summaryrefslogtreecommitdiff
path: root/lib/Transforms/Vectorize/LoopVectorize.cpp
blob: 8be31dc86d2556fd01a44c06e136fff594da72a4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
//===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
// and generates target-independent LLVM-IR. Legalization of the IR is done
// in the codegen. However, the vectorizes uses (will use) the codegen
// interfaces to generate IR that is likely to result in an optimal binary.
//
// The loop vectorizer combines consecutive loop iteration into a single
// 'wide' iteration. After this transformation the index is incremented
// by the SIMD vector width, and not by one.
//
// This pass has three parts:
// 1. The main loop pass that drives the different parts.
// 2. LoopVectorizationLegality - A unit that checks for the legality
//    of the vectorization.
// 3. SingleBlockLoopVectorizer - A unit that performs the actual
//    widening of instructions.
// 4. LoopVectorizationCostModel - A unit that checks for the profitability
//    of vectorization. It decides on the optimal vector width, which
//    can be one, if vectorization is not profitable.
//
//===----------------------------------------------------------------------===//
//
// The reduction-variable vectorization is based on the paper:
//  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
//
// Variable uniformity checks are inspired by:
// Karrenberg, R. and Hack, S. Whole Function Vectorization.
//
// Other ideas/concepts are from:
//  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
//
//  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
//  Vectorizing Compilers.
//
//===----------------------------------------------------------------------===//
#define LV_NAME "loop-vectorize"
#define DEBUG_TYPE LV_NAME
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Instructions.h"
#include "llvm/LLVMContext.h"
#include "llvm/Pass.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Value.h"
#include "llvm/Function.h"
#include "llvm/Analysis/Verifier.h"
#include "llvm/Module.h"
#include "llvm/Type.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AliasSetTracker.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/TargetTransformInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/DataLayout.h"
#include "llvm/Transforms/Utils/Local.h"
#include <algorithm>
using namespace llvm;

static cl::opt<unsigned>
VectorizationFactor("force-vector-width", cl::init(0), cl::Hidden,
          cl::desc("Set the default vectorization width. Zero is autoselect."));

/// We don't vectorize loops with a known constant trip count below this number.
const unsigned TinyTripCountThreshold = 16;

/// When performing a runtime memory check, do not check more than this
/// number of pointers. Notice that the check is quadratic!
const unsigned RuntimeMemoryCheckThreshold = 2;

/// This is the highest vector width that we try to generate.
const unsigned MaxVectorSize = 8;

namespace {

// Forward declarations.
class LoopVectorizationLegality;
class LoopVectorizationCostModel;

/// SingleBlockLoopVectorizer vectorizes loops which contain only one basic
/// block to a specified vectorization factor (VF).
/// This class performs the widening of scalars into vectors, or multiple
/// scalars. This class also implements the following features:
/// * It inserts an epilogue loop for handling loops that don't have iteration
///   counts that are known to be a multiple of the vectorization factor.
/// * It handles the code generation for reduction variables.
/// * Scalarization (implementation using scalars) of un-vectorizable
///   instructions.
/// SingleBlockLoopVectorizer does not perform any vectorization-legality
/// checks, and relies on the caller to check for the different legality
/// aspects. The SingleBlockLoopVectorizer relies on the
/// LoopVectorizationLegality class to provide information about the induction
/// and reduction variables that were found to a given vectorization factor.
class SingleBlockLoopVectorizer {
public:
  /// Ctor.
  SingleBlockLoopVectorizer(Loop *Orig, ScalarEvolution *Se, LoopInfo *Li,
                            DominatorTree *Dt, DataLayout *Dl,
                            unsigned VecWidth):
  OrigLoop(Orig), SE(Se), LI(Li), DT(Dt), DL(Dl), VF(VecWidth),
  Builder(Se->getContext()), Induction(0), OldInduction(0) { }

  // Perform the actual loop widening (vectorization).
  void vectorize(LoopVectorizationLegality *Legal) {
    // Create a new empty loop. Unlink the old loop and connect the new one.
    createEmptyLoop(Legal);
    // Widen each instruction in the old loop to a new one in the new loop.
    // Use the Legality module to find the induction and reduction variables.
    vectorizeLoop(Legal);
    // Register the new loop and update the analysis passes.
    updateAnalysis();
 }

private:
  /// Add code that checks at runtime if the accessed arrays overlap.
  /// Returns the comperator value or NULL if no check is needed.
  Value *addRuntimeCheck(LoopVectorizationLegality *Legal,
                         Instruction *Loc);
  /// Create an empty loop, based on the loop ranges of the old loop.
  void createEmptyLoop(LoopVectorizationLegality *Legal);
  /// Copy and widen the instructions from the old loop.
  void vectorizeLoop(LoopVectorizationLegality *Legal);
  /// Insert the new loop to the loop hierarchy and pass manager
  /// and update the analysis passes.
  void updateAnalysis();

  /// This instruction is un-vectorizable. Implement it as a sequence
  /// of scalars.
  void scalarizeInstruction(Instruction *Instr);

  /// Create a broadcast instruction. This method generates a broadcast
  /// instruction (shuffle) for loop invariant values and for the induction
  /// value. If this is the induction variable then we extend it to N, N+1, ...
  /// this is needed because each iteration in the loop corresponds to a SIMD
  /// element.
  Value *getBroadcastInstrs(Value *V);

  /// This is a helper function used by getBroadcastInstrs. It adds 0, 1, 2 ..
  /// for each element in the vector. Starting from zero.
  Value *getConsecutiveVector(Value* Val);

  /// When we go over instructions in the basic block we rely on previous
  /// values within the current basic block or on loop invariant values.
  /// When we widen (vectorize) values we place them in the map. If the values
  /// are not within the map, they have to be loop invariant, so we simply
  /// broadcast them into a vector.
  Value *getVectorValue(Value *V);

  /// Get a uniform vector of constant integers. We use this to get
  /// vectors of ones and zeros for the reduction code.
  Constant* getUniformVector(unsigned Val, Type* ScalarTy);

  typedef DenseMap<Value*, Value*> ValueMap;

  /// The original loop.
  Loop *OrigLoop;
  // Scev analysis to use.
  ScalarEvolution *SE;
  // Loop Info.
  LoopInfo *LI;
  // Dominator Tree.
  DominatorTree *DT;
  // Data Layout.
  DataLayout *DL;
  // The vectorization factor to use.
  unsigned VF;

  // The builder that we use
  IRBuilder<> Builder;

  // --- Vectorization state ---

  /// The vector-loop preheader.
  BasicBlock *LoopVectorPreHeader;
  /// The scalar-loop preheader.
  BasicBlock *LoopScalarPreHeader;
  /// Middle Block between the vector and the scalar.
  BasicBlock *LoopMiddleBlock;
  ///The ExitBlock of the scalar loop.
  BasicBlock *LoopExitBlock;
  ///The vector loop body.
  BasicBlock *LoopVectorBody;
  ///The scalar loop body.
  BasicBlock *LoopScalarBody;
  ///The first bypass block.
  BasicBlock *LoopBypassBlock;

  /// The new Induction variable which was added to the new block.
  PHINode *Induction;
  /// The induction variable of the old basic block.
  PHINode *OldInduction;
  // Maps scalars to widened vectors.
  ValueMap WidenMap;
};

/// LoopVectorizationLegality checks if it is legal to vectorize a loop, and
/// to what vectorization factor.
/// This class does not look at the profitability of vectorization, only the
/// legality. This class has two main kinds of checks:
/// * Memory checks - The code in canVectorizeMemory checks if vectorization
///   will change the order of memory accesses in a way that will change the
///   correctness of the program.
/// * Scalars checks - The code in canVectorizeBlock checks for a number
///   of different conditions, such as the availability of a single induction
///   variable, that all types are supported and vectorize-able, etc.
/// This code reflects the capabilities of SingleBlockLoopVectorizer.
/// This class is also used by SingleBlockLoopVectorizer for identifying
/// induction variable and the different reduction variables.
class LoopVectorizationLegality {
public:
  LoopVectorizationLegality(Loop *Lp, ScalarEvolution *Se, DataLayout *Dl):
  TheLoop(Lp), SE(Se), DL(Dl), Induction(0) { }

  /// This represents the kinds of reductions that we support.
  enum ReductionKind {
    NoReduction, /// Not a reduction.
    IntegerAdd,  /// Sum of numbers.
    IntegerMult, /// Product of numbers.
    IntegerOr,   /// Bitwise or logical OR of numbers.
    IntegerAnd,  /// Bitwise or logical AND of numbers.
    IntegerXor   /// Bitwise or logical XOR of numbers.
  };

  /// This POD struct holds information about reduction variables.
  struct ReductionDescriptor {
    // Default C'tor
    ReductionDescriptor():
    StartValue(0), LoopExitInstr(0), Kind(NoReduction) {}

    // C'tor.
    ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K):
    StartValue(Start), LoopExitInstr(Exit), Kind(K) {}

    // The starting value of the reduction.
    // It does not have to be zero!
    Value *StartValue;
    // The instruction who's value is used outside the loop.
    Instruction *LoopExitInstr;
    // The kind of the reduction.
    ReductionKind Kind;
  };

  // This POD struct holds information about the memory runtime legality
  // check that a group of pointers do not overlap.
  struct RuntimePointerCheck {
    RuntimePointerCheck(): Need(false) {}

    /// Reset the state of the pointer runtime information.
    void reset() {
      Need = false;
      Pointers.clear();
      Starts.clear();
      Ends.clear();
    }

    /// Insert a pointer and calculate the start and end SCEVs.
    void insert(ScalarEvolution *SE, Loop *Lp, Value *Ptr) {
      const SCEV *Sc = SE->getSCEV(Ptr);
      const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
      assert(AR && "Invalid addrec expression");
      const SCEV *Ex = SE->getExitCount(Lp, Lp->getHeader());
      const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE);
      Pointers.push_back(Ptr);
      Starts.push_back(AR->getStart());
      Ends.push_back(ScEnd);
    }

