summaryrefslogtreecommitdiff
path: root/lib/Transforms/Scalar/ScalarReplAggregates.cpp
blob: f0faa874b892cd1c02a2f90a19545400034a779f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This transformation implements the well known scalar replacement of
// aggregates transformation.  This xform breaks up alloca instructions of
// aggregate type (structure or array) into individual alloca instructions for
// each member (if possible).  Then, if possible, it transforms the individual
// alloca instructions into nice clean scalar SSA form.
//
// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
// often interact, especially for C++ programs.  As such, iterating between
// SRoA, then Mem2Reg until we run out of things to promote works well.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "scalarrepl"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/GlobalVariable.h"
#include "llvm/Instructions.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/Pass.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Transforms/Utils/PromoteMemToReg.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Compiler.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
using namespace llvm;

STATISTIC(NumReplaced,  "Number of allocas broken up");
STATISTIC(NumPromoted,  "Number of allocas promoted");
STATISTIC(NumConverted, "Number of aggregates converted to scalar");
STATISTIC(NumGlobals,   "Number of allocas copied from constant global");

namespace {
  struct VISIBILITY_HIDDEN SROA : public FunctionPass {
    static const char ID; // Pass identifcation, replacement for typeid
    SROA() : FunctionPass((intptr_t)&ID) {}

    bool runOnFunction(Function &F);

    bool performScalarRepl(Function &F);
    bool performPromotion(Function &F);

    // getAnalysisUsage - This pass does not require any passes, but we know it
    // will not alter the CFG, so say so.
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.addRequired<ETForest>();
      AU.addRequired<DominanceFrontier>();
      AU.addRequired<TargetData>();
      AU.setPreservesCFG();
    }

  private:
    int isSafeElementUse(Value *Ptr, bool isFirstElt, AllocationInst *AI);
    int isSafeUseOfAllocation(Instruction *User, AllocationInst *AI);
    bool isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocationInst *AI);
    bool isSafeUseOfBitCastedAllocation(BitCastInst *User, AllocationInst *AI);
    int isSafeAllocaToScalarRepl(AllocationInst *AI);
    void DoScalarReplacement(AllocationInst *AI, 
                             std::vector<AllocationInst*> &WorkList);
    void CanonicalizeAllocaUsers(AllocationInst *AI);
    AllocaInst *AddNewAlloca(Function &F, const Type *Ty, AllocationInst *Base);
    
    void RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocationInst *AI,
                                    SmallVector<AllocaInst*, 32> &NewElts);
    
    const Type *CanConvertToScalar(Value *V, bool &IsNotTrivial);
    void ConvertToScalar(AllocationInst *AI, const Type *Ty);
    void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, unsigned Offset);
    static Instruction *isOnlyCopiedFromConstantGlobal(AllocationInst *AI);
  };

  const char SROA::ID = 0;
  RegisterPass<SROA> X("scalarrepl", "Scalar Replacement of Aggregates");
}

// Public interface to the ScalarReplAggregates pass
FunctionPass *llvm::createScalarReplAggregatesPass() { return new SROA(); }


bool SROA::runOnFunction(Function &F) {
  bool Changed = performPromotion(F);
  while (1) {
    bool LocalChange = performScalarRepl(F);
    if (!LocalChange) break;   // No need to repromote if no scalarrepl
    Changed = true;
    LocalChange = performPromotion(F);
    if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
  }

  return Changed;
}


bool SROA::performPromotion(Function &F) {
  std::vector<AllocaInst*> Allocas;
  ETForest         &ET = getAnalysis<ETForest>();
  DominanceFrontier &DF = getAnalysis<DominanceFrontier>();

  BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function

  bool Changed = false;

  while (1) {
    Allocas.clear();

    // Find allocas that are safe to promote, by looking at all instructions in
    // the entry node
    for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
      if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
        if (isAllocaPromotable(AI))
          Allocas.push_back(AI);

    if (Allocas.empty()) break;

    PromoteMemToReg(Allocas, ET, DF);
    NumPromoted += Allocas.size();
    Changed = true;
  }

  return Changed;
}

// performScalarRepl - This algorithm is a simple worklist driven algorithm,
// which runs on all of the malloc/alloca instructions in the function, removing
// them if they are only used by getelementptr instructions.
//
bool SROA::performScalarRepl(Function &F) {
  std::vector<AllocationInst*> WorkList;

  // Scan the entry basic block, adding any alloca's and mallocs to the worklist
  BasicBlock &BB = F.getEntryBlock();
  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
    if (AllocationInst *A = dyn_cast<AllocationInst>(I))
      WorkList.push_back(A);

  // Process the worklist
  bool Changed = false;
  while (!WorkList.empty()) {
    AllocationInst *AI = WorkList.back();
    WorkList.pop_back();
    
    // Handle dead allocas trivially.  These can be formed by SROA'ing arrays
    // with unused elements.
    if (AI->use_empty()) {
      AI->eraseFromParent();
      continue;
    }
    
    // If we can turn this aggregate value (potentially with casts) into a
    // simple scalar value that can be mem2reg'd into a register value.
    bool IsNotTrivial = false;
    if (const Type *ActualType = CanConvertToScalar(AI, IsNotTrivial))
      if (IsNotTrivial && ActualType != Type::VoidTy) {
        ConvertToScalar(AI, ActualType);
        Changed = true;
        continue;
      }

    // Check to see if we can perform the core SROA transformation.  We cannot
    // transform the allocation instruction if it is an array allocation
    // (allocations OF arrays are ok though), and an allocation of a scalar
    // value cannot be decomposed at all.
    if (!AI->isArrayAllocation() &&
        (isa<StructType>(AI->getAllocatedType()) ||
         isa<ArrayType>(AI->getAllocatedType()))) {
      // Check that all of the users of the allocation are capable of being
      // transformed.
      switch (isSafeAllocaToScalarRepl(AI)) {
      default: assert(0 && "Unexpected value!");
      case 0:  // Not safe to scalar replace.
        break;
      case 1:  // Safe, but requires cleanup/canonicalizations first
        CanonicalizeAllocaUsers(AI);
        // FALL THROUGH.
      case 3:  // Safe to scalar replace.
        DoScalarReplacement(AI, WorkList);
        Changed = true;
        continue;
      }
    }
    
