summaryrefslogtreecommitdiff
path: root/lib/Transforms/Vectorize/VecUtils.cpp
blob: 55adf8a8161ce58b8907694af631efdf7ba4bf4d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
//===- VecUtils.cpp --- Vectorization Utilities ---------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "SLP"

#include "VecUtils.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/Verifier.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetLibraryInfo.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/Local.h"
#include <algorithm>
#include <map>

using namespace llvm;

static const unsigned MinVecRegSize = 128;

static const unsigned RecursionMaxDepth = 6;

namespace llvm {

BoUpSLP::BoUpSLP(BasicBlock *Bb, ScalarEvolution *S, DataLayout *Dl,
                 TargetTransformInfo *Tti, AliasAnalysis *Aa, Loop *Lp) :
  BB(Bb), SE(S), DL(Dl), TTI(Tti), AA(Aa), L(Lp)  {
  numberInstructions();
}

void BoUpSLP::numberInstructions() {
  int Loc = 0;
  InstrIdx.clear();
  InstrVec.clear();
  // Number the instructions in the block.
  for (BasicBlock::iterator it=BB->begin(), e=BB->end(); it != e; ++it) {
    InstrIdx[it] = Loc++;
    InstrVec.push_back(it);
    assert(InstrVec[InstrIdx[it]] == it && "Invalid allocation");
  }
}

Value *BoUpSLP::getPointerOperand(Value *I) {
  if (LoadInst *LI = dyn_cast<LoadInst>(I)) return LI->getPointerOperand();
  if (StoreInst *SI = dyn_cast<StoreInst>(I)) return SI->getPointerOperand();
  return 0;
}

unsigned BoUpSLP::getAddressSpaceOperand(Value *I) {
  if (LoadInst *L=dyn_cast<LoadInst>(I)) return L->getPointerAddressSpace();
  if (StoreInst *S=dyn_cast<StoreInst>(I)) return S->getPointerAddressSpace();
  return -1;
}

bool BoUpSLP::isConsecutiveAccess(Value *A, Value *B) {
  Value *PtrA = getPointerOperand(A);
  Value *PtrB = getPointerOperand(B);
  unsigned ASA = getAddressSpaceOperand(A);
  unsigned ASB = getAddressSpaceOperand(B);

  // Check that the address spaces match and that the pointers are valid.
  if (!PtrA || !PtrB || (ASA != ASB)) return false;

  // Check that A and B are of the same type.
  if (PtrA->getType() != PtrB->getType()) return false;

  // Calculate the distance.
  const SCEV *PtrSCEVA = SE->getSCEV(PtrA);
  const SCEV *PtrSCEVB = SE->getSCEV(PtrB);
  const SCEV *OffsetSCEV = SE->getMinusSCEV(PtrSCEVA, PtrSCEVB);
  const SCEVConstant *ConstOffSCEV = dyn_cast<SCEVConstant>(OffsetSCEV);

  // Non constant distance.
  if (!ConstOffSCEV) return false;

  int64_t Offset = ConstOffSCEV->getValue()->getSExtValue();
  Type *Ty = cast<PointerType>(PtrA->getType())->getElementType();
  // The Instructions are connsecutive if the size of the first load/store is
  // the same as the offset.
  int64_t Sz = DL->getTypeStoreSize(Ty);
  return ((-Offset) == Sz);
}

bool BoUpSLP::vectorizeStoreChain(ArrayRef<Value *> Chain, int CostThreshold) {
  Type *StoreTy = cast<StoreInst>(Chain[0])->getValueOperand()->getType();
  unsigned Sz = DL->getTypeSizeInBits(StoreTy);
  unsigned VF = MinVecRegSize / Sz;

  if (!isPowerOf2_32(Sz) || VF < 2) return false;

  bool Changed = false;
  // Look for profitable vectorizable trees at all offsets, starting at zero.
  for (unsigned i = 0, e = Chain.size(); i < e; ++i) {
    if (i + VF > e) return Changed;
    DEBUG(dbgs()<<"SLP: Analyzing " << VF << " stores at offset "<< i << "\n");
    ArrayRef<Value *> Operands = Chain.slice(i, VF);

    int Cost = getTreeCost(Operands);
    DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n");
    if (Cost < CostThreshold) {
      DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n");
      vectorizeTree(Operands, VF);
      i += VF - 1;
      Changed = true;
    }
  }

  return Changed;
}

bool BoUpSLP::vectorizeStores(ArrayRef<StoreInst *> Stores, int costThreshold) {
  ValueSet Heads, Tails;
  SmallDenseMap<Value*, Value*> ConsecutiveChain;

  // We may run into multiple chains that merge into a single chain. We mark the
  // stores that we vectorized so that we don't visit the same store twice.
  ValueSet VectorizedStores;
  bool Changed = false;

  // Do a quadratic search on all of the given stores and find
  // all of the pairs of loads that follow each other.
  for (unsigned i = 0, e = Stores.size(); i < e; ++i)
    for (unsigned j = 0; j < e; ++j) {
      if (i == j) continue;
      if (isConsecutiveAccess(Stores[i], Stores[j])) {
        Tails.insert(Stores[j]);
        Heads.insert(Stores[i]);
        ConsecutiveChain[Stores[i]] = Stores[j];
      }
    }