    /// This flag indicates if we need to add the runtime check.
    bool Need;
    /// Holds the pointers that we need to check.
    SmallVector<Value*, 2> Pointers;
    /// Holds the pointer value at the beginning of the loop.
    SmallVector<const SCEV*, 2> Starts;
    /// Holds the pointer value at the end of the loop.
    SmallVector<const SCEV*, 2> Ends;
  };

  /// ReductionList contains the reduction descriptors for all
  /// of the reductions that were found in the loop.
  typedef DenseMap<PHINode*, ReductionDescriptor> ReductionList;

  /// InductionList saves induction variables and maps them to the initial
  /// value entring the loop.
  typedef DenseMap<PHINode*, Value*> InductionList;

  /// Returns true if it is legal to vectorize this loop.
  /// This does not mean that it is profitable to vectorize this
  /// loop, only that it is legal to do so.
  bool canVectorize();

  /// Returns the Induction variable.
  PHINode *getInduction() {return Induction;}

  /// Returns the reduction variables found in the loop.
  ReductionList *getReductionVars() { return &Reductions; }

  /// Returns the induction variables found in the loop.
  InductionList *getInductionVars() { return &Inductions; }

  /// Check if this  pointer is consecutive when vectorizing. This happens
  /// when the last index of the GEP is the induction variable, or that the
  /// pointer itself is an induction variable.
  /// This check allows us to vectorize A[idx] into a wide load/store.
  bool isConsecutivePtr(Value *Ptr);

  /// Returns true if the value V is uniform within the loop.
  bool isUniform(Value *V);

  /// Returns true if this instruction will remain scalar after vectorization.
  bool isUniformAfterVectorization(Instruction* I) {return Uniforms.count(I);}

  /// Returns the information that we collected about runtime memory check.
  RuntimePointerCheck *getRuntimePointerCheck() {return &PtrRtCheck; }
private:
  /// Check if a single basic block loop is vectorizable.
  /// At this point we know that this is a loop with a constant trip count
  /// and we only need to check individual instructions.
  bool canVectorizeBlock(BasicBlock &BB);

  /// When we vectorize loops we may change the order in which
  /// we read and write from memory. This method checks if it is
  /// legal to vectorize the code, considering only memory constrains.
  /// Returns true if BB is vectorizable
  bool canVectorizeMemory(BasicBlock &BB);

  /// Returns True, if 'Phi' is the kind of reduction variable for type
  /// 'Kind'. If this is a reduction variable, it adds it to ReductionList.
  bool AddReductionVar(PHINode *Phi, ReductionKind Kind);
  /// Returns true if the instruction I can be a reduction variable of type
  /// 'Kind'.
  bool isReductionInstr(Instruction *I, ReductionKind Kind);
  /// Returns True, if 'Phi' is an induction variable.
  bool isInductionVariable(PHINode *Phi);
  /// Return true if can compute the address bounds of Ptr within the loop.
  bool hasComputableBounds(Value *Ptr);

  /// The loop that we evaluate.
  Loop *TheLoop;
  /// Scev analysis.
  ScalarEvolution *SE;
  /// DataLayout analysis.
  DataLayout *DL;

  //  ---  vectorization state --- //

  /// Holds the integer induction variable. This is the counter of the
  /// loop.
  PHINode *Induction;
  /// Holds the reduction variables.
  ReductionList Reductions;
  /// Holds all of the induction variables that we found in the loop.
  /// Notice that inductions don't need to start at zero and that induction
  /// variables can be pointers.
  InductionList Inductions;

  /// Allowed outside users. This holds the reduction
  /// vars which can be accessed from outside the loop.
  SmallPtrSet<Value*, 4> AllowedExit;
  /// This set holds the variables which are known to be uniform after
  /// vectorization.
  SmallPtrSet<Instruction*, 4> Uniforms;
  /// We need to check that all of the pointers in this list are disjoint
  /// at runtime.
  RuntimePointerCheck PtrRtCheck;
};

/// LoopVectorizationCostModel - estimates the expected speedups due to
/// vectorization.
/// In many cases vectorization is not profitable. This can happen because
/// of a number of reasons. In this class we mainly attempt to predict
/// the expected speedup/slowdowns due to the supported instruction set.
/// We use the VectorTargetTransformInfo to query the different backends
/// for the cost of different operations.
class LoopVectorizationCostModel {
public:
  /// C'tor.
  LoopVectorizationCostModel(Loop *Lp, ScalarEvolution *Se,
                             LoopVectorizationLegality *Leg,
                             const VectorTargetTransformInfo *Vtti):
  TheLoop(Lp), SE(Se), Legal(Leg), VTTI(Vtti) { }

  /// Returns the most profitable vectorization factor for the loop that is
  /// smaller or equal to the VF argument. This method checks every power
  /// of two up to VF.
  unsigned findBestVectorizationFactor(unsigned VF = MaxVectorSize);

private:
  /// Returns the expected execution cost. The unit of the cost does
  /// not matter because we use the 'cost' units to compare different
  /// vector widths. The cost that is returned is *not* normalized by
  /// the factor width.
  unsigned expectedCost(unsigned VF);

  /// Returns the execution time cost of an instruction for a given vector
  /// width. Vector width of one means scalar.
  unsigned getInstructionCost(Instruction *I, unsigned VF);

  /// A helper function for converting Scalar types to vector types.
  /// If the incoming type is void, we return void. If the VF is 1, we return
  /// the scalar type.
  static Type* ToVectorTy(Type *Scalar, unsigned VF);

  /// The loop that we evaluate.
  Loop *TheLoop;
  /// Scev analysis.
  ScalarEvolution *SE;

  /// Vectorization legality.
  LoopVectorizationLegality *Legal;
  /// Vector target information.
  const VectorTargetTransformInfo *VTTI;
};

struct LoopVectorize : public LoopPass {
  static char ID; // Pass identification, replacement for typeid

  LoopVectorize() : LoopPass(ID) {
    initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
  }

  ScalarEvolution *SE;
  DataLayout *DL;
  LoopInfo *LI;
  TargetTransformInfo *TTI;
  DominatorTree *DT;

  virtual bool runOnLoop(Loop *L, LPPassManager &LPM) {
    // We only vectorize innermost loops.
    if (!L->empty())
      return false;

    SE = &getAnalysis<ScalarEvolution>();
    DL = getAnalysisIfAvailable<DataLayout>();
    LI = &getAnalysis<LoopInfo>();
    TTI = getAnalysisIfAvailable<TargetTransformInfo>();
    DT = &getAnalysis<DominatorTree>();

    DEBUG(dbgs() << "LV: Checking a loop in \"" <<
          L->getHeader()->getParent()->getName() << "\"\n");

    // Check if it is legal to vectorize the loop.
    LoopVectorizationLegality LVL(L, SE, DL);
    if (!LVL.canVectorize()) {
      DEBUG(dbgs() << "LV: Not vectorizing.\n");
      return false;
    }

    // Select the preffered vectorization factor.
    unsigned VF = 1;
    if (VectorizationFactor == 0) {
      const VectorTargetTransformInfo *VTTI = 0;
      if (TTI)
        VTTI = TTI->getVectorTargetTransformInfo();
      // Use the cost model.
      LoopVectorizationCostModel CM(L, SE, &LVL, VTTI);
      VF = CM.findBestVectorizationFactor();

      if (VF == 1) {
        DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
        return false;
      }

    } else {
      // Use the user command flag.
      VF = VectorizationFactor;
    }

    DEBUG(dbgs() << "LV: Found a vectorizable loop ("<< VF << ") in "<<
          L->getHeader()->getParent()->getParent()->getModuleIdentifier()<<
          "\n");

    // If we decided that it is *legal* to vectorizer the loop then do it.
    SingleBlockLoopVectorizer LB(L, SE, LI, DT, DL, VF);
    LB.vectorize(&LVL);

    DEBUG(verifyFunction(*L->getHeader()->getParent()));
    return true;
  }

  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    LoopPass::getAnalysisUsage(AU);
    AU.addRequiredID(LoopSimplifyID);
    AU.addRequiredID(LCSSAID);
    AU.addRequired<LoopInfo>();
    AU.addRequired<ScalarEvolution>();
    AU.addRequired<DominatorTree>();
    AU.addPreserved<LoopInfo>();
    AU.addPreserved<DominatorTree>();
  }

};

Value *SingleBlockLoopVectorizer::getBroadcastInstrs(Value *V) {
  // Create the types.
  LLVMContext &C = V->getContext();
  Type *VTy = VectorType::get(V->getType(), VF);
  Type *I32 = IntegerType::getInt32Ty(C);

  // Save the current insertion location.
  Instruction *Loc = Builder.GetInsertPoint();

  // We need to place the broadcast of invariant variables outside the loop.
  bool Invariant = (OrigLoop->isLoopInvariant(V) && V != Induction);

  // Place the code for broadcasting invariant variables in the new preheader.
  if (Invariant)
    Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());

  Constant *Zero = ConstantInt::get(I32, 0);
  Value *Zeros = ConstantAggregateZero::get(VectorType::get(I32, VF));
  Value *UndefVal = UndefValue::get(VTy);
  // Insert the value into a new vector.
  Value *SingleElem = Builder.CreateInsertElement(UndefVal, V, Zero);
  // Broadcast the scalar into all locations in the vector.
  Value *Shuf = Builder.CreateShuffleVector(SingleElem, UndefVal, Zeros,
                                             "broadcast");