    // Check to see if this allocation is only modified by a memcpy/memmove from
    // a constant global.  If this is the case, we can change all users to use
    // the constant global instead.  This is commonly produced by the CFE by
    // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
    // is only subsequently read.
    if (Instruction *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) {
      DOUT << "Found alloca equal to global: " << *AI;
      DOUT << "  memcpy = " << *TheCopy;
      Constant *TheSrc = cast<Constant>(TheCopy->getOperand(2));
      AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
      TheCopy->eraseFromParent();  // Don't mutate the global.
      AI->eraseFromParent();
      ++NumGlobals;
      Changed = true;
      continue;
    }
        
    // Otherwise, couldn't process this.
  }

  return Changed;
}

/// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
/// predicate, do SROA now.
void SROA::DoScalarReplacement(AllocationInst *AI, 
                               std::vector<AllocationInst*> &WorkList) {
  DOUT << "Found inst to SROA: " << *AI;
  SmallVector<AllocaInst*, 32> ElementAllocas;
  if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
    ElementAllocas.reserve(ST->getNumContainedTypes());
    for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
      AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0, 
                                      AI->getAlignment(),
                                      AI->getName() + "." + utostr(i), AI);
      ElementAllocas.push_back(NA);
      WorkList.push_back(NA);  // Add to worklist for recursive processing
    }
  } else {
    const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
    ElementAllocas.reserve(AT->getNumElements());
    const Type *ElTy = AT->getElementType();
    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
      AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
                                      AI->getName() + "." + utostr(i), AI);
      ElementAllocas.push_back(NA);
      WorkList.push_back(NA);  // Add to worklist for recursive processing
    }
  }

  // Now that we have created the alloca instructions that we want to use,
  // expand the getelementptr instructions to use them.
  //
  while (!AI->use_empty()) {
    Instruction *User = cast<Instruction>(AI->use_back());
    if (BitCastInst *BCInst = dyn_cast<BitCastInst>(User)) {
      RewriteBitCastUserOfAlloca(BCInst, AI, ElementAllocas);
      BCInst->eraseFromParent();
      continue;
    }
    
    GetElementPtrInst *GEPI = cast<GetElementPtrInst>(User);
    // We now know that the GEP is of the form: GEP <ptr>, 0, <cst>
    unsigned Idx =
       (unsigned)cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();

    assert(Idx < ElementAllocas.size() && "Index out of range?");
    AllocaInst *AllocaToUse = ElementAllocas[Idx];

    Value *RepValue;
    if (GEPI->getNumOperands() == 3) {
      // Do not insert a new getelementptr instruction with zero indices, only
      // to have it optimized out later.
      RepValue = AllocaToUse;
    } else {
      // We are indexing deeply into the structure, so we still need a
      // getelement ptr instruction to finish the indexing.  This may be
      // expanded itself once the worklist is rerun.
      //
      SmallVector<Value*, 8> NewArgs;
      NewArgs.push_back(Constant::getNullValue(Type::Int32Ty));
      NewArgs.append(GEPI->op_begin()+3, GEPI->op_end());
      RepValue = new GetElementPtrInst(AllocaToUse, &NewArgs[0],
                                       NewArgs.size(), "", GEPI);
      RepValue->takeName(GEPI);
    }
    
    // If this GEP is to the start of the aggregate, check for memcpys.
    if (Idx == 0) {
      bool IsStartOfAggregateGEP = true;
      for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i) {
        if (!isa<ConstantInt>(GEPI->getOperand(i))) {
          IsStartOfAggregateGEP = false;
          break;
        }
        if (!cast<ConstantInt>(GEPI->getOperand(i))->isZero()) {
          IsStartOfAggregateGEP = false;
          break;
        }
      }
      
      if (IsStartOfAggregateGEP)
        RewriteBitCastUserOfAlloca(GEPI, AI, ElementAllocas);
    }
    

    // Move all of the users over to the new GEP.
    GEPI->replaceAllUsesWith(RepValue);
    // Delete the old GEP
    GEPI->eraseFromParent();
  }

  // Finally, delete the Alloca instruction
  AI->eraseFromParent();
  NumReplaced++;
}


/// isSafeElementUse - Check to see if this use is an allowed use for a
/// getelementptr instruction of an array aggregate allocation.  isFirstElt
/// indicates whether Ptr is known to the start of the aggregate.
///
int SROA::isSafeElementUse(Value *Ptr, bool isFirstElt, AllocationInst *AI) {
  for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
       I != E; ++I) {
    Instruction *User = cast<Instruction>(*I);
    switch (User->getOpcode()) {
    case Instruction::Load:  break;
    case Instruction::Store:
      // Store is ok if storing INTO the pointer, not storing the pointer
      if (User->getOperand(0) == Ptr) return 0;
      break;
    case Instruction::GetElementPtr: {
      GetElementPtrInst *GEP = cast<GetElementPtrInst>(User);
      bool AreAllZeroIndices = isFirstElt;
      if (GEP->getNumOperands() > 1) {
        if (!isa<ConstantInt>(GEP->getOperand(1)) ||
            !cast<ConstantInt>(GEP->getOperand(1))->isZero())
          return 0;  // Using pointer arithmetic to navigate the array.
       
