin(),
       UIE = IV->use_end(); UI != UIE; ++UI) {
    Instruction *User = cast<Instruction>(*UI);
    if (!SE->isSCEVable(User->getType()))
      continue;
    if (User->getType() != IV->getType())
      continue;
    if (!L->contains(User))
      continue;
    if (hasUsesOutsideLoop(User, L))
      continue;

    if (const SCEVConstant *Diff = dyn_cast<SCEVConstant>(SE->getMinusSCEV(
          SE->getSCEV(User), SE->getSCEV(IV)))) {
      uint64_t Idx = Diff->getValue()->getValue().getZExtValue();
      if (Idx > 0 && Idx < Scale) {
        Roots[Idx-1].push_back(User);
        AllRoots.insert(User);
      } else if (Idx == Scale && Inc > 1) {
        LoopIncs.push_back(User);
      }
    }
  }

  if (Roots[0].empty())
    return false;
  bool AllSame = true;
  for (unsigned i = 1; i < Scale-1; ++i)
    if (Roots[i].size() != Roots[0].size()) {
      AllSame = false;
      break;
    }

  if (!AllSame)
    return false;

  return true;
}

// Validate the selected reductions. All iterations must have an isomorphic
// part of the reduction chain and, for non-associative reductions, the chain
// entries must appear in order.
bool LoopReroll::ReductionTracker::validateSelected() {
  // For a non-associative reduction, the chain entries must appear in order.
  for (DenseSet<int>::iterator RI = Reds.begin(), RIE = Reds.end();
       RI != RIE; ++RI) {
    int i = *RI;
    int PrevIter = 0, BaseCount = 0, Count = 0;
    for (SimpleLoopReduction::iterator J = PossibleReds[i].begin(),
         JE = PossibleReds[i].end(); J != JE; ++J) {
	// Note that all instructions in the chain must have been found because
	// all instructions in the function must have been assigned to some
	// iteration.
      int Iter = PossibleRedIter[*J];
      if (Iter != PrevIter && Iter != PrevIter + 1 &&
          !PossibleReds[i].getReducedValue()->isAssociative()) {
        DEBUG(dbgs() << "LRR: Out-of-order non-associative reduction: " <<
                        *J << "\n");
        return false;
      }

      if (Iter != PrevIter) {
        if (Count != BaseCount) {
          DEBUG(dbgs() << "LRR: Iteration " << PrevIter <<
                " reduction use count " << Count <<
                " is not equal to the base use count " <<
                BaseCount << "\n");
          return false;
        }

        Count = 0;
      }

      ++Count;
      if (Iter == 0)
        ++BaseCount;

      PrevIter = Iter;
    }
  }

  return true;
}

// For all selected reductions, remove all parts except those in the first
// iteration (and the PHI). Replace outside uses of the reduced value with uses
// of the first-iteration reduced value (in other words, reroll the selected
// reductions).
void LoopReroll::ReductionTracker::replaceSelected() {
  // Fixup reductions to refer to the last instruction associated with the
  // first iteration (not the last).
  for (DenseSet<int>::iterator RI = Reds.begin(), RIE = Reds.end();
       RI != RIE; ++RI) {
    int i = *RI;
    int j = 0;
    for (int e = PossibleReds[i].size(); j != e; ++j)
      if (PossibleRedIter[PossibleReds[i][j]] != 0) {
        --j;
        break;
      }

    // Replace users with the new end-of-chain value.
    SmallInstructionVector Users;
    for (Value::use_iterator UI =
           PossibleReds[i].getReducedValue()->use_begin(),
         UIE = PossibleReds[i].getReducedValue()->use_end(); UI != UIE; ++UI)
      Users.push_back(cast<Instruction>(*UI));

    for (SmallInstructionVector::iterator J = Users.begin(),
         JE = Users.end(); J != JE; ++J)
      (*J)->replaceUsesOfWith(PossibleReds[i].getReducedValue(),
                              PossibleReds[i][j]);
  }
}