  // For stores that start but don't end a link in the chain:
  for (ValueSet::iterator it = Heads.begin(), e = Heads.end();it != e; ++it) {
    if (Tails.count(*it)) continue;

    // We found a store instr that starts a chain. Now follow the chain and try
    // to vectorize it.
    ValueList Operands;
    Value *I = *it;
    // Collect the chain into a list.
    while (Tails.count(I) || Heads.count(I)) {
      if (VectorizedStores.count(I)) break;
      Operands.push_back(I);
      // Move to the next value in the chain.
      I = ConsecutiveChain[I];
    }

    bool Vectorized = vectorizeStoreChain(Operands, costThreshold);

    // Mark the vectorized stores so that we don't vectorize them again.
    if (Vectorized)
      VectorizedStores.insert(Operands.begin(), Operands.end());
    Changed |= Vectorized;
  }

  return Changed;
}

int BoUpSLP::getScalarizationCost(ArrayRef<Value *> VL) {
  // Find the type of the operands in VL.
  Type *ScalarTy = VL[0]->getType();
  if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
    ScalarTy = SI->getValueOperand()->getType();
  VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
  // Find the cost of inserting/extracting values from the vector.
  return getScalarizationCost(VecTy);
}

int BoUpSLP::getScalarizationCost(Type *Ty) {
  int Cost = 0;
  for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i)
    Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
  return Cost;
}

AliasAnalysis::Location BoUpSLP::getLocation(Instruction *I) {
  if (StoreInst *SI = dyn_cast<StoreInst>(I)) return AA->getLocation(SI);
  if (LoadInst *LI = dyn_cast<LoadInst>(I)) return AA->getLocation(LI);
  return AliasAnalysis::Location();
}

Value *BoUpSLP::isUnsafeToSink(Instruction *Src, Instruction *Dst) {
  assert(Src->getParent() == Dst->getParent() && "Not the same BB");
  BasicBlock::iterator I = Src, E = Dst;
  /// Scan all of the instruction from SRC to DST and check if
  /// the source may alias.
  for (++I; I != E; ++I) {
    // Ignore store instructions that are marked as 'ignore'.
    if (MemBarrierIgnoreList.count(I)) continue;
    if (Src->mayWriteToMemory()) /* Write */ {
      if (!I->mayReadOrWriteMemory()) continue;
    } else /* Read */ {
      if (!I->mayWriteToMemory()) continue;
    }
    AliasAnalysis::Location A = getLocation(&*I);
    AliasAnalysis::Location B = getLocation(Src);

    if (!A.Ptr || !B.Ptr || AA->alias(A, B))
      return I;
  }
  return 0;
}

void BoUpSLP::vectorizeArith(ArrayRef<Value *> Operands) {
  Value *Vec = vectorizeTree(Operands, Operands.size());
  BasicBlock::iterator Loc = cast<Instruction>(Vec);
  IRBuilder<> Builder(++Loc);
  // After vectorizing the operands we need to generate extractelement
  // instructions and replace all of the uses of the scalar values with
  // the values that we extracted from the vectorized tree.
  for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
    Value *S = Builder.CreateExtractElement(Vec, Builder.getInt32(i));
    Operands[i]->replaceAllUsesWith(S);
  }
}

int BoUpSLP::getTreeCost(ArrayRef<Value *> VL) {
  // Get rid of the list of stores that were removed, and from the
  // lists of instructions with multiple users.
  MemBarrierIgnoreList.clear();
  LaneMap.clear();
  MultiUserVals.clear();
  MustScalarize.clear();
  MustExtract.clear();

  // Find the location of the last root.
  unsigned LastRootIndex = InstrIdx[GetLastInstr(VL, VL.size())];

  // Scan the tree and find which value is used by which lane, and which values
  // must be scalarized.
  getTreeUses_rec(VL, 0);

  // Check that instructions with multiple users can be vectorized. Mark unsafe
  // instructions.
  for (ValueSet::iterator it = MultiUserVals.begin(),
       e = MultiUserVals.end(); it != e; ++it) {
    // Check that all of the users of this instr are within the tree
    // and that they are all from the same lane.
    int Lane = -1;
    for (Value::use_iterator I = (*it)->use_begin(), E = (*it)->use_end();
         I != E; ++I) {
      if (LaneMap.find(*I) == LaneMap.end()) {
        DEBUG(dbgs()<<"SLP: Instr " << **it << " has multiple users.\n");

        // We don't have an ordering problem if the user is not in this basic
        // block.
        Instruction *Inst = cast<Instruction>(*I);
        if (Inst->getParent() == BB) {
          // We don't have an ordering problem if the user is after the last
          // root.
          unsigned Idx = InstrIdx[Inst];
          if (Idx < LastRootIndex) {
            MustScalarize.insert(*it);
            DEBUG(dbgs()<<"SLP: Adding to MustScalarize "
                  "because of an unsafe out of tree usage.\n");
            break;
          }
        }