        if (AreAllZeroIndices) {
          for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) {
            if (!isa<ConstantInt>(GEP->getOperand(i)) ||    
                !cast<ConstantInt>(GEP->getOperand(i))->isZero()) {
              AreAllZeroIndices = false;
              break;
            }
          }
        }
      }
      if (!isSafeElementUse(GEP, AreAllZeroIndices, AI)) return 0;
      break;
    }
    case Instruction::BitCast:
      if (isFirstElt &&
          isSafeUseOfBitCastedAllocation(cast<BitCastInst>(User), AI)) 
        break;
      DOUT << "  Transformation preventing inst: " << *User;
      return 0;
    case Instruction::Call:
      if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
        if (isFirstElt && isSafeMemIntrinsicOnAllocation(MI, AI))
          break;
      }
      DOUT << "  Transformation preventing inst: " << *User;
      return 0;
    default:
      DOUT << "  Transformation preventing inst: " << *User;
      return 0;
    }
  }
  return 3;  // All users look ok :)
}

/// AllUsersAreLoads - Return true if all users of this value are loads.
static bool AllUsersAreLoads(Value *Ptr) {
  for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
       I != E; ++I)
    if (cast<Instruction>(*I)->getOpcode() != Instruction::Load)
      return false;
  return true;
}

/// isSafeUseOfAllocation - Check to see if this user is an allowed use for an
/// aggregate allocation.
///
int SROA::isSafeUseOfAllocation(Instruction *User, AllocationInst *AI) {
  if (BitCastInst *C = dyn_cast<BitCastInst>(User))
    return isSafeUseOfBitCastedAllocation(C, AI) ? 3 : 0;
  if (!isa<GetElementPtrInst>(User)) return 0;

  GetElementPtrInst *GEPI = cast<GetElementPtrInst>(User);
  gep_type_iterator I = gep_type_begin(GEPI), E = gep_type_end(GEPI);

  // The GEP is not safe to transform if not of the form "GEP <ptr>, 0, <cst>".
  if (I == E ||
      I.getOperand() != Constant::getNullValue(I.getOperand()->getType()))
    return 0;

  ++I;
  if (I == E) return 0;  // ran out of GEP indices??

  bool IsAllZeroIndices = true;
  
  // If this is a use of an array allocation, do a bit more checking for sanity.
  if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
    uint64_t NumElements = AT->getNumElements();

    if (ConstantInt *Idx = dyn_cast<ConstantInt>(I.getOperand())) {
      IsAllZeroIndices &= Idx->isZero();
      
      // Check to make sure that index falls within the array.  If not,
      // something funny is going on, so we won't do the optimization.
      //
      if (Idx->getZExtValue() >= NumElements)
        return 0;

      // We cannot scalar repl this level of the array unless any array
      // sub-indices are in-range constants.  In particular, consider:
      // A[0][i].  We cannot know that the user isn't doing invalid things like
      // allowing i to index an out-of-range subscript that accesses A[1].
      //
      // Scalar replacing *just* the outer index of the array is probably not
      // going to be a win anyway, so just give up.
      for (++I; I != E && (isa<ArrayType>(*I) || isa<VectorType>(*I)); ++I) {
        uint64_t NumElements;
        if (const ArrayType *SubArrayTy = dyn_cast<ArrayType>(*I))
          NumElements = SubArrayTy->getNumElements();
        else
          NumElements = cast<VectorType>(*I)->getNumElements();
        
        ConstantInt *IdxVal = dyn_cast<ConstantInt>(I.getOperand());
        if (!IdxVal) return 0;
        if (IdxVal->getZExtValue() >= NumElements)
          return 0;
        IsAllZeroIndices &= IdxVal->isZero();
      }
      
    } else {
      IsAllZeroIndices = 0;
      
      // If this is an array index and the index is not constant, we cannot
      // promote... that is unless the array has exactly one or two elements in
      // it, in which case we CAN promote it, but we have to canonicalize this
      // out if this is the only problem.
      if ((NumElements == 1 || NumElements == 2) &&
          AllUsersAreLoads(GEPI))
        return 1;  // Canonicalization required!
      return 0;
    }
  }

  // If there are any non-simple uses of this getelementptr, make sure to reject
  // them.
  return isSafeElementUse(GEPI, IsAllZeroIndices, AI);
}

/// isSafeMemIntrinsicOnAllocation - Return true if the specified memory
/// intrinsic can be promoted by SROA.  At this point, we know that the operand
/// of the memintrinsic is a pointer to the beginning of the allocation.
bool SROA::isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocationInst *AI){
  // If not constant length, give up.
  ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
  if (!Length) return false;
  
  // If not the whole aggregate, give up.
  const TargetData &TD = getAnalysis<TargetData>();
  if (Length->getZExtValue() != TD.getTypeSize(AI->getType()->getElementType()))
    return false;
  
  // We only know about memcpy/memset/memmove.
  if (!isa<MemCpyInst>(MI) && !isa<MemSetInst>(MI) && !isa<MemMoveInst>(MI))
    return false;
  // Otherwise, we can transform it.
  return true;
}

/// isSafeUseOfBitCastedAllocation - Return true if all users of this bitcast
/// are 
bool SROA::isSafeUseOfBitCastedAllocation(BitCastInst *BC, AllocationInst *AI) {
  for (Value::use_iterator UI = BC->use_begin(), E = BC->use_end();
       UI != E; ++UI) {
    if (BitCastInst *BCU = dyn_cast<BitCastInst>(UI)) {
      if (!isSafeUseOfBitCastedAllocation(BCU, AI)) 
        return false;
    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(UI)) {
      if (!isSafeMemIntrinsicOnAllocation(MI, AI))
        return false;
    } else {
      return false;
    }
  }
  return true;
}

/// RewriteBitCastUserOfAlloca - BCInst (transitively) bitcasts AI, or indexes
/// to its first element.  Transform users of the cast to use the new values
/// instead.
void SROA::RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocationInst *AI,
                                      SmallVector<AllocaInst*, 32> &NewElts) {
  Constant *Zero = Constant::getNullValue(Type::Int32Ty);
  const TargetData &TD = getAnalysis<TargetData>();
  