  // Restore the builder insertion point.
  if (Invariant)
    Builder.SetInsertPoint(Loc);

  return Shuf;
}

Value *SingleBlockLoopVectorizer::getConsecutiveVector(Value* Val) {
  assert(Val->getType()->isVectorTy() && "Must be a vector");
  assert(Val->getType()->getScalarType()->isIntegerTy() &&
         "Elem must be an integer");
  // Create the types.
  Type *ITy = Val->getType()->getScalarType();
  VectorType *Ty = cast<VectorType>(Val->getType());
  unsigned VLen = Ty->getNumElements();
  SmallVector<Constant*, 8> Indices;

  // Create a vector of consecutive numbers from zero to VF.
  for (unsigned i = 0; i < VLen; ++i)
    Indices.push_back(ConstantInt::get(ITy, i));

  // Add the consecutive indices to the vector value.
  Constant *Cv = ConstantVector::get(Indices);
  assert(Cv->getType() == Val->getType() && "Invalid consecutive vec");
  return Builder.CreateAdd(Val, Cv, "induction");
}

bool LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
  assert(Ptr->getType()->isPointerTy() && "Unexpected non ptr");

  // If this pointer is an induction variable, return it.
  PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr);
  if (Phi && getInductionVars()->count(Phi))
    return true;

  GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr);
  if (!Gep)
    return false;

  unsigned NumOperands = Gep->getNumOperands();
  Value *LastIndex = Gep->getOperand(NumOperands - 1);

  // Check that all of the gep indices are uniform except for the last.
  for (unsigned i = 0; i < NumOperands - 1; ++i)
    if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
      return false;

  // We can emit wide load/stores only if the last index is the induction
  // variable.
  const SCEV *Last = SE->getSCEV(LastIndex);
  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) {
    const SCEV *Step = AR->getStepRecurrence(*SE);

    // The memory is consecutive because the last index is consecutive
    // and all other indices are loop invariant.
    if (Step->isOne())
      return true;
  }

  return false;
}

bool LoopVectorizationLegality::isUniform(Value *V) {
  return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
}

Value *SingleBlockLoopVectorizer::getVectorValue(Value *V) {
  assert(V != Induction && "The new induction variable should not be used.");
  assert(!V->getType()->isVectorTy() && "Can't widen a vector");
  // If we saved a vectorized copy of V, use it.
  Value *&MapEntry = WidenMap[V];
  if (MapEntry)
    return MapEntry;

  // Broadcast V and save the value for future uses.
  Value *B = getBroadcastInstrs(V);
  MapEntry = B;
  return B;
}

Constant*
SingleBlockLoopVectorizer::getUniformVector(unsigned Val, Type* ScalarTy) {
  return ConstantVector::getSplat(VF, ConstantInt::get(ScalarTy, Val, true));
}

void SingleBlockLoopVectorizer::scalarizeInstruction(Instruction *Instr) {
  assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
  // Holds vector parameters or scalars, in case of uniform vals.
  SmallVector<Value*, 8> Params;

  // Find all of the vectorized parameters.
  for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
    Value *SrcOp = Instr->getOperand(op);

    // If we are accessing the old induction variable, use the new one.
    if (SrcOp == OldInduction) {
      Params.push_back(getVectorValue(SrcOp));
      continue;
    }

    // Try using previously calculated values.
    Instruction *SrcInst = dyn_cast<Instruction>(SrcOp);

    // If the src is an instruction that appeared earlier in the basic block
    // then it should already be vectorized.
    if (SrcInst && SrcInst->getParent() == Instr->getParent()) {
      assert(WidenMap.count(SrcInst) && "Source operand is unavailable");
      // The parameter is a vector value from earlier.
      Params.push_back(WidenMap[SrcInst]);
    } else {
      // The parameter is a scalar from outside the loop. Maybe even a constant.
      Params.push_back(SrcOp);
    }
  }

  assert(Params.size() == Instr->getNumOperands() &&
         "Invalid number of operands");

  // Does this instruction return a value ?
  bool IsVoidRetTy = Instr->getType()->isVoidTy();
  Value *VecResults = 0;

  // If we have a return value, create an empty vector. We place the scalarized
  // instructions in this vector.
  if (!IsVoidRetTy)
    VecResults = UndefValue::get(VectorType::get(Instr->getType(), VF));

  // For each scalar that we create:
  for (unsigned i = 0; i < VF; ++i) {
    Instruction *Cloned = Instr->clone();
    if (!IsVoidRetTy)
      Cloned->setName(Instr->getName() + ".cloned");
    // Replace the operands of the cloned instrucions with extracted scalars.
    for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
      Value *Op = Params[op];
      // Param is a vector. Need to extract the right lane.
      if (Op->getType()->isVectorTy())
        Op = Builder.CreateExtractElement(Op, Builder.getInt32(i));
      Cloned->setOperand(op, Op);
    }

    // Place the cloned scalar in the new loop.
    Builder.Insert(Cloned);

    // If the original scalar returns a value we need to place it in a vector
    // so that future users will be able to use it.
    if (!IsVoidRetTy)
      VecResults = Builder.CreateInsertElement(VecResults, Cloned,
                                               Builder.getInt32(i));
  }

  if (!IsVoidRetTy)
    WidenMap[Instr] = VecResults;
}

Value*
SingleBlockLoopVectorizer::addRuntimeCheck(LoopVectorizationLegality *Legal,
                                           Instruction *Loc) {
  LoopVectorizationLegality::RuntimePointerCheck *PtrRtCheck =
    Legal->getRuntimePointerCheck();

  if (!PtrRtCheck->Need)
    return NULL;

  Value *MemoryRuntimeCheck = 0;
  unsigned NumPointers = PtrRtCheck->Pointers.size();
  SmallVector<Value* , 2> Starts;
  SmallVector<Value* , 2> Ends;

  SCEVExpander Exp(*SE, "induction");

  // Use this type for pointer arithmetic.
  Type* PtrArithTy = PtrRtCheck->Pointers[0]->getType();

  for (unsigned i = 0; i < NumPointers; ++i) {
    Value *Ptr = PtrRtCheck->Pointers[i];
    const SCEV *Sc = SE->getSCEV(Ptr);

    if (SE->isLoopInvariant(Sc, OrigLoop)) {
      DEBUG(dbgs() << "LV: Adding RT check for a loop invariant ptr:" <<
            *Ptr <<"\n");
      Starts.push_back(Ptr);
      Ends.push_back(Ptr);
    } else {
      DEBUG(dbgs() << "LV: Adding RT check for range:" << *Ptr <<"\n");

      Value *Start = Exp.expandCodeFor(PtrRtCheck->Starts[i],
                                       PtrArithTy, Loc);
      Value *End = Exp.expandCodeFor(PtrRtCheck->Ends[i], PtrArithTy, Loc);
      Starts.push_back(Start);
      Ends.push_back(End);
    }
  }

  for (unsigned i = 0; i < NumPointers; ++i) {
    for (unsigned j = i+1; j < NumPointers; ++j) {
      Value *Cmp0 = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_ULE,
                                    Starts[i], Ends[j], "bound0", Loc);
      Value *Cmp1 = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_ULE,
                                    Starts[j], Ends[i], "bound1", Loc);
      Value *IsConflict = BinaryOperator::Create(Instruction::And, Cmp0, Cmp1,
                                                 "found.conflict", Loc);
      if (MemoryRuntimeCheck)
        MemoryRuntimeCheck = BinaryOperator::Create(Instruction::Or,
                                                    MemoryRuntimeCheck,
                                                    IsConflict,
                                                    "conflict.rdx", Loc);
      else
        MemoryRuntimeCheck = IsConflict;

    }
  }

  return MemoryRuntimeCheck;
}

void
SingleBlockLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) {
  /*
   In this function we generate a new loop. The new loop will contain
   the vectorized instructions while the old loop will continue to run the
   scalar remainder.

    [ ] <-- vector loop bypass.
  /  |
 /   v
|   [ ]     <-- vector pre header.
|    |
|    v
|   [  ] \
|   [  ]_|   <-- vector loop.
|    |
 \   v
   >[ ]   <--- middle-block.
  /  |
 /   v
|   [ ]     <--- new preheader.
|    |
|    v
|   [ ] \
|   [ ]_|   <-- old scalar loop to handle remainder.
 \   |
  \  v
   >[ ]     <-- exit block.
   ...
   */

  BasicBlock *OldBasicBlock = OrigLoop->getHeader();
  BasicBlock *BypassBlock = OrigLoop->getLoopPreheader();
  BasicBlock *ExitBlock = OrigLoop->getExitBlock();
  assert(ExitBlock && "Must have an exit block");

  // Some loops have a single integer induction variable, while other loops
  // don't. One example is c++ iterators that often have multiple pointer
  // induction variables. In the code below we also support a case where we
  // don't have a single induction variable.
  OldInduction = Legal->getInduction();
  Type *IdxTy = OldInduction ? OldInduction->getType() :
    DL->getIntPtrType(SE->getContext());

  // Find the loop boundaries.
  const SCEV *ExitCount = SE->getExitCount(OrigLoop, OrigLoop->getHeader());
  assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count");

  // Get the total trip count from the count by adding 1.
  ExitCount = SE->getAddExpr(ExitCount,
                             SE->getConstant(ExitCount->getType(), 1));

  // Expand the trip count and place the new instructions in the preheader.
  // Notice that the pre-header does not change, only the loop body.
  SCEVExpander Exp(*SE, "induction");

  // Count holds the overall loop count (N).
  Value *Count = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
                                   BypassBlock->getTerminator());

  // The loop index does not have to start at Zero. Find the original start
  // value from the induction PHI node. If we don't have an induction variable
  // then we know that it starts at zero.
  Value *StartIdx = OldInduction ?
    OldInduction->getIncomingValueForBlock(BypassBlock):
    ConstantInt::get(IdxTy, 0);

  assert(OrigLoop->getNumBlocks() == 1 && "Invalid loop");
  assert(BypassBlock && "Invalid loop structure");