// Reroll the provided loop with respect to the provided induction variable.
// Generally, we're looking for a loop like this:
//
// %iv = phi [ (preheader, ...), (body, %iv.next) ]
// f(%iv)
// %iv.1 = add %iv, 1                <-- a root increment
// f(%iv.1)
// %iv.2 = add %iv, 2                <-- a root increment
// f(%iv.2)
// %iv.scale_m_1 = add %iv, scale-1  <-- a root increment
// f(%iv.scale_m_1)
// ...
// %iv.next = add %iv, scale
// %cmp = icmp(%iv, ...)
// br %cmp, header, exit
//
// Notably, we do not require that f(%iv), f(%iv.1), etc. be isolated groups of
// instructions. In other words, the instructions in f(%iv), f(%iv.1), etc. can
// be intermixed with eachother. The restriction imposed by this algorithm is
// that the relative order of the isomorphic instructions in f(%iv), f(%iv.1),
// etc. be the same.
//
// First, we collect the use set of %iv, excluding the other increment roots.
// This gives us f(%iv). Then we iterate over the loop instructions (scale-1)
// times, having collected the use set of f(%iv.(i+1)), during which we:
//   - Ensure that the next unmatched instruction in f(%iv) is isomorphic to
//     the next unmatched instruction in f(%iv.(i+1)).
//   - Ensure that both matched instructions don't have any external users
//     (with the exception of last-in-chain reduction instructions).
//   - Track the (aliasing) write set, and other side effects, of all
//     instructions that belong to future iterations that come before the matched
//     instructions. If the matched instructions read from that write set, then
//     f(%iv) or f(%iv.(i+1)) has some dependency on instructions in
//     f(%iv.(j+1)) for some j > i, and we cannot reroll the loop. Similarly,
//     if any of these future instructions had side effects (could not be
//     speculatively executed), and so do the matched instructions, when we
//     cannot reorder those side-effect-producing instructions, and rerolling
//     fails.
//
// Finally, we make sure that all loop instructions are either loop increment
// roots, belong to simple latch code, parts of validated reductions, part of
// f(%iv) or part of some f(%iv.i). If all of that is true (and all reductions
// have been validated), then we reroll the loop.
bool LoopReroll::reroll(Instruction *IV, Loop *L, BasicBlock *Header,
                        const SCEV *IterCount,
                        ReductionTracker &Reductions) {
  const SCEVAddRecExpr *RealIVSCEV = cast<SCEVAddRecExpr>(SE->getSCEV(IV));
  uint64_t Inc = cast<SCEVConstant>(RealIVSCEV->getOperand(1))->
                   getValue()->getZExtValue();
  // The collection of loop increment instructions.
  SmallInstructionVector LoopIncs;
  uint64_t Scale = Inc;

  // The effective induction variable, IV, is normally also the real induction
  // variable. When we're dealing with a loop like:
  //   for (int i = 0; i < 500; ++i)
  //     x[3*i] = ...;
  //     x[3*i+1] = ...;
  //     x[3*i+2] = ...;
  // then the real IV is still i, but the effective IV is (3*i).
  Instruction *RealIV = IV;
  if (Inc == 1 && !findScaleFromMul(RealIV, Scale, IV, LoopIncs))
    return false;

  assert(Scale <= MaxInc && "Scale is too large");
  assert(Scale > 1 && "Scale must be at least 2");

  // The set of increment instructions for each increment value.
  SmallVector<SmallInstructionVector, 32> Roots(Scale-1);
  SmallInstructionSet AllRoots;
  if (!collectAllRoots(L, Inc, Scale, IV, Roots, AllRoots, LoopIncs))
    return false;

  DEBUG(dbgs() << "LRR: Found all root induction increments for: " <<
                  *RealIV << "\n");

  // An array of just the possible reductions for this scale factor. When we
  // collect the set of all users of some root instructions, these reduction
  // instructions are treated as 'final' (their uses are not considered).
  // This is important because we don't want the root use set to search down
  // the reduction chain.
  SmallInstructionSet PossibleRedSet;
  SmallInstructionSet PossibleRedLastSet, PossibleRedPHISet;
  Reductions.restrictToScale(Scale, PossibleRedSet, PossibleRedPHISet,
                             PossibleRedLastSet);

  // We now need to check for equivalence of the use graph of each root with
  // that of the primary induction variable (excluding the roots). Our goal
  // here is not to solve the full graph isomorphism problem, but rather to
  // catch common cases without a lot of work. As a result, we will assume
  // that the relative order of the instructions in each unrolled iteration
  // is the same (although we will not make an assumption about how the
  // different iterations are intermixed). Note that while the order must be
  // the same, the instructions may not be in the same basic block.
  SmallInstructionSet Exclude(AllRoots);
  Exclude.insert(LoopIncs.begin(), LoopIncs.end());

  DenseSet<Instruction *> BaseUseSet;
  collectInLoopUserSet(L, IV, Exclude, PossibleRedSet, BaseUseSet);

  DenseSet<Instruction *> AllRootUses;
  std::vector<DenseSet<Instruction *> > RootUseSets(Scale-1);

  bool MatchFailed = false;
  for (unsigned i = 0; i < Scale-1 && !MatchFailed; ++i) {
    DenseSet<Instruction *> &RootUseSet = RootUseSets[i];
    collectInLoopUserSet(L, Roots[i], SmallInstructionSet(),
                         PossibleRedSet, RootUseSet);