  Value::use_iterator UI = BCInst->use_begin(), UE = BCInst->use_end();
  while (UI != UE) {
    if (BitCastInst *BCU = dyn_cast<BitCastInst>(*UI)) {
      RewriteBitCastUserOfAlloca(BCU, AI, NewElts);
      ++UI;
      BCU->eraseFromParent();
      continue;
    }

    // Otherwise, must be memcpy/memmove/memset of the entire aggregate.  Split
    // into one per element.
    MemIntrinsic *MI = dyn_cast<MemIntrinsic>(*UI);
    
    // If it's not a mem intrinsic, it must be some other user of a gep of the
    // first pointer.  Just leave these alone.
    if (!MI) {
      ++UI;
      continue;
    }
    
    // If this is a memcpy/memmove, construct the other pointer as the
    // appropriate type.
    Value *OtherPtr = 0;
    if (MemCpyInst *MCI = dyn_cast<MemCpyInst>(MI)) {
      if (BCInst == MCI->getRawDest())
        OtherPtr = MCI->getRawSource();
      else {
        assert(BCInst == MCI->getRawSource());
        OtherPtr = MCI->getRawDest();
      }
    } else if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
      if (BCInst == MMI->getRawDest())
        OtherPtr = MMI->getRawSource();
      else {
        assert(BCInst == MMI->getRawSource());
        OtherPtr = MMI->getRawDest();
      }
    }
    
    // If there is an other pointer, we want to convert it to the same pointer
    // type as AI has, so we can GEP through it.
    if (OtherPtr) {
      // It is likely that OtherPtr is a bitcast, if so, remove it.
      if (BitCastInst *BC = dyn_cast<BitCastInst>(OtherPtr))
        OtherPtr = BC->getOperand(0);
      if (ConstantExpr *BCE = dyn_cast<ConstantExpr>(OtherPtr))
        if (BCE->getOpcode() == Instruction::BitCast)
          OtherPtr = BCE->getOperand(0);
      
      // If the pointer is not the right type, insert a bitcast to the right
      // type.
      if (OtherPtr->getType() != AI->getType())
        OtherPtr = new BitCastInst(OtherPtr, AI->getType(), OtherPtr->getName(),
                                   MI);
    }

    // Process each element of the aggregate.
    Value *TheFn = MI->getOperand(0);
    const Type *BytePtrTy = MI->getRawDest()->getType();
    bool SROADest = MI->getRawDest() == BCInst;

    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
      // If this is a memcpy/memmove, emit a GEP of the other element address.
      Value *OtherElt = 0;
      if (OtherPtr) {
        OtherElt = new GetElementPtrInst(OtherPtr, Zero,
                                         ConstantInt::get(Type::Int32Ty, i),
                                         OtherPtr->getNameStr()+"."+utostr(i),
                                         MI);
      }

      Value *EltPtr = NewElts[i];
      const Type *EltTy =cast<PointerType>(EltPtr->getType())->getElementType();
      
      // If we got down to a scalar, insert a load or store as appropriate.
      if (EltTy->isFirstClassType()) {
        if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) {
          Value *Elt = new LoadInst(SROADest ? OtherElt : EltPtr, "tmp",
                                    MI);
          new StoreInst(Elt, SROADest ? EltPtr : OtherElt, MI);
          continue;
        } else {
          assert(isa<MemSetInst>(MI));

          // If the stored element is zero (common case), just store a null
          // constant.
          Constant *StoreVal;
          if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getOperand(2))) {
            if (CI->isZero()) {
              StoreVal = Constant::getNullValue(EltTy);  // 0.0, null, 0, <0,0>
            } else {
              // If EltTy is a packed type, get the element type.
              const Type *ValTy = EltTy;
              if (const VectorType *VTy = dyn_cast<VectorType>(ValTy))
                ValTy = VTy->getElementType();
              
              // Construct an integer with the right value.
              unsigned EltSize = TD.getTypeSize(ValTy);
              APInt OneVal(EltSize*8, CI->getZExtValue());
              APInt TotalVal(OneVal);
              // Set each byte.
              for (unsigned i = 0; i != EltSize-1; ++i) {
                TotalVal = TotalVal.shl(8);
                TotalVal |= OneVal;
              }
              
              // Convert the integer value to the appropriate type.
              StoreVal = ConstantInt::get(TotalVal);
              if (isa<PointerType>(ValTy))
                StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
              else if (ValTy->isFloatingPoint())
                StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
              assert(StoreVal->getType() == ValTy && "Type mismatch!");
              
              // If the requested value was a vector constant, create it.
              if (EltTy != ValTy) {
                unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
                SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
                StoreVal = ConstantVector::get(&Elts[0], NumElts);
              }
            }
            new StoreInst(StoreVal, EltPtr, MI);
            continue;
          }
          // Otherwise, if we're storing a byte variable, use a memset call for
          // this element.
        }
      }
      
      // Cast the element pointer to BytePtrTy.
      if (EltPtr->getType() != BytePtrTy)
        EltPtr = new BitCastInst(EltPtr, BytePtrTy, EltPtr->getNameStr(), MI);
    
      // Cast the other pointer (if we have one) to BytePtrTy. 
      if (OtherElt && OtherElt->getType() != BytePtrTy)
        OtherElt = new BitCastInst(OtherElt, BytePtrTy,OtherElt->getNameStr(),
                                   MI);
    
      unsigned EltSize = TD.getTypeSize(EltTy);

      // Finally, insert the meminst for this element.
      if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) {
        Value *Ops[] = {
          SROADest ? EltPtr : OtherElt,  // Dest ptr
          SROADest ? OtherElt : EltPtr,  // Src ptr
          ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size
          Zero  // Align
        };
        new CallInst(TheFn, Ops, 4, "", MI);
      } else {
        assert(isa<MemSetInst>(MI));
        Value *Ops[] = {
          EltPtr, MI->getOperand(2),  // Dest, Value,
          ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size
          Zero  // Align
        };
        new CallInst(TheFn, Ops, 4, "", MI);
      }
    }