  // Generate the code that checks in runtime if arrays overlap.
  Value *MemoryRuntimeCheck = addRuntimeCheck(Legal,
                                              BypassBlock->getTerminator());

  // Split the single block loop into the two loop structure described above.
  BasicBlock *VectorPH =
      BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph");
  BasicBlock *VecBody =
    VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body");
  BasicBlock *MiddleBlock =
    VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block");
  BasicBlock *ScalarPH =
    MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph");

  // This is the location in which we add all of the logic for bypassing
  // the new vector loop.
  Instruction *Loc = BypassBlock->getTerminator();

  // Use this IR builder to create the loop instructions (Phi, Br, Cmp)
  // inside the loop.
  Builder.SetInsertPoint(VecBody->getFirstInsertionPt());

  // Generate the induction variable.
  Induction = Builder.CreatePHI(IdxTy, 2, "index");
  Constant *Step = ConstantInt::get(IdxTy, VF);

  // We may need to extend the index in case there is a type mismatch.
  // We know that the count starts at zero and does not overflow.
  if (Count->getType() != IdxTy) {
    // The exit count can be of pointer type. Convert it to the correct
    // integer type.
    if (ExitCount->getType()->isPointerTy())
      Count = CastInst::CreatePointerCast(Count, IdxTy, "ptrcnt.to.int", Loc);
    else
      Count = CastInst::CreateZExtOrBitCast(Count, IdxTy, "zext.cnt", Loc);
  }

  // Add the start index to the loop count to get the new end index.
  Value *IdxEnd = BinaryOperator::CreateAdd(Count, StartIdx, "end.idx", Loc);

  // Now we need to generate the expression for N - (N % VF), which is
  // the part that the vectorized body will execute.
  Constant *CIVF = ConstantInt::get(IdxTy, VF);
  Value *R = BinaryOperator::CreateURem(Count, CIVF, "n.mod.vf", Loc);
  Value *CountRoundDown = BinaryOperator::CreateSub(Count, R, "n.vec", Loc);
  Value *IdxEndRoundDown = BinaryOperator::CreateAdd(CountRoundDown, StartIdx,
                                                     "end.idx.rnd.down", Loc);

  // Now, compare the new count to zero. If it is zero skip the vector loop and
  // jump to the scalar loop.
  Value *Cmp = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
                               IdxEndRoundDown,
                               StartIdx,
                               "cmp.zero", Loc);

  // If we are using memory runtime checks, include them in.
  if (MemoryRuntimeCheck)
    Cmp = BinaryOperator::Create(Instruction::Or, Cmp, MemoryRuntimeCheck,
                                 "CntOrMem", Loc);

  BranchInst::Create(MiddleBlock, VectorPH, Cmp, Loc);
  // Remove the old terminator.
  Loc->eraseFromParent();

  // We are going to resume the execution of the scalar loop.
  // Go over all of the induction variables that we found and fix the
  // PHIs that are left in the scalar version of the loop.
  // The starting values of PHI nodes depend on the counter of the last
  // iteration in the vectorized loop.
  // If we come from a bypass edge then we need to start from the original start
  // value.

  // This variable saves the new starting index for the scalar loop.
  PHINode *ResumeIndex = 0;
  LoopVectorizationLegality::InductionList::iterator I, E;
  LoopVectorizationLegality::InductionList *List = Legal->getInductionVars();
  for (I = List->begin(), E = List->end(); I != E; ++I) {
    PHINode *OrigPhi = I->first;
    PHINode *ResumeVal = PHINode::Create(OrigPhi->getType(), 2, "resume.val",
                                           MiddleBlock->getTerminator());
    Value *EndValue = 0;
    if (OrigPhi->getType()->isIntegerTy()) {
      // Handle the integer induction counter:
      assert(OrigPhi == OldInduction && "Unknown integer PHI");
      // We know what the end value is.
      EndValue = IdxEndRoundDown;
      // We also know which PHI node holds it.
      ResumeIndex = ResumeVal;
    } else {
      // For pointer induction variables, calculate the offset using
      // the end index.
      EndValue = GetElementPtrInst::Create(I->second, CountRoundDown,
                                           "ptr.ind.end",
                                           BypassBlock->getTerminator());
    }

    // The new PHI merges the original incoming value, in case of a bypass,
    // or the value at the end of the vectorized loop.
    ResumeVal->addIncoming(I->second, BypassBlock);
    ResumeVal->addIncoming(EndValue, VecBody);

    // Fix the scalar body counter (PHI node).
    unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH);
    OrigPhi->setIncomingValue(BlockIdx, ResumeVal);
  }

  // If we are generating a new induction variable then we also need to
  // generate the code that calculates the exit value. This value is not
  // simply the end of the counter because we may skip the vectorized body
  // in case of a runtime check.
  if (!OldInduction){
    assert(!ResumeIndex && "Unexpected resume value found");
    ResumeIndex = PHINode::Create(IdxTy, 2, "new.indc.resume.val",
                                  MiddleBlock->getTerminator());
    ResumeIndex->addIncoming(StartIdx, BypassBlock);
    ResumeIndex->addIncoming(IdxEndRoundDown, VecBody);
  }

  // Make sure that we found the index where scalar loop needs to continue.
  assert(ResumeIndex && ResumeIndex->getType()->isIntegerTy() &&
         "Invalid resume Index");

  // Add a check in the middle block to see if we have completed
  // all of the iterations in the first vector loop.
  // If (N - N%VF) == N, then we *don't* need to run the remainder.
  Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, IdxEnd,
                                ResumeIndex, "cmp.n",
                                MiddleBlock->getTerminator());

  BranchInst::Create(ExitBlock, ScalarPH, CmpN, MiddleBlock->getTerminator());
  // Remove the old terminator.
  MiddleBlock->getTerminator()->eraseFromParent();

  // Create i+1 and fill the PHINode.
  Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next");
  Induction->addIncoming(StartIdx, VectorPH);
  Induction->addIncoming(NextIdx, VecBody);
  // Create the compare.
  Value *ICmp = Builder.CreateICmpEQ(NextIdx, IdxEndRoundDown);
  Builder.CreateCondBr(ICmp, MiddleBlock, VecBody);

  // Now we have two terminators. Remove the old one from the block.
  VecBody->getTerminator()->eraseFromParent();

  // Get ready to start creating new instructions into the vectorized body.
  Builder.SetInsertPoint(VecBody->getFirstInsertionPt());

  // Create and register the new vector loop.
  Loop* Lp = new Loop();
  Loop *ParentLoop = OrigLoop->getParentLoop();

  // Insert the new loop into the loop nest and register the new basic blocks.
  if (ParentLoop) {
    ParentLoop->addChildLoop(Lp);
    ParentLoop->addBasicBlockToLoop(ScalarPH, LI->getBase());
    ParentLoop->addBasicBlockToLoop(VectorPH, LI->getBase());
    ParentLoop->addBasicBlockToLoop(MiddleBlock, LI->getBase());
  } else {
    LI->addTopLevelLoop(Lp);
  }

  Lp->addBasicBlockToLoop(VecBody, LI->getBase());

  // Save the state.
  LoopVectorPreHeader = VectorPH;
  LoopScalarPreHeader = ScalarPH;
  LoopMiddleBlock = MiddleBlock;
  LoopExitBlock = ExitBlock;
  LoopVectorBody = VecBody;
  LoopScalarBody = OldBasicBlock;
  LoopBypassBlock = BypassBlock;
}

/// This function returns the identity element (or neutral element) for
/// the operation K.
static unsigned
getReductionIdentity(LoopVectorizationLegality::ReductionKind K) {
  switch (K) {
  case LoopVectorizationLegality::IntegerXor:
  case LoopVectorizationLegality::IntegerAdd:
  case LoopVectorizationLegality::IntegerOr:
    // Adding, Xoring, Oring zero to a number does not change it.
    return 0;
  case LoopVectorizationLegality::IntegerMult:
    // Multiplying a number by 1 does not change it.
    return 1;
  case LoopVectorizationLegality::IntegerAnd:
    // AND-ing a number with an all-1 value does not change it.
    return -1;
  default:
    llvm_unreachable("Unknown reduction kind");
  }
}

void
SingleBlockLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) {
  //===------------------------------------------------===//
  //
  // Notice: any optimization or new instruction that go
  // into the code below should be also be implemented in
  // the cost-model.
  //
  //===------------------------------------------------===//
  typedef SmallVector<PHINode*, 4> PhiVector;
  BasicBlock &BB = *OrigLoop->getHeader();
  Constant *Zero = ConstantInt::get(
    IntegerType::getInt32Ty(BB.getContext()), 0);

  // In order to support reduction variables we need to be able to vectorize
  // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two
  // stages. First, we create a new vector PHI node with no incoming edges.
  // We use this value when we vectorize all of the instructions that use the
  // PHI. Next, after all of the instructions in the block are complete we
  // add the new incoming edges to the PHI. At this point all of the
  // instructions in the basic block are vectorized, so we can use them to
  // construct the PHI.
  PhiVector RdxPHIsToFix;

  // For each instruction in the old loop.
  for (BasicBlock::iterator it = BB.begin(), e = BB.end(); it != e; ++it) {
    Instruction *Inst = it;

    switch (Inst->getOpcode()) {
      case Instruction::Br:
        // Nothing to do for PHIs and BR, since we already took care of the
        // loop control flow instructions.
        continue;
      case Instruction::PHI:{
        PHINode* P = cast<PHINode>(Inst);
        // Handle reduction variables:
        if (Legal->getReductionVars()->count(P)) {
          // This is phase one of vectorizing PHIs.
          Type *VecTy = VectorType::get(Inst->getType(), VF);
          WidenMap[Inst] = PHINode::Create(VecTy, 2, "vec.phi",
                                  LoopVectorBody->getFirstInsertionPt());
          RdxPHIsToFix.push_back(P);
          continue;
        }