    DEBUG(dbgs() << "LRR: base use set size: " << BaseUseSet.size() <<
                    " vs. iteration increment " << (i+1) <<
                    " use set size: " << RootUseSet.size() << "\n");

    if (BaseUseSet.size() != RootUseSet.size()) {
      MatchFailed = true;
      break;
    }

    // In addition to regular aliasing information, we need to look for
    // instructions from later (future) iterations that have side effects
    // preventing us from reordering them past other instructions with side
    // effects.
    bool FutureSideEffects = false;
    AliasSetTracker AST(*AA);

    // The map between instructions in f(%iv.(i+1)) and f(%iv).
    DenseMap<Value *, Value *> BaseMap;

    assert(L->getNumBlocks() == 1 && "Cannot handle multi-block loops");
    for (BasicBlock::iterator J1 = Header->begin(), J2 = Header->begin(),
         JE = Header->end(); J1 != JE && !MatchFailed; ++J1) {
      if (cast<Instruction>(J1) == RealIV)
        continue;
      if (cast<Instruction>(J1) == IV)
        continue;
      if (!BaseUseSet.count(J1))
        continue;
      if (PossibleRedPHISet.count(J1)) // Skip reduction PHIs.
        continue;

      while (J2 != JE && (!RootUseSet.count(J2) ||
             std::find(Roots[i].begin(), Roots[i].end(), J2) !=
               Roots[i].end())) {
        // As we iterate through the instructions, instructions that don't
        // belong to previous iterations (or the base case), must belong to
        // future iterations. We want to track the alias set of writes from
        // previous iterations.
        if (!isa<PHINode>(J2) && !BaseUseSet.count(J2) &&
            !AllRootUses.count(J2)) {
          if (J2->mayWriteToMemory())
            AST.add(J2);

          // Note: This is specifically guarded by a check on isa<PHINode>,
          // which while a valid (somewhat arbitrary) micro-optimization, is
          // needed because otherwise isSafeToSpeculativelyExecute returns
          // false on PHI nodes.
          if (!isSimpleLoadStore(J2) && !isSafeToSpeculativelyExecute(J2, DL))
            FutureSideEffects = true; 
        }

        ++J2;
      }

      if (!J1->isSameOperationAs(J2)) {
        DEBUG(dbgs() << "LRR: iteration root match failed at " << *J1 <<
                        " vs. " << *J2 << "\n");
        MatchFailed = true;
        break;
      }

      // Make sure that this instruction, which is in the use set of this
      // root instruction, does not also belong to the base set or the set of
      // some previous root instruction.
      if (BaseUseSet.count(J2) || AllRootUses.count(J2)) {
        DEBUG(dbgs() << "LRR: iteration root match failed at " << *J1 <<
                        " vs. " << *J2 << " (prev. case overlap)\n");
        MatchFailed = true;
        break;
      }

      // Make sure that we don't alias with any instruction in the alias set
      // tracker. If we do, then we depend on a future iteration, and we
      // can't reroll.
      if (J2->mayReadFromMemory()) {
        for (AliasSetTracker::iterator K = AST.begin(), KE = AST.end();
             K != KE && !MatchFailed; ++K) {
          if (K->aliasesUnknownInst(J2, *AA)) {
            DEBUG(dbgs() << "LRR: iteration root match failed at " << *J1 <<
                            " vs. " << *J2 << " (depends on future store)\n");
            MatchFailed = true;
            break;
          }
        }
      }

      // If we've past an instruction from a future iteration that may have
      // side effects, and this instruction might also, then we can't reorder
      // them, and this matching fails. As an exception, we allow the alias
      // set tracker to handle regular (simple) load/store dependencies.
      if (FutureSideEffects &&
            ((!isSimpleLoadStore(J1) && !isSafeToSpeculativelyExecute(J1)) ||
             (!isSimpleLoadStore(J2) && !isSafeToSpeculativelyExecute(J2)))) {
        DEBUG(dbgs() << "LRR: iteration root match failed at " << *J1 <<
                        " vs. " << *J2 <<
                        " (side effects prevent reordering)\n");
        MatchFailed = true;
        break;
      }