    // Finally, MI is now dead, as we've modified its actions to occur on all of
    // the elements of the aggregate.
    ++UI;
    MI->eraseFromParent();
  }
}


/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
/// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
/// or 1 if safe after canonicalization has been performed.
///
int SROA::isSafeAllocaToScalarRepl(AllocationInst *AI) {
  // Loop over the use list of the alloca.  We can only transform it if all of
  // the users are safe to transform.
  //
  int isSafe = 3;
  for (Value::use_iterator I = AI->use_begin(), E = AI->use_end();
       I != E; ++I) {
    isSafe &= isSafeUseOfAllocation(cast<Instruction>(*I), AI);
    if (isSafe == 0) {
      DOUT << "Cannot transform: " << *AI << "  due to user: " << **I;
      return 0;
    }
  }
  // If we require cleanup, isSafe is now 1, otherwise it is 3.
  return isSafe;
}

/// CanonicalizeAllocaUsers - If SROA reported that it can promote the specified
/// allocation, but only if cleaned up, perform the cleanups required.
void SROA::CanonicalizeAllocaUsers(AllocationInst *AI) {
  // At this point, we know that the end result will be SROA'd and promoted, so
  // we can insert ugly code if required so long as sroa+mem2reg will clean it
  // up.
  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
       UI != E; ) {
    GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI++);
    if (!GEPI) continue;
    gep_type_iterator I = gep_type_begin(GEPI);
    ++I;

    if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
      uint64_t NumElements = AT->getNumElements();

      if (!isa<ConstantInt>(I.getOperand())) {
        if (NumElements == 1) {
          GEPI->setOperand(2, Constant::getNullValue(Type::Int32Ty));
        } else {
          assert(NumElements == 2 && "Unhandled case!");
          // All users of the GEP must be loads.  At each use of the GEP, insert
          // two loads of the appropriate indexed GEP and select between them.
          Value *IsOne = new ICmpInst(ICmpInst::ICMP_NE, I.getOperand(), 
                              Constant::getNullValue(I.getOperand()->getType()),
             "isone", GEPI);
          // Insert the new GEP instructions, which are properly indexed.
          SmallVector<Value*, 8> Indices(GEPI->op_begin()+1, GEPI->op_end());
          Indices[1] = Constant::getNullValue(Type::Int32Ty);
          Value *ZeroIdx = new GetElementPtrInst(GEPI->getOperand(0),
                                                 &Indices[0], Indices.size(),
                                                 GEPI->getName()+".0", GEPI);
          Indices[1] = ConstantInt::get(Type::Int32Ty, 1);
          Value *OneIdx = new GetElementPtrInst(GEPI->getOperand(0),
                                                &Indices[0], Indices.size(),
                                                GEPI->getName()+".1", GEPI);
          // Replace all loads of the variable index GEP with loads from both
          // indexes and a select.
          while (!GEPI->use_empty()) {
            LoadInst *LI = cast<LoadInst>(GEPI->use_back());
            Value *Zero = new LoadInst(ZeroIdx, LI->getName()+".0", LI);
            Value *One  = new LoadInst(OneIdx , LI->getName()+".1", LI);
            Value *R = new SelectInst(IsOne, One, Zero, LI->getName(), LI);
            LI->replaceAllUsesWith(R);
            LI->eraseFromParent();
          }
          GEPI->eraseFromParent();
        }
      }
    }
  }
}

/// MergeInType - Add the 'In' type to the accumulated type so far.  If the
/// types are incompatible, return true, otherwise update Accum and return
/// false.
///
/// There are three cases we handle here:
///   1) An effectively-integer union, where the pieces are stored into as
///      smaller integers (common with byte swap and other idioms).
///   2) A union of vector types of the same size and potentially its elements.
///      Here we turn element accesses into insert/extract element operations.
///   3) A union of scalar types, such as int/float or int/pointer.  Here we
///      merge together into integers, allowing the xform to work with #1 as
///      well.
static bool MergeInType(const Type *In, const Type *&Accum,
                        const TargetData &TD) {
  // If this is our first type, just use it.
  const VectorType *PTy;
  if (Accum == Type::VoidTy || In == Accum) {
    Accum = In;
  } else if (In == Type::VoidTy) {
    // Noop.
  } else if (In->isInteger() && Accum->isInteger()) {   // integer union.
    // Otherwise pick whichever type is larger.
    if (cast<IntegerType>(In)->getBitWidth() > 
        cast<IntegerType>(Accum)->getBitWidth())
      Accum = In;
  } else if (isa<PointerType>(In) && isa<PointerType>(Accum)) {
    // Pointer unions just stay as one of the pointers.
  } else if (isa<VectorType>(In) || isa<VectorType>(Accum)) {
    if ((PTy = dyn_cast<VectorType>(Accum)) && 
        PTy->getElementType() == In) {
      // Accum is a vector, and we are accessing an element: ok.
    } else if ((PTy = dyn_cast<VectorType>(In)) && 
               PTy->getElementType() == Accum) {
      // In is a vector, and accum is an element: ok, remember In.
      Accum = In;
    } else if ((PTy = dyn_cast<VectorType>(In)) && isa<VectorType>(Accum) &&
               PTy->getBitWidth() == cast<VectorType>(Accum)->getBitWidth()) {
      // Two vectors of the same size: keep Accum.
    } else {
      // Cannot insert an short into a <4 x int> or handle
      // <2 x int> -> <4 x int>
      return true;
    }
  } else {
    // Pointer/FP/Integer unions merge together as integers.
    switch (Accum->getTypeID()) {
    case Type::PointerTyID: Accum = TD.getIntPtrType(); break;
    case Type::FloatTyID:   Accum = Type::Int32Ty; break;
    case Type::DoubleTyID:  Accum = Type::Int64Ty; break;
    default:
      assert(Accum->isInteger() && "Unknown FP type!");
      break;
    }
    
    switch (In->getTypeID()) {
    case Type::PointerTyID: In = TD.getIntPtrType(); break;
    case Type::FloatTyID:   In = Type::Int32Ty; break;
    case Type::DoubleTyID:  In = Type::Int64Ty; break;
    default:
      assert(In->isInteger() && "Unknown FP type!");
      break;
    }
    return MergeInType(In, Accum, TD);
  }
  return false;
}