        // This PHINode must be an induction variable.
        // Make sure that we know about it.
        assert(Legal->getInductionVars()->count(P) &&
               "Not an induction variable");

        if (P->getType()->isIntegerTy()) {
          assert(P == OldInduction && "Unexpected PHI");
          Value *Broadcasted = getBroadcastInstrs(Induction);
          // After broadcasting the induction variable we need to make the
          // vector consecutive by adding 0, 1, 2 ...
          Value *ConsecutiveInduction = getConsecutiveVector(Broadcasted);
           
          WidenMap[OldInduction] = ConsecutiveInduction;
          continue;
        }

        // Handle pointer inductions.
        assert(P->getType()->isPointerTy() && "Unexpected type.");
        Value *StartIdx = OldInduction ?
          Legal->getInductionVars()->lookup(OldInduction) :
          ConstantInt::get(Induction->getType(), 0);

        // This is the pointer value coming into the loop.
        Value *StartPtr = Legal->getInductionVars()->lookup(P);

        // This is the normalized GEP that starts counting at zero.
        Value *NormalizedIdx = Builder.CreateSub(Induction, StartIdx,
                                                 "normalized.idx");

        // This is the vector of results. Notice that we don't generate vector
        // geps because scalar geps result in better code.
        Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF));
        for (unsigned int i = 0; i < VF; ++i) {
          Constant *Idx = ConstantInt::get(Induction->getType(), i);
          Value *GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx");
          Value *SclrGep = Builder.CreateGEP(StartPtr, GlobalIdx, "next.gep");
          VecVal = Builder.CreateInsertElement(VecVal, SclrGep,
                                               Builder.getInt32(i),
                                               "insert.gep");
        }

        WidenMap[Inst] = VecVal;
        continue;
      }
      case Instruction::Add:
      case Instruction::FAdd:
      case Instruction::Sub:
      case Instruction::FSub:
      case Instruction::Mul:
      case Instruction::FMul:
      case Instruction::UDiv:
      case Instruction::SDiv:
      case Instruction::FDiv:
      case Instruction::URem:
      case Instruction::SRem:
      case Instruction::FRem:
      case Instruction::Shl:
      case Instruction::LShr:
      case Instruction::AShr:
      case Instruction::And:
      case Instruction::Or:
      case Instruction::Xor: {
        // Just widen binops.
        BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst);
        Value *A = getVectorValue(Inst->getOperand(0));
        Value *B = getVectorValue(Inst->getOperand(1));

        // Use this vector value for all users of the original instruction.
        Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A, B);
        WidenMap[Inst] = V;

        // Update the NSW, NUW and Exact flags.
        BinaryOperator *VecOp = cast<BinaryOperator>(V);
        if (isa<OverflowingBinaryOperator>(BinOp)) {
          VecOp->setHasNoSignedWrap(BinOp->hasNoSignedWrap());
          VecOp->setHasNoUnsignedWrap(BinOp->hasNoUnsignedWrap());
        }
        if (isa<PossiblyExactOperator>(VecOp))
          VecOp->setIsExact(BinOp->isExact());
        break;
      }
      case Instruction::Select: {
        // Widen selects.
        // If the selector is loop invariant we can create a select
        // instruction with a scalar condition. Otherwise, use vector-select.
        Value *Cond = Inst->getOperand(0);
        bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(Cond), OrigLoop);

        // The condition can be loop invariant  but still defined inside the
        // loop. This means that we can't just use the original 'cond' value.
        // We have to take the 'vectorized' value and pick the first lane.
        // Instcombine will make this a no-op.
        Cond = getVectorValue(Cond);
        if (InvariantCond)
          Cond = Builder.CreateExtractElement(Cond, Builder.getInt32(0));

        Value *Op0 = getVectorValue(Inst->getOperand(1));
        Value *Op1 = getVectorValue(Inst->getOperand(2));
        WidenMap[Inst] = Builder.CreateSelect(Cond, Op0, Op1);
        break;
      }

      case Instruction::ICmp:
      case Instruction::FCmp: {
        // Widen compares. Generate vector compares.
        bool FCmp = (Inst->getOpcode() == Instruction::FCmp);
        CmpInst *Cmp = dyn_cast<CmpInst>(Inst);
        Value *A = getVectorValue(Inst->getOperand(0));
        Value *B = getVectorValue(Inst->getOperand(1));
        if (FCmp)
          WidenMap[Inst] = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
        else
          WidenMap[Inst] = Builder.CreateICmp(Cmp->getPredicate(), A, B);
        break;
      }

      case Instruction::Store: {
        // Attempt to issue a wide store.
        StoreInst *SI = dyn_cast<StoreInst>(Inst);
        Type *StTy = VectorType::get(SI->getValueOperand()->getType(), VF);
        Value *Ptr = SI->getPointerOperand();
        unsigned Alignment = SI->getAlignment();

        assert(!Legal->isUniform(Ptr) &&
               "We do not allow storing to uniform addresses");

        GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);

        // This store does not use GEPs.
        if (!Legal->isConsecutivePtr(Ptr)) {
          scalarizeInstruction(Inst);
          break;
        }

        if (Gep) {
          // The last index does not have to be the induction. It can be
          // consecutive and be a function of the index. For example A[I+1];
          unsigned NumOperands = Gep->getNumOperands();
          Value *LastIndex = getVectorValue(Gep->getOperand(NumOperands - 1));
          LastIndex = Builder.CreateExtractElement(LastIndex, Zero);

          // Create the new GEP with the new induction variable.
          GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
          Gep2->setOperand(NumOperands - 1, LastIndex);
          Ptr = Builder.Insert(Gep2);
        } else {
          // Use the induction element ptr.
          assert(isa<PHINode>(Ptr) && "Invalid induction ptr");
          Ptr = Builder.CreateExtractElement(getVectorValue(Ptr), Zero);
        }
        Ptr = Builder.CreateBitCast(Ptr, StTy->getPointerTo());
        Value *Val = getVectorValue(SI->getValueOperand());
        Builder.CreateStore(Val, Ptr)->setAlignment(Alignment);
        break;
      }
      case Instruction::Load: {
        // Attempt to issue a wide load.
        LoadInst *LI = dyn_cast<LoadInst>(Inst);
        Type *RetTy = VectorType::get(LI->getType(), VF);
        Value *Ptr = LI->getPointerOperand();
        unsigned Alignment = LI->getAlignment();
        GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);

        // If the pointer is loop invariant or if it is non consecutive,
        // scalarize the load.
        bool Con = Legal->isConsecutivePtr(Ptr);
        if (Legal->isUniform(Ptr) || !Con) {
          scalarizeInstruction(Inst);
          break;
        }

        if (Gep) {
          // The last index does not have to be the induction. It can be
          // consecutive and be a function of the index. For example A[I+1];
          unsigned NumOperands = Gep->getNumOperands();
          Value *LastIndex = getVectorValue(Gep->getOperand(NumOperands -1));
          LastIndex = Builder.CreateExtractElement(LastIndex, Zero);

          // Create the new GEP with the new induction variable.
          GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
          Gep2->setOperand(NumOperands - 1, LastIndex);
          Ptr = Builder.Insert(Gep2);
        } else {
          // Use the induction element ptr.
          assert(isa<PHINode>(Ptr) && "Invalid induction ptr");
          Ptr = Builder.CreateExtractElement(getVectorValue(Ptr), Zero);
        }

        Ptr = Builder.CreateBitCast(Ptr, RetTy->getPointerTo());
        LI = Builder.CreateLoad(Ptr);
        LI->setAlignment(Alignment);
        // Use this vector value for all users of the load.
        WidenMap[Inst] = LI;
        break;
      }
      case Instruction::ZExt:
      case Instruction::SExt:
      case Instruction::FPToUI:
      case Instruction::FPToSI:
      case Instruction::FPExt:
      case Instruction::PtrToInt:
      case Instruction::IntToPtr:
      case Instruction::SIToFP:
      case Instruction::UIToFP:
      case Instruction::Trunc:
      case Instruction::FPTrunc:
      case Instruction::BitCast: {
        /// Vectorize bitcasts.
        CastInst *CI = dyn_cast<CastInst>(Inst);
        Value *A = getVectorValue(Inst->getOperand(0));
        Type *DestTy = VectorType::get(CI->getType()->getScalarType(), VF);
        WidenMap[Inst] = Builder.CreateCast(CI->getOpcode(), A, DestTy);
        break;
      }

      default:
        /// All other instructions are unsupported. Scalarize them.
        scalarizeInstruction(Inst);
        break;
    }// end of switch.
  }// end of for_each instr.

  // At this point every instruction in the original loop is widended to
  // a vector form. We are almost done. Now, we need to fix the PHI nodes
  // that we vectorized. The PHI nodes are currently empty because we did
  // not want to introduce cycles. Notice that the remaining PHI nodes
  // that we need to fix are reduction variables.