      // For instructions that are part of a reduction, if the operation is
      // associative, then don't bother matching the operands (because we
      // already know that the instructions are isomorphic, and the order
      // within the iteration does not matter). For non-associative reductions,
      // we do need to match the operands, because we need to reject
      // out-of-order instructions within an iteration!
      // For example (assume floating-point addition), we need to reject this:
      //   x += a[i]; x += b[i];
      //   x += a[i+1]; x += b[i+1];
      //   x += b[i+2]; x += a[i+2];
      bool InReduction = Reductions.isPairInSame(J1, J2);

      if (!(InReduction && J1->isAssociative())) {
        bool Swapped = false, SomeOpMatched = false;;
        for (unsigned j = 0; j < J1->getNumOperands() && !MatchFailed; ++j) {
          Value *Op2 = J2->getOperand(j);

	  // If this is part of a reduction (and the operation is not
	  // associatve), then we match all operands, but not those that are
	  // part of the reduction.
          if (InReduction)
            if (Instruction *Op2I = dyn_cast<Instruction>(Op2))
              if (Reductions.isPairInSame(J2, Op2I))
                continue;

          DenseMap<Value *, Value *>::iterator BMI = BaseMap.find(Op2);
          if (BMI != BaseMap.end())
            Op2 = BMI->second;
          else if (std::find(Roots[i].begin(), Roots[i].end(),
                             (Instruction*) Op2) != Roots[i].end())
            Op2 = IV;

          if (J1->getOperand(Swapped ? unsigned(!j) : j) != Op2) {
	    // If we've not already decided to swap the matched operands, and
	    // we've not already matched our first operand (note that we could
	    // have skipped matching the first operand because it is part of a
	    // reduction above), and the instruction is commutative, then try
	    // the swapped match.
            if (!Swapped && J1->isCommutative() && !SomeOpMatched &&
                J1->getOperand(!j) == Op2) {
              Swapped = true;
            } else {
              DEBUG(dbgs() << "LRR: iteration root match failed at " << *J1 <<
                              " vs. " << *J2 << " (operand " << j << ")\n");
              MatchFailed = true;
              break;
            }
          }

          SomeOpMatched = true;
        }
      }

      if ((!PossibleRedLastSet.count(J1) && hasUsesOutsideLoop(J1, L)) ||
          (!PossibleRedLastSet.count(J2) && hasUsesOutsideLoop(J2, L))) {
        DEBUG(dbgs() << "LRR: iteration root match failed at " << *J1 <<
                        " vs. " << *J2 << " (uses outside loop)\n");
        MatchFailed = true;
        break;
      }

      if (!MatchFailed)
        BaseMap.insert(std::pair<Value *, Value *>(J2, J1));

      AllRootUses.insert(J2);
      Reductions.recordPair(J1, J2, i+1);

      ++J2;
    }
  }

  if (MatchFailed)
    return false;

  DEBUG(dbgs() << "LRR: Matched all iteration increments for " <<
                  *RealIV << "\n");

  DenseSet<Instruction *> LoopIncUseSet;
  collectInLoopUserSet(L, LoopIncs, SmallInstructionSet(),
                       SmallInstructionSet(), LoopIncUseSet);
  DEBUG(dbgs() << "LRR: Loop increment set size: " <<
                  LoopIncUseSet.size() << "\n");

  // Make sure that all instructions in the loop have been included in some
  // use set.
  for (BasicBlock::iterator J = Header->begin(), JE = Header->end();
       J != JE; ++J) {
    if (isa<DbgInfoIntrinsic>(J))
      continue;
    if (cast<Instruction>(J) == RealIV)
      continue;
    if (cast<Instruction>(J) == IV)
      continue;
    if (BaseUseSet.count(J) || AllRootUses.count(J) ||
        (LoopIncUseSet.count(J) && (J->isTerminator() ||
                                    isSafeToSpeculativelyExecute(J, DL))))
      continue;

    if (AllRoots.count(J))
      continue;

    if (Reductions.isSelectedPHI(J))
      continue;

    DEBUG(dbgs() << "LRR: aborting reroll based on " << *RealIV <<
                    " unprocessed instruction found: " << *J << "\n");
    MatchFailed = true;
    break;
  }

  if (MatchFailed)
    return false;

  DEBUG(dbgs() << "LRR: all instructions processed from " <<
                  *RealIV << "\n");

  if (!Reductions.validateSelected())
    return false;

  // At this point, we've validated the rerolling, and we're committed to
  // making changes!