/// getUIntAtLeastAsBitAs - Return an unsigned integer type that is at least
/// as big as the specified type.  If there is no suitable type, this returns
/// null.
const Type *getUIntAtLeastAsBitAs(unsigned NumBits) {
  if (NumBits > 64) return 0;
  if (NumBits > 32) return Type::Int64Ty;
  if (NumBits > 16) return Type::Int32Ty;
  if (NumBits > 8) return Type::Int16Ty;
  return Type::Int8Ty;    
}

/// CanConvertToScalar - V is a pointer.  If we can convert the pointee to a
/// single scalar integer type, return that type.  Further, if the use is not
/// a completely trivial use that mem2reg could promote, set IsNotTrivial.  If
/// there are no uses of this pointer, return Type::VoidTy to differentiate from
/// failure.
///
const Type *SROA::CanConvertToScalar(Value *V, bool &IsNotTrivial) {
  const Type *UsedType = Type::VoidTy; // No uses, no forced type.
  const TargetData &TD = getAnalysis<TargetData>();
  const PointerType *PTy = cast<PointerType>(V->getType());

  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
    Instruction *User = cast<Instruction>(*UI);
    
    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
      if (MergeInType(LI->getType(), UsedType, TD))
        return 0;
      
    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
      // Storing the pointer, not into the value?
      if (SI->getOperand(0) == V) return 0;
      
      // NOTE: We could handle storing of FP imms into integers here!
      
      if (MergeInType(SI->getOperand(0)->getType(), UsedType, TD))
        return 0;
    } else if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
      IsNotTrivial = true;
      const Type *SubTy = CanConvertToScalar(CI, IsNotTrivial);
      if (!SubTy || MergeInType(SubTy, UsedType, TD)) return 0;
    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
      // Check to see if this is stepping over an element: GEP Ptr, int C
      if (GEP->getNumOperands() == 2 && isa<ConstantInt>(GEP->getOperand(1))) {
        unsigned Idx = cast<ConstantInt>(GEP->getOperand(1))->getZExtValue();
        unsigned ElSize = TD.getTypeSize(PTy->getElementType());
        unsigned BitOffset = Idx*ElSize*8;
        if (BitOffset > 64 || !isPowerOf2_32(ElSize)) return 0;
        
        IsNotTrivial = true;
        const Type *SubElt = CanConvertToScalar(GEP, IsNotTrivial);
        if (SubElt == 0) return 0;
        if (SubElt != Type::VoidTy && SubElt->isInteger()) {
          const Type *NewTy = 
            getUIntAtLeastAsBitAs(TD.getTypeSize(SubElt)*8+BitOffset);
          if (NewTy == 0 || MergeInType(NewTy, UsedType, TD)) return 0;
          continue;
        }
      } else if (GEP->getNumOperands() == 3 && 
                 isa<ConstantInt>(GEP->getOperand(1)) &&
                 isa<ConstantInt>(GEP->getOperand(2)) &&
                 cast<ConstantInt>(GEP->getOperand(1))->isZero()) {
        // We are stepping into an element, e.g. a structure or an array:
        // GEP Ptr, int 0, uint C
        const Type *AggTy = PTy->getElementType();
        unsigned Idx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
        
        if (const ArrayType *ATy = dyn_cast<ArrayType>(AggTy)) {
          if (Idx >= ATy->getNumElements()) return 0;  // Out of range.
        } else if (const VectorType *VectorTy = dyn_cast<VectorType>(AggTy)) {
          // Getting an element of the packed vector.
          if (Idx >= VectorTy->getNumElements()) return 0;  // Out of range.

          // Merge in the vector type.
          if (MergeInType(VectorTy, UsedType, TD)) return 0;
          
          const Type *SubTy = CanConvertToScalar(GEP, IsNotTrivial);
          if (SubTy == 0) return 0;
          
          if (SubTy != Type::VoidTy && MergeInType(SubTy, UsedType, TD))
            return 0;

          // We'll need to change this to an insert/extract element operation.
          IsNotTrivial = true;
          continue;    // Everything looks ok
          
        } else if (isa<StructType>(AggTy)) {
          // Structs are always ok.
        } else {
          return 0;
        }
        const Type *NTy = getUIntAtLeastAsBitAs(TD.getTypeSize(AggTy)*8);
        if (NTy == 0 || MergeInType(NTy, UsedType, TD)) return 0;
        const Type *SubTy = CanConvertToScalar(GEP, IsNotTrivial);
        if (SubTy == 0) return 0;
        if (SubTy != Type::VoidTy && MergeInType(SubTy, UsedType, TD))
          return 0;
        continue;    // Everything looks ok
      }
      return 0;
    } else {
      // Cannot handle this!
      return 0;
    }
  }
  
  return UsedType;
}

/// ConvertToScalar - The specified alloca passes the CanConvertToScalar
/// predicate and is non-trivial.  Convert it to something that can be trivially
/// promoted into a register by mem2reg.
void SROA::ConvertToScalar(AllocationInst *AI, const Type *ActualTy) {
  DOUT << "CONVERT TO SCALAR: " << *AI << "  TYPE = "
       << *ActualTy << "\n";
  ++NumConverted;
  
  BasicBlock *EntryBlock = AI->getParent();
  assert(EntryBlock == &EntryBlock->getParent()->getEntryBlock() &&
         "Not in the entry block!");
  EntryBlock->getInstList().remove(AI);  // Take the alloca out of the program.
  