  // Create the 'reduced' values for each of the induction vars.
  // The reduced values are the vector values that we scalarize and combine
  // after the loop is finished.
  for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end();
       it != e; ++it) {
    PHINode *RdxPhi = *it;
    PHINode *VecRdxPhi = dyn_cast<PHINode>(WidenMap[RdxPhi]);
    assert(RdxPhi && "Unable to recover vectorized PHI");

    // Find the reduction variable descriptor.
    assert(Legal->getReductionVars()->count(RdxPhi) &&
           "Unable to find the reduction variable");
    LoopVectorizationLegality::ReductionDescriptor RdxDesc =
      (*Legal->getReductionVars())[RdxPhi];

    // We need to generate a reduction vector from the incoming scalar.
    // To do so, we need to generate the 'identity' vector and overide
    // one of the elements with the incoming scalar reduction. We need
    // to do it in the vector-loop preheader.
    Builder.SetInsertPoint(LoopBypassBlock->getTerminator());

    // This is the vector-clone of the value that leaves the loop.
    Value *VectorExit = getVectorValue(RdxDesc.LoopExitInstr);
    Type *VecTy = VectorExit->getType();

    // Find the reduction identity variable. Zero for addition, or, xor,
    // one for multiplication, -1 for And.
    Constant *Identity = getUniformVector(getReductionIdentity(RdxDesc.Kind),
                                          VecTy->getScalarType());

    // This vector is the Identity vector where the first element is the
    // incoming scalar reduction.
    Value *VectorStart = Builder.CreateInsertElement(Identity,
                                                    RdxDesc.StartValue, Zero);

    // Fix the vector-loop phi.
    // We created the induction variable so we know that the
    // preheader is the first entry.
    BasicBlock *VecPreheader = Induction->getIncomingBlock(0);

    // Reductions do not have to start at zero. They can start with
    // any loop invariant values.
    VecRdxPhi->addIncoming(VectorStart, VecPreheader);
    unsigned SelfEdgeIdx = (RdxPhi)->getBasicBlockIndex(LoopScalarBody);
    Value *Val = getVectorValue(RdxPhi->getIncomingValue(SelfEdgeIdx));
    VecRdxPhi->addIncoming(Val, LoopVectorBody);

    // Before each round, move the insertion point right between
    // the PHIs and the values we are going to write.
    // This allows us to write both PHINodes and the extractelement
    // instructions.
    Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt());

    // This PHINode contains the vectorized reduction variable, or
    // the initial value vector, if we bypass the vector loop.
    PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi");
    NewPhi->addIncoming(VectorStart, LoopBypassBlock);
    NewPhi->addIncoming(getVectorValue(RdxDesc.LoopExitInstr), LoopVectorBody);

    // Extract the first scalar.
    Value *Scalar0 =
      Builder.CreateExtractElement(NewPhi, Builder.getInt32(0));
    // Extract and reduce the remaining vector elements.
    for (unsigned i=1; i < VF; ++i) {
      Value *Scalar1 =
        Builder.CreateExtractElement(NewPhi, Builder.getInt32(i));
      switch (RdxDesc.Kind) {
        case LoopVectorizationLegality::IntegerAdd:
          Scalar0 = Builder.CreateAdd(Scalar0, Scalar1);
          break;
        case LoopVectorizationLegality::IntegerMult:
          Scalar0 = Builder.CreateMul(Scalar0, Scalar1);
          break;
        case LoopVectorizationLegality::IntegerOr:
          Scalar0 = Builder.CreateOr(Scalar0, Scalar1);
          break;
        case LoopVectorizationLegality::IntegerAnd:
          Scalar0 = Builder.CreateAnd(Scalar0, Scalar1);
          break;
        case LoopVectorizationLegality::IntegerXor:
          Scalar0 = Builder.CreateXor(Scalar0, Scalar1);
          break;
        default:
          llvm_unreachable("Unknown reduction operation");
      }
    }

    // Now, we need to fix the users of the reduction variable
    // inside and outside of the scalar remainder loop.
    // We know that the loop is in LCSSA form. We need to update the
    // PHI nodes in the exit blocks.
    for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
         LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
      PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
      if (!LCSSAPhi) continue;

      // All PHINodes need to have a single entry edge, or two if
      // we already fixed them.
      assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI");

      // We found our reduction value exit-PHI. Update it with the
      // incoming bypass edge.
      if (LCSSAPhi->getIncomingValue(0) == RdxDesc.LoopExitInstr) {
        // Add an edge coming from the bypass.
        LCSSAPhi->addIncoming(Scalar0, LoopMiddleBlock);
        break;
      }
    }// end of the LCSSA phi scan.

    // Fix the scalar loop reduction variable with the incoming reduction sum
    // from the vector body and from the backedge value.
    int IncomingEdgeBlockIdx = (RdxPhi)->getBasicBlockIndex(LoopScalarBody);
    int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); // The other block.
    (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, Scalar0);
    (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, RdxDesc.LoopExitInstr);
  }// end of for each redux variable.
}

void SingleBlockLoopVectorizer::updateAnalysis() {
  // Forget the original basic block.
  SE->forgetLoop(OrigLoop);

  // Update the dominator tree information.
  assert(DT->properlyDominates(LoopBypassBlock, LoopExitBlock) &&
         "Entry does not dominate exit.");

  DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlock);
  DT->addNewBlock(LoopVectorBody, LoopVectorPreHeader);
  DT->addNewBlock(LoopMiddleBlock, LoopBypassBlock);
  DT->addNewBlock(LoopScalarPreHeader, LoopMiddleBlock);
  DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader);
  DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);

  DEBUG(DT->verifyAnalysis());
}

bool LoopVectorizationLegality::canVectorize() {
  assert(TheLoop->getLoopPreheader() && "No preheader!!");

  // We can only vectorize single basic block loops.
  unsigned NumBlocks = TheLoop->getNumBlocks();
  if (NumBlocks != 1) {
    DEBUG(dbgs() << "LV: Too many blocks:" << NumBlocks << "\n");
    return false;
  }

  // We need to have a loop header.
  BasicBlock *BB = TheLoop->getHeader();
  DEBUG(dbgs() << "LV: Found a loop: " << BB->getName() << "\n");

  // ScalarEvolution needs to be able to find the exit count.
  const SCEV *ExitCount = SE->getExitCount(TheLoop, BB);
  if (ExitCount == SE->getCouldNotCompute()) {
    DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n");
    return false;
  }

  // Do not loop-vectorize loops with a tiny trip count.
  unsigned TC = SE->getSmallConstantTripCount(TheLoop, BB);
  if (TC > 0u && TC < TinyTripCountThreshold) {
    DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " <<
          "This loop is not worth vectorizing.\n");
    return false;
  }

  // Go over each instruction and look at memory deps.
  if (!canVectorizeBlock(*BB)) {
    DEBUG(dbgs() << "LV: Can't vectorize this loop header\n");
    return false;
  }

  DEBUG(dbgs() << "LV: We can vectorize this loop" <<
        (PtrRtCheck.Need ? " (with a runtime bound check)" : "")
        <<"!\n");

  // Okay! We can vectorize. At this point we don't have any other mem analysis
  // which may limit our maximum vectorization factor, so just return true with
  // no restrictions.
  return true;
}

bool LoopVectorizationLegality::canVectorizeBlock(BasicBlock &BB) {

  BasicBlock *PreHeader = TheLoop->getLoopPreheader();

  // Scan the instructions in the block and look for hazards.
  for (BasicBlock::iterator it = BB.begin(), e = BB.end(); it != e; ++it) {
    Instruction *I = it;

    if (PHINode *Phi = dyn_cast<PHINode>(I)) {
      // This should not happen because the loop should be normalized.
      if (Phi->getNumIncomingValues() != 2) {
        DEBUG(dbgs() << "LV: Found an invalid PHI.\n");
        return false;
      }

      // This is the value coming from the preheader.
      Value *StartValue = Phi->getIncomingValueForBlock(PreHeader);

      // We only look at integer and pointer phi nodes.
      if (Phi->getType()->isPointerTy() && isInductionVariable(Phi)) {
        DEBUG(dbgs() << "LV: Found a pointer induction variable.\n");
        Inductions[Phi] = StartValue;
        continue;
      } else if (!Phi->getType()->isIntegerTy()) {
        DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n");
        return false;
      }

      // Handle integer PHIs:
      if (isInductionVariable(Phi)) {
        if (Induction) {
          DEBUG(dbgs() << "LV: Found too many inductions."<< *Phi <<"\n");
          return false;
        }
        DEBUG(dbgs() << "LV: Found the induction PHI."<< *Phi <<"\n");
        Induction = Phi;
        Inductions[Phi] = StartValue;
        continue;
      }
      if (AddReductionVar(Phi, IntegerAdd)) {
        DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n");
        continue;
      }
      if (AddReductionVar(Phi, IntegerMult)) {
        DEBUG(dbgs() << "LV: Found a MUL reduction PHI."<< *Phi <<"\n");
        continue;
      }
      if (AddReductionVar(Phi, IntegerOr)) {
        DEBUG(dbgs() << "LV: Found an OR reduction PHI."<< *Phi <<"\n");
        continue;
      }
      if (AddReductionVar(Phi, IntegerAnd)) {
        DEBUG(dbgs() << "LV: Found an AND reduction PHI."<< *Phi <<"\n");
        continue;
      }
      if (AddReductionVar(Phi, IntegerXor)) {
        DEBUG(dbgs() << "LV: Found a XOR reduction PHI."<< *Phi <<"\n");
        continue;
      }

      DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n");
      return false;
    }// end of PHI handling

    // We still don't handle functions.
    CallInst *CI = dyn_cast<CallInst>(I);
    if (CI) {
      DEBUG(dbgs() << "LV: Found a call site.\n");
      return false;
    }

    // We do not re-vectorize vectors.
    if (!VectorType::isValidElementType(I->getType()) &&
        !I->getType()->isVoidTy()) {
      DEBUG(dbgs() << "LV: Found unvectorizable type." << "\n");
      return false;
    }

    // Reduction instructions are allowed to have exit users.
    // All other instructions must not have external users.
    if (!AllowedExit.count(I))
      //Check that all of the users of the loop are inside the BB.
      for (Value::use_iterator it = I->use_begin(), e = I->use_end();
           it != e; ++it) {
        Instruction *U = cast<Instruction>(*it);
        // This user may be a reduction exit value.
        BasicBlock *Parent = U->getParent();
        if (Parent != &BB) {
          DEBUG(dbgs() << "LV: Found an outside user for : "<< *U << "\n");
          return false;
        }
    }
  } // next instr.