  Reductions.replaceSelected();

  // Remove instructions associated with non-base iterations.
  for (BasicBlock::reverse_iterator J = Header->rbegin();
       J != Header->rend();) {
    if (AllRootUses.count(&*J)) {
      Instruction *D = &*J;
      DEBUG(dbgs() << "LRR: removing: " << *D << "\n");
      D->eraseFromParent();
      continue;
    }

    ++J; 
  }

  // Insert the new induction variable.
  const SCEV *Start = RealIVSCEV->getStart();
  if (Inc == 1)
    Start = SE->getMulExpr(Start,
                           SE->getConstant(Start->getType(), Scale));
  const SCEVAddRecExpr *H =
    cast<SCEVAddRecExpr>(SE->getAddRecExpr(Start,
                           SE->getConstant(RealIVSCEV->getType(), 1),
                           L, SCEV::FlagAnyWrap));
  { // Limit the lifetime of SCEVExpander.
    SCEVExpander Expander(*SE, "reroll");
    Value *NewIV = Expander.expandCodeFor(H, IV->getType(), Header->begin());

    for (DenseSet<Instruction *>::iterator J = BaseUseSet.begin(),
         JE = BaseUseSet.end(); J != JE; ++J)
      (*J)->replaceUsesOfWith(IV, NewIV);

    if (BranchInst *BI = dyn_cast<BranchInst>(Header->getTerminator())) {
      if (LoopIncUseSet.count(BI)) {
        const SCEV *ICSCEV = RealIVSCEV->evaluateAtIteration(IterCount, *SE);
        if (Inc == 1)
          ICSCEV =
            SE->getMulExpr(ICSCEV, SE->getConstant(ICSCEV->getType(), Scale));
        // Iteration count SCEV minus 1
        const SCEV *ICMinus1SCEV =
          SE->getMinusSCEV(ICSCEV, SE->getConstant(ICSCEV->getType(), 1));

        Value *ICMinus1; // Iteration count minus 1
        if (isa<SCEVConstant>(ICMinus1SCEV)) {
          ICMinus1 = Expander.expandCodeFor(ICMinus1SCEV, NewIV->getType(), BI);
        } else {
          BasicBlock *Preheader = L->getLoopPreheader();
          if (!Preheader)
            Preheader = InsertPreheaderForLoop(L, this);

          ICMinus1 = Expander.expandCodeFor(ICMinus1SCEV, NewIV->getType(),
                                            Preheader->getTerminator());
        }
 
        Value *Cond = new ICmpInst(BI, CmpInst::ICMP_EQ, NewIV, ICMinus1,
                                   "exitcond");
        BI->setCondition(Cond);

        if (BI->getSuccessor(1) != Header)
          BI->swapSuccessors();
      }
    }
  }

  SimplifyInstructionsInBlock(Header, DL, TLI);
  DeleteDeadPHIs(Header, TLI);
  ++NumRerolledLoops;
  return true;
}

bool LoopReroll::runOnLoop(Loop *L, LPPassManager &LPM) {
  if (skipOptnoneFunction(L))
    return false;

  AA = &getAnalysis<AliasAnalysis>();
  LI = &getAnalysis<LoopInfo>();
  SE = &getAnalysis<ScalarEvolution>();
  TLI = &getAnalysis<TargetLibraryInfo>();
  DL = getAnalysisIfAvailable<DataLayout>();
  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();

  BasicBlock *Header = L->getHeader();
  DEBUG(dbgs() << "LRR: F[" << Header->getParent()->getName() <<
        "] Loop %" << Header->getName() << " (" <<
        L->getNumBlocks() << " block(s))\n");

  bool Changed = false;

  // For now, we'll handle only single BB loops.
  if (L->getNumBlocks() > 1)
    return Changed;

  if (!SE->hasLoopInvariantBackedgeTakenCount(L))
    return Changed;

  const SCEV *LIBETC = SE->getBackedgeTakenCount(L);
  const SCEV *IterCount =
    SE->getAddExpr(LIBETC, SE->getConstant(LIBETC->getType(), 1));
  DEBUG(dbgs() << "LRR: iteration count = " << *IterCount << "\n");

  // First, we need to find the induction variable with respect to which we can
  // reroll (there may be several possible options).
  SmallInstructionVector PossibleIVs;
  collectPossibleIVs(L, PossibleIVs);

  if (PossibleIVs.empty()) {
    DEBUG(dbgs() << "LRR: No possible IVs found\n");
    return Changed;
  }

  ReductionTracker Reductions;
  collectPossibleReductions(L, Reductions);

  // For each possible IV, collect the associated possible set of 'root' nodes
  // (i+1, i+2, etc.).
  for (SmallInstructionVector::iterator I = PossibleIVs.begin(),
       IE = PossibleIVs.end(); I != IE; ++I)
    if (reroll(*I, L, Header, IterCount, Reductions)) {
      Changed = true;
      break;
    }

  return Changed;
}