  // Create and insert the alloca.
  AllocaInst *NewAI = new AllocaInst(ActualTy, 0, AI->getName(),
                                     EntryBlock->begin());
  ConvertUsesToScalar(AI, NewAI, 0);
  delete AI;
}


/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
/// directly.  This happens when we are converting an "integer union" to a
/// single integer scalar, or when we are converting a "vector union" to a
/// vector with insert/extractelement instructions.
///
/// Offset is an offset from the original alloca, in bits that need to be
/// shifted to the right.  By the end of this, there should be no uses of Ptr.
void SROA::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, unsigned Offset) {
  const TargetData &TD = getAnalysis<TargetData>();
  while (!Ptr->use_empty()) {
    Instruction *User = cast<Instruction>(Ptr->use_back());
    
    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
      // The load is a bit extract from NewAI shifted right by Offset bits.
      Value *NV = new LoadInst(NewAI, LI->getName(), LI);
      if (NV->getType() == LI->getType()) {
        // We win, no conversion needed.
      } else if (const VectorType *PTy = dyn_cast<VectorType>(NV->getType())) {
        // If the result alloca is a vector type, this is either an element
        // access or a bitcast to another vector type.
        if (isa<VectorType>(LI->getType())) {
          NV = new BitCastInst(NV, LI->getType(), LI->getName(), LI);
        } else {
          // Must be an element access.
          unsigned Elt = Offset/(TD.getTypeSize(PTy->getElementType())*8);
          NV = new ExtractElementInst(
                         NV, ConstantInt::get(Type::Int32Ty, Elt), "tmp", LI);
        }
      } else if (isa<PointerType>(NV->getType())) {
        assert(isa<PointerType>(LI->getType()));
        // Must be ptr->ptr cast.  Anything else would result in NV being
        // an integer.
        NV = new BitCastInst(NV, LI->getType(), LI->getName(), LI);
      } else {
        const IntegerType *NTy = cast<IntegerType>(NV->getType());
        unsigned LIBitWidth = TD.getTypeSizeInBits(LI->getType());
        
        // If this is a big-endian system and the load is narrower than the
        // full alloca type, we need to do a shift to get the right bits.
        int ShAmt = 0;
        if (TD.isBigEndian()) {
          ShAmt = NTy->getBitWidth()-LIBitWidth-Offset;
        } else {
          ShAmt = Offset;
        }
        
        // Note: we support negative bitwidths (with shl) which are not defined.
        // We do this to support (f.e.) loads off the end of a structure where
        // only some bits are used.
        if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
          NV = BinaryOperator::createLShr(NV, 
                                          ConstantInt::get(NV->getType(),ShAmt),
                                          LI->getName(), LI);
        else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
          NV = BinaryOperator::createShl(NV, 
                                         ConstantInt::get(NV->getType(),-ShAmt),
                                         LI->getName(), LI);
        
        // Finally, unconditionally truncate the integer to the right width.
        if (LIBitWidth < NTy->getBitWidth())
          NV = new TruncInst(NV, IntegerType::get(LIBitWidth),
                             LI->getName(), LI);
        
        // If the result is an integer, this is a trunc or bitcast.
        if (isa<IntegerType>(LI->getType())) {
          assert(NV->getType() == LI->getType() && "Truncate wasn't enough?");
        } else if (LI->getType()->isFloatingPoint()) {
          // Just do a bitcast, we know the sizes match up.
          NV = new BitCastInst(NV, LI->getType(), LI->getName(), LI);
        } else {
          // Otherwise must be a pointer.
          NV = new IntToPtrInst(NV, LI->getType(), LI->getName(), LI);
        }
      }
      LI->replaceAllUsesWith(NV);
      LI->eraseFromParent();
    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
      assert(SI->getOperand(0) != Ptr && "Consistency error!");

      // Convert the stored type to the actual type, shift it left to insert
      // then 'or' into place.
      Value *SV = SI->getOperand(0);
      const Type *AllocaType = NewAI->getType()->getElementType();
      if (SV->getType() == AllocaType) {
        // All is well.
      } else if (const VectorType *PTy = dyn_cast<VectorType>(AllocaType)) {
        Value *Old = new LoadInst(NewAI, NewAI->getName()+".in", SI);

        // If the result alloca is a vector type, this is either an element
        // access or a bitcast to another vector type.
        if (isa<VectorType>(SV->getType())) {
          SV = new BitCastInst(SV, AllocaType, SV->getName(), SI);
        } else {            
          // Must be an element insertion.
          unsigned Elt = Offset/(TD.getTypeSize(PTy->getElementType())*8);
          SV = new InsertElementInst(Old, SV,
                                     ConstantInt::get(Type::Int32Ty, Elt),
                                     "tmp", SI);
        }
      } else if (isa<PointerType>(AllocaType)) {
        // If the alloca type is a pointer, then all the elements must be
        // pointers.
        if (SV->getType() != AllocaType)
          SV = new BitCastInst(SV, AllocaType, SV->getName(), SI);
      } else {
        Value *Old = new LoadInst(NewAI, NewAI->getName()+".in", SI);

        // If SV is a float, convert it to the appropriate integer type.
        // If it is a pointer, do the same, and also handle ptr->ptr casts
        // here.
        unsigned SrcWidth = TD.getTypeSizeInBits(SV->getType());
        unsigned DestWidth = AllocaType->getPrimitiveSizeInBits();
        if (SV->getType()->isFloatingPoint())
          SV = new BitCastInst(SV, IntegerType::get(SrcWidth),
                               SV->getName(), SI);
        else if (isa<PointerType>(SV->getType()))
          SV = new PtrToIntInst(SV, TD.getIntPtrType(), SV->getName(), SI);
                 