  if (!Induction) {
    DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
    assert(getInductionVars()->size() && "No induction variables");
  }

  // Don't vectorize if the memory dependencies do not allow vectorization.
  if (!canVectorizeMemory(BB))
    return false;

  // We now know that the loop is vectorizable!
  // Collect variables that will remain uniform after vectorization.
  std::vector<Value*> Worklist;

  // Start with the conditional branch and walk up the block.
  Worklist.push_back(BB.getTerminator()->getOperand(0));

  while (Worklist.size()) {
    Instruction *I = dyn_cast<Instruction>(Worklist.back());
    Worklist.pop_back();

    // Look at instructions inside this block. Stop when reaching PHI nodes.
    if (!I || I->getParent() != &BB || isa<PHINode>(I))
      continue;

    // This is a known uniform.
    Uniforms.insert(I);

    // Insert all operands.
    for (int i = 0, Op = I->getNumOperands(); i < Op; ++i) {
      Worklist.push_back(I->getOperand(i));
    }
  }

  return true;
}

bool LoopVectorizationLegality::canVectorizeMemory(BasicBlock &BB) {
  typedef SmallVector<Value*, 16> ValueVector;
  typedef SmallPtrSet<Value*, 16> ValueSet;
  // Holds the Load and Store *instructions*.
  ValueVector Loads;
  ValueVector Stores;
  PtrRtCheck.Pointers.clear();
  PtrRtCheck.Need = false;

  // Scan the BB and collect legal loads and stores.
  for (BasicBlock::iterator it = BB.begin(), e = BB.end(); it != e; ++it) {
    Instruction *I = it;

    // If this is a load, save it. If this instruction can read from memory
    // but is not a load, then we quit. Notice that we don't handle function
    // calls that read or write.
    if (I->mayReadFromMemory()) {
      LoadInst *Ld = dyn_cast<LoadInst>(I);
      if (!Ld) return false;
      if (!Ld->isSimple()) {
        DEBUG(dbgs() << "LV: Found a non-simple load.\n");
        return false;
      }
      Loads.push_back(Ld);
      continue;
    }

    // Save store instructions. Abort if other instructions write to memory.
    if (I->mayWriteToMemory()) {
      StoreInst *St = dyn_cast<StoreInst>(I);
      if (!St) return false;
      if (!St->isSimple()) {
        DEBUG(dbgs() << "LV: Found a non-simple store.\n");
        return false;
      }
      Stores.push_back(St);
    }
  } // next instr.

  // Now we have two lists that hold the loads and the stores.
  // Next, we find the pointers that they use.

  // Check if we see any stores. If there are no stores, then we don't
  // care if the pointers are *restrict*.
  if (!Stores.size()) {
        DEBUG(dbgs() << "LV: Found a read-only loop!\n");
        return true;
  }

  // Holds the read and read-write *pointers* that we find.
  ValueVector Reads;
  ValueVector ReadWrites;

  // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
  // multiple times on the same object. If the ptr is accessed twice, once
  // for read and once for write, it will only appear once (on the write
  // list). This is okay, since we are going to check for conflicts between
  // writes and between reads and writes, but not between reads and reads.
  ValueSet Seen;

  ValueVector::iterator I, IE;
  for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) {
    StoreInst *ST = dyn_cast<StoreInst>(*I);
    assert(ST && "Bad StoreInst");
    Value* Ptr = ST->getPointerOperand();

    if (isUniform(Ptr)) {
      DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n");
      return false;
    }

    // If we did *not* see this pointer before, insert it to
    // the read-write list. At this phase it is only a 'write' list.
    if (Seen.insert(Ptr))
      ReadWrites.push_back(Ptr);
  }

  for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) {
    LoadInst *LD = dyn_cast<LoadInst>(*I);
    assert(LD && "Bad LoadInst");
    Value* Ptr = LD->getPointerOperand();
    // If we did *not* see this pointer before, insert it to the
    // read list. If we *did* see it before, then it is already in
    // the read-write list. This allows us to vectorize expressions
    // such as A[i] += x;  Because the address of A[i] is a read-write
    // pointer. This only works if the index of A[i] is consecutive.
    // If the address of i is unknown (for example A[B[i]]) then we may
    // read a few words, modify, and write a few words, and some of the
    // words may be written to the same address.
    if (Seen.insert(Ptr) || !isConsecutivePtr(Ptr))
      Reads.push_back(Ptr);
  }

  // If we write (or read-write) to a single destination and there are no
  // other reads in this loop then is it safe to vectorize.
  if (ReadWrites.size() == 1 && Reads.size() == 0) {
    DEBUG(dbgs() << "LV: Found a write-only loop!\n");
    return true;
  }

  // Find pointers with computable bounds. We are going to use this information
  // to place a runtime bound check.
  bool RT = true;
  for (I = ReadWrites.begin(), IE = ReadWrites.end(); I != IE; ++I)
    if (hasComputableBounds(*I)) {
      PtrRtCheck.insert(SE, TheLoop, *I);
      DEBUG(dbgs() << "LV: Found a runtime check ptr:" << **I <<"\n");
    } else {
      RT = false;
      break;
    }
  for (I = Reads.begin(), IE = Reads.end(); I != IE; ++I)
    if (hasComputableBounds(*I)) {
      PtrRtCheck.insert(SE, TheLoop, *I);
      DEBUG(dbgs() << "LV: Found a runtime check ptr:" << **I <<"\n");
    } else {
      RT = false;
      break;
    }

  // Check that we did not collect too many pointers or found a
  // unsizeable pointer.
  if (!RT || PtrRtCheck.Pointers.size() > RuntimeMemoryCheckThreshold) {
    PtrRtCheck.reset();
    RT = false;
  }

  PtrRtCheck.Need = RT;

  if (RT) {
    DEBUG(dbgs() << "LV: We can perform a memory runtime check if needed.\n");
  }

  // Now that the pointers are in two lists (Reads and ReadWrites), we
  // can check that there are no conflicts between each of the writes and
  // between the writes to the reads.
  ValueSet WriteObjects;
  ValueVector TempObjects;

  // Check that the read-writes do not conflict with other read-write
  // pointers.
  for (I = ReadWrites.begin(), IE = ReadWrites.end(); I != IE; ++I) {
    GetUnderlyingObjects(*I, TempObjects, DL);
    for (ValueVector::iterator it=TempObjects.begin(), e=TempObjects.end();
         it != e; ++it) {
      if (!isIdentifiedObject(*it)) {
        DEBUG(dbgs() << "LV: Found an unidentified write ptr:"<< **it <<"\n");
        return RT;
      }
      if (!WriteObjects.insert(*it)) {
        DEBUG(dbgs() << "LV: Found a possible write-write reorder:"
              << **it <<"\n");
        return RT;
      }
    }
    TempObjects.clear();
  }

  /// Check that the reads don't conflict with the read-writes.
  for (I = Reads.begin(), IE = Reads.end(); I != IE; ++I) {
    GetUnderlyingObjects(*I, TempObjects, DL);
    for (ValueVector::iterator it=TempObjects.begin(), e=TempObjects.end();
         it != e; ++it) {
      if (!isIdentifiedObject(*it)) {
        DEBUG(dbgs() << "LV: Found an unidentified read ptr:"<< **it <<"\n");
        return RT;
      }
      if (WriteObjects.count(*it)) {
        DEBUG(dbgs() << "LV: Found a possible read/write reorder:"
              << **it <<"\n");
        return RT;
      }
    }
    TempObjects.clear();
  }

  // It is safe to vectorize and we don't need any runtime checks.
  DEBUG(dbgs() << "LV: We don't need a runtime memory check.\n");
  PtrRtCheck.reset();
  return true;
}

bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi,
                                                ReductionKind Kind) {
  if (Phi->getNumIncomingValues() != 2)
    return false;

  // Find the possible incoming reduction variable.
  BasicBlock *BB = Phi->getParent();
  int SelfEdgeIdx = Phi->getBasicBlockIndex(BB);
  int InEdgeBlockIdx = (SelfEdgeIdx ? 0 : 1); // The other entry.
  Value *RdxStart = Phi->getIncomingValue(InEdgeBlockIdx);

  // ExitInstruction is the single value which is used outside the loop.
  // We only allow for a single reduction value to be used outside the loop.
  // This includes users of the reduction, variables (which form a cycle
  // which ends in the phi node).
  Instruction *ExitInstruction = 0;

  // Iter is our iterator. We start with the PHI node and scan for all of the
  // users of this instruction. All users must be instructions which can be
  // used as reduction variables (such as ADD). We may have a single
  // out-of-block user. They cycle must end with the original PHI.
  // Also, we can't have multiple block-local users.
  Instruction *Iter = Phi;
  while (true) {
    // Any reduction instr must be of one of the allowed kinds.
    if (!isReductionInstr(Iter, Kind))
      return false;

    // Did we found a user inside this block ?
    bool FoundInBlockUser = false;
    // Did we reach the initial PHI node ?
    bool FoundStartPHI = false;

    // If the instruction has no users then this is a broken
    // chain and can't be a reduction variable.
    if (Iter->use_empty())
      return false;

    // For each of the *users* of iter.
    for (Value::use_iterator it = Iter->use_begin(), e = Iter->use_end();
         it != e; ++it) {
      Instruction *U = cast<Instruction>(*it);
      // We already know that the PHI is a user.
      if (U == Phi) {
        FoundStartPHI = true;
        continue;
      }
      // Check if we found the exit user.
      BasicBlock *Parent = U->getParent();
      if (Parent != BB) {
        // We must have a single exit instruction.
        if (ExitInstruction != 0)
          return false;
        ExitInstruction = Iter;
      }
      // We can't have multiple inside users.
      if (FoundInBlockUser)
        return false;
      FoundInBlockUser = true;
      Iter = U;
    }