        // Always zero extend the value if needed.
        if (SV->getType() != AllocaType)
          SV = new ZExtInst(SV, AllocaType, SV->getName(), SI);
        
        // If this is a big-endian system and the store is narrower than the
        // full alloca type, we need to do a shift to get the right bits.
        int ShAmt = 0;
        if (TD.isBigEndian()) {
          ShAmt = DestWidth-SrcWidth-Offset;
        } else {
          ShAmt = Offset;
        }
        
        // Note: we support negative bitwidths (with shr) which are not defined.
        // We do this to support (f.e.) stores off the end of a structure where
        // only some bits in the structure are set.
        APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
        if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
          SV = BinaryOperator::createShl(SV, 
                                         ConstantInt::get(SV->getType(), ShAmt),
                                         SV->getName(), SI);
          Mask <<= ShAmt;
        } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
          SV = BinaryOperator::createLShr(SV,
                                         ConstantInt::get(SV->getType(),-ShAmt),
                                          SV->getName(), SI);
          Mask = Mask.lshr(ShAmt);
        }
        
        // Mask out the bits we are about to insert from the old value, and or
        // in the new bits.
        if (SrcWidth != DestWidth) {
          assert(DestWidth > SrcWidth);
          Old = BinaryOperator::createAnd(Old, ConstantInt::get(~Mask),
                                          Old->getName()+".mask", SI);
          SV = BinaryOperator::createOr(Old, SV, SV->getName()+".ins", SI);
        }
      }
      new StoreInst(SV, NewAI, SI);
      SI->eraseFromParent();
      
    } else if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
       ConvertUsesToScalar(CI, NewAI, Offset);
      CI->eraseFromParent();
    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
      const PointerType *AggPtrTy = 
        cast<PointerType>(GEP->getOperand(0)->getType());
      const TargetData &TD = getAnalysis<TargetData>();
      unsigned AggSizeInBits = TD.getTypeSize(AggPtrTy->getElementType())*8;
      
      // Check to see if this is stepping over an element: GEP Ptr, int C
      unsigned NewOffset = Offset;
      if (GEP->getNumOperands() == 2) {
        unsigned Idx = cast<ConstantInt>(GEP->getOperand(1))->getZExtValue();
        unsigned BitOffset = Idx*AggSizeInBits;
        
        NewOffset += BitOffset;
      } else if (GEP->getNumOperands() == 3) {
        // We know that operand #2 is zero.
        unsigned Idx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
        const Type *AggTy = AggPtrTy->getElementType();
        if (const SequentialType *SeqTy = dyn_cast<SequentialType>(AggTy)) {
          unsigned ElSizeBits = TD.getTypeSize(SeqTy->getElementType())*8;

          NewOffset += ElSizeBits*Idx;
        } else if (const StructType *STy = dyn_cast<StructType>(AggTy)) {
          unsigned EltBitOffset =
            TD.getStructLayout(STy)->getElementOffset(Idx)*8;
          
          NewOffset += EltBitOffset;
        } else {
          assert(0 && "Unsupported operation!");
          abort();
        }
      } else {
        assert(0 && "Unsupported operation!");
        abort();
      }
      ConvertUsesToScalar(GEP, NewAI, NewOffset);
      GEP->eraseFromParent();
    } else {
      assert(0 && "Unsupported operation!");
      abort();
    }
  }
}


/// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
/// some part of a constant global variable.  This intentionally only accepts
/// constant expressions because we don't can't rewrite arbitrary instructions.
static bool PointsToConstantGlobal(Value *V) {
  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
    return GV->isConstant();
  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
    if (CE->getOpcode() == Instruction::BitCast || 
        CE->getOpcode() == Instruction::GetElementPtr)
      return PointsToConstantGlobal(CE->getOperand(0));
  return false;
}

/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
/// pointer to an alloca.  Ignore any reads of the pointer, return false if we
/// see any stores or other unknown uses.  If we see pointer arithmetic, keep
/// track of whether it moves the pointer (with isOffset) but otherwise traverse
/// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
/// the alloca, and if the source pointer is a pointer to a constant  global, we
/// can optimize this.
static bool isOnlyCopiedFromConstantGlobal(Value *V, Instruction *&TheCopy,
                                           bool isOffset) {
  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
    if (isa<LoadInst>(*UI)) {
      // Ignore loads, they are always ok.
      continue;
    }
    if (BitCastInst *BCI = dyn_cast<BitCastInst>(*UI)) {
      // If uses of the bitcast are ok, we are ok.
      if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset))
        return false;
      continue;
    }
    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) {
      // If the GEP has all zero indices, it doesn't offset the pointer.  If it
      // doesn't, it does.
      if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
                                         isOffset || !GEP->hasAllZeroIndices()))
        return false;
      continue;
    }
    
    // If this is isn't our memcpy/memmove, reject it as something we can't
    // handle.
    if (!isa<MemCpyInst>(*UI) && !isa<MemMoveInst>(*UI))
      return false;

    // If we already have seen a copy, reject the second one.
    if (TheCopy) return false;
    
    // If the pointer has been offset from the start of the alloca, we can't
    // safely handle this.
    if (isOffset) return false;

    // If the memintrinsic isn't using the alloca as the dest, reject it.
    if (UI.getOperandNo() != 1) return false;
    
    MemIntrinsic *MI = cast<MemIntrinsic>(*UI);
    
    // If the source of the memcpy/move is not a constant global, reject it.
    if (!PointsToConstantGlobal(MI->getOperand(2)))
      return false;
    
    // Otherwise, the transform is safe.  Remember the copy instruction.
    TheCopy = MI;
  }
  return true;
}

/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
/// modified by a copy from a constant global.  If we can prove this, we can
/// replace any uses of the alloca with uses of the global directly.
Instruction *SROA::isOnlyCopiedFromConstantGlobal(AllocationInst *AI) {
  Instruction *TheCopy = 0;
  if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false))
    return TheCopy;
  return 0;
}