    // We found a reduction var if we have reached the original
    // phi node and we only have a single instruction with out-of-loop
    // users.
   if (FoundStartPHI && ExitInstruction) {
     // This instruction is allowed to have out-of-loop users.
     AllowedExit.insert(ExitInstruction);

     // Save the description of this reduction variable.
     ReductionDescriptor RD(RdxStart, ExitInstruction, Kind);
     Reductions[Phi] = RD;
     return true;
   }
  }
}

bool
LoopVectorizationLegality::isReductionInstr(Instruction *I,
                                            ReductionKind Kind) {
    switch (I->getOpcode()) {
    default:
      return false;
    case Instruction::PHI:
      // possibly.
      return true;
    case Instruction::Add:
    case Instruction::Sub:
      return Kind == IntegerAdd;
    case Instruction::Mul:
      return Kind == IntegerMult;
    case Instruction::And:
      return Kind == IntegerAnd;
    case Instruction::Or:
      return Kind == IntegerOr;
    case Instruction::Xor:
      return Kind == IntegerXor;
    }
}

bool LoopVectorizationLegality::isInductionVariable(PHINode *Phi) {
  Type *PhiTy = Phi->getType();
  // We only handle integer and pointer inductions variables.
  if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
    return false;

  // Check that the PHI is consecutive and starts at zero.
  const SCEV *PhiScev = SE->getSCEV(Phi);
  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
  if (!AR) {
    DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
    return false;
  }
  const SCEV *Step = AR->getStepRecurrence(*SE);

  // Integer inductions need to have a stride of one.
  if (PhiTy->isIntegerTy())
    return Step->isOne();

  // Calculate the pointer stride and check if it is consecutive.
  const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
  if (!C) return false;

  assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
  uint64_t Size = DL->getTypeAllocSize(PhiTy->getPointerElementType());
  return (C->getValue()->equalsInt(Size));
}

bool LoopVectorizationLegality::hasComputableBounds(Value *Ptr) {
  const SCEV *PhiScev = SE->getSCEV(Ptr);
  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
  if (!AR)
    return false;

  return AR->isAffine();
}

unsigned
LoopVectorizationCostModel::findBestVectorizationFactor(unsigned VF) {
  if (!VTTI) {
    DEBUG(dbgs() << "LV: No vector target information. Not vectorizing. \n");
    return 1;
  }

  float Cost = expectedCost(1);
  unsigned Width = 1;
  DEBUG(dbgs() << "LV: Scalar loop costs: "<< (int)Cost << ".\n");
  for (unsigned i=2; i <= VF; i*=2) {
    // Notice that the vector loop needs to be executed less times, so
    // we need to divide the cost of the vector loops by the width of
    // the vector elements.
    float VectorCost = expectedCost(i) / (float)i;
    DEBUG(dbgs() << "LV: Vector loop of width "<< i << " costs: " <<
          (int)VectorCost << ".\n");
    if (VectorCost < Cost) {
      Cost = VectorCost;
      Width = i;
    }
  }

  DEBUG(dbgs() << "LV: Selecting VF = : "<< Width << ".\n");
  return Width;
}

unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) {
  // We can only estimate the cost of single basic block loops.
  assert(1 == TheLoop->getNumBlocks() && "Too many blocks in loop");

  BasicBlock *BB = TheLoop->getHeader();
  unsigned Cost = 0;

  // For each instruction in the old loop.
  for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
    Instruction *Inst = it;
    unsigned C = getInstructionCost(Inst, VF);
    Cost += C;
    DEBUG(dbgs() << "LV: Found an estimated cost of "<< C <<" for VF "<< VF <<
          " For instruction: "<< *Inst << "\n");
  }

  return Cost;
}

unsigned
LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
  assert(VTTI && "Invalid vector target transformation info");

  // If we know that this instruction will remain uniform, check the cost of
  // the scalar version.
  if (Legal->isUniformAfterVectorization(I))
    VF = 1;

  Type *RetTy = I->getType();
  Type *VectorTy = ToVectorTy(RetTy, VF);


  // TODO: We need to estimate the cost of intrinsic calls.
  switch (I->getOpcode()) {
    case Instruction::GetElementPtr:
      // We mark this instruction as zero-cost because scalar GEPs are usually
      // lowered to the intruction addressing mode. At the moment we don't
      // generate vector geps.
      return 0;
    case Instruction::Br: {
      return VTTI->getCFInstrCost(I->getOpcode());
    }
    case Instruction::PHI:
      return 0;
    case Instruction::Add:
    case Instruction::FAdd:
    case Instruction::Sub:
    case Instruction::FSub:
    case Instruction::Mul:
    case Instruction::FMul:
    case Instruction::UDiv:
    case Instruction::SDiv:
    case Instruction::FDiv:
    case Instruction::URem:
    case Instruction::SRem:
    case Instruction::FRem:
    case Instruction::Shl:
    case Instruction::LShr:
    case Instruction::AShr:
    case Instruction::And:
    case Instruction::Or:
    case Instruction::Xor:
      return VTTI->getArithmeticInstrCost(I->getOpcode(), VectorTy);
    case Instruction::Select: {
      SelectInst *SI = cast<SelectInst>(I);
      const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
      bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
      Type *CondTy = SI->getCondition()->getType();
      if (ScalarCond)
        CondTy = VectorType::get(CondTy, VF);

      return VTTI->getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy);
    }
    case Instruction::ICmp:
    case Instruction::FCmp: {
      Type *ValTy = I->getOperand(0)->getType();
      VectorTy = ToVectorTy(ValTy, VF);
      return VTTI->getCmpSelInstrCost(I->getOpcode(), VectorTy);
    }
    case Instruction::Store: {
      StoreInst *SI = cast<StoreInst>(I);
      Type *ValTy = SI->getValueOperand()->getType();
      VectorTy = ToVectorTy(ValTy, VF);

      if (VF == 1)
        return VTTI->getMemoryOpCost(I->getOpcode(), ValTy,
                              SI->getAlignment(), SI->getPointerAddressSpace());

      // Scalarized stores.
      if (!Legal->isConsecutivePtr(SI->getPointerOperand())) {
        unsigned Cost = 0;
        unsigned ExtCost = VTTI->getInstrCost(Instruction::ExtractElement,
                                              ValTy);
        // The cost of extracting from the value vector.
        Cost += VF * (ExtCost);
        // The cost of the scalar stores.
        Cost += VF * VTTI->getMemoryOpCost(I->getOpcode(),
                                           ValTy->getScalarType(),
                                           SI->getAlignment(),
                                           SI->getPointerAddressSpace());
        return Cost;
      }

      // Wide stores.
      return VTTI->getMemoryOpCost(I->getOpcode(), VectorTy, SI->getAlignment(),
                                   SI->getPointerAddressSpace());
    }
    case Instruction::Load: {
      LoadInst *LI = cast<LoadInst>(I);

      if (VF == 1)
        return VTTI->getMemoryOpCost(I->getOpcode(), RetTy,
                                     LI->getAlignment(),
                                     LI->getPointerAddressSpace());

      // Scalarized loads.
      if (!Legal->isConsecutivePtr(LI->getPointerOperand())) {
        unsigned Cost = 0;
        unsigned InCost = VTTI->getInstrCost(Instruction::InsertElement, RetTy);
        // The cost of inserting the loaded value into the result vector.
        Cost += VF * (InCost);
        // The cost of the scalar stores.
        Cost += VF * VTTI->getMemoryOpCost(I->getOpcode(),
                                           RetTy->getScalarType(),
                                           LI->getAlignment(),
                                           LI->getPointerAddressSpace());
        return Cost;
      }

      // Wide loads.
      return VTTI->getMemoryOpCost(I->getOpcode(), VectorTy, LI->getAlignment(),
                                   LI->getPointerAddressSpace());
    }
    case Instruction::ZExt:
    case Instruction::SExt:
    case Instruction::FPToUI:
    case Instruction::FPToSI:
    case Instruction::FPExt:
    case Instruction::PtrToInt:
    case Instruction::IntToPtr:
    case Instruction::SIToFP:
    case Instruction::UIToFP:
    case Instruction::Trunc:
    case Instruction::FPTrunc:
    case Instruction::BitCast: {
      Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF);
      return VTTI->getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy);
    }
    default: {
      // We are scalarizing the instruction. Return the cost of the scalar
      // instruction, plus the cost of insert and extract into vector
      // elements, times the vector width.
      unsigned Cost = 0;

      bool IsVoid = RetTy->isVoidTy();

      unsigned InsCost = (IsVoid ? 0 :
                          VTTI->getInstrCost(Instruction::InsertElement,
                                             VectorTy));

      unsigned ExtCost = VTTI->getInstrCost(Instruction::ExtractElement,
                                            VectorTy);

      // The cost of inserting the results plus extracting each one of the
      // operands.
      Cost += VF * (InsCost + ExtCost * I->getNumOperands());

      // The cost of executing VF copies of the scalar instruction.
      Cost += VF * VTTI->getInstrCost(I->getOpcode(), RetTy);
      return Cost;
    }
  }// end of switch.
}

Type* LoopVectorizationCostModel::ToVectorTy(Type *Scalar, unsigned VF) {
  if (Scalar->isVoidTy() || VF == 1)
    return Scalar;
  return VectorType::get(Scalar, VF);
}

} // namespace

char LoopVectorize::ID = 0;
static const char lv_name[] = "Loop Vectorization";
INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)

namespace llvm {
  Pass *createLoopVectorizePass() {
    return new LoopVectorize();
  }
}