        DEBUG(dbgs()<<"SLP: Adding to MustExtract "
              "because of a safe out of tree usage.\n");
        MustExtract.insert(*it);
      }
      if (Lane == -1) Lane = LaneMap[*I];
      if (Lane != LaneMap[*I]) {
        MustScalarize.insert(*it);
        DEBUG(dbgs()<<"SLP: Adding " << **it <<
              " to MustScalarize because multiple lane use it: "
              << Lane << " and " << LaneMap[*I] << ".\n");
        break;
      }
    }
  }

  // Now calculate the cost of vectorizing the tree.
  return getTreeCost_rec(VL, 0);
}

void BoUpSLP::getTreeUses_rec(ArrayRef<Value *> VL, unsigned Depth) {
  if (Depth == RecursionMaxDepth) return;

  // Don't handle vectors.
  if (VL[0]->getType()->isVectorTy()) return;
  if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
    if (SI->getValueOperand()->getType()->isVectorTy()) return;

  // Check if all of the operands are constants.
  bool AllConst = true;
  bool AllSameScalar = true;
  for (unsigned i = 0, e = VL.size(); i < e; ++i) {
    AllConst &= isa<Constant>(VL[i]);
    AllSameScalar &= (VL[0] == VL[i]);
    Instruction *I = dyn_cast<Instruction>(VL[i]);
    // If one of the instructions is out of this BB, we need to scalarize all.
    if (I && I->getParent() != BB) return;
  }

  // If all of the operands are identical or constant we have a simple solution.
  if (AllConst || AllSameScalar) return;

  // Scalarize unknown structures.
  Instruction *VL0 = dyn_cast<Instruction>(VL[0]);
  if (!VL0) return;

  unsigned Opcode = VL0->getOpcode();
  for (unsigned i = 0, e = VL.size(); i < e; ++i) {
    Instruction *I = dyn_cast<Instruction>(VL[i]);
    // If not all of the instructions are identical then we have to scalarize.
    if (!I || Opcode != I->getOpcode()) return;
  }

  // Mark instructions with multiple users.
  for (unsigned i = 0, e = VL.size(); i < e; ++i) {
    Instruction *I = dyn_cast<Instruction>(VL[i]);
    // Remember to check if all of the users of this instr are vectorized
    // within our tree.
    if (I && I->getNumUses() > 1) MultiUserVals.insert(I);
  }

  for (int i = 0, e = VL.size(); i < e; ++i) {
    // Check that the instruction is only used within
    // one lane.
    if (LaneMap.count(VL[i]) && LaneMap[VL[i]] != i) return;
    // Make this instruction as 'seen' and remember the lane.
    LaneMap[VL[i]] = i;
  }

  switch (Opcode) {
    case Instruction::ZExt:
    case Instruction::SExt:
    case Instruction::FPToUI:
    case Instruction::FPToSI:
    case Instruction::FPExt:
    case Instruction::PtrToInt:
    case Instruction::IntToPtr:
    case Instruction::SIToFP:
    case Instruction::UIToFP:
    case Instruction::Trunc:
    case Instruction::FPTrunc:
    case Instruction::BitCast:
    case Instruction::Add:
    case Instruction::FAdd:
    case Instruction::Sub:
    case Instruction::FSub:
    case Instruction::Mul:
    case Instruction::FMul:
    case Instruction::UDiv:
    case Instruction::SDiv:
    case Instruction::FDiv:
    case Instruction::URem:
    case Instruction::SRem:
    case Instruction::FRem:
    case Instruction::Shl:
    case Instruction::LShr:
    case Instruction::AShr:
    case Instruction::And:
    case Instruction::Or:
    case Instruction::Xor: {
      for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
        ValueList Operands;
        // Prepare the operand vector.
        for (unsigned j = 0; j < VL.size(); ++j)
          Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));

        getTreeUses_rec(Operands, Depth+1);
      }
      return;
    }
    case Instruction::Store: {
      ValueList Operands;
      for (unsigned j = 0; j < VL.size(); ++j)
        Operands.push_back(cast<Instruction>(VL[j])->getOperand(0));
      getTreeUses_rec(Operands, Depth+1);
      return;
    }
    default:
    return;
  }
}

int BoUpSLP::getTreeCost_rec(ArrayRef<Value *> VL, unsigned Depth) {
  Type *ScalarTy = VL[0]->getType();

  if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
    ScalarTy = SI->getValueOperand()->getType();

  /// Don't mess with vectors.
  if (ScalarTy->isVectorTy()) return max_cost;
  VectorType *VecTy = VectorType::get(ScalarTy, VL.size());

  if (Depth == RecursionMaxDepth) return getScalarizationCost(VecTy);

  // Check if all of the operands are constants.
  bool AllConst = true;
  bool AllSameScalar = true;
  bool MustScalarizeFlag = false;
  for (unsigned i = 0, e = VL.size(); i < e; ++i) {
    AllConst &= isa<Constant>(VL[i]);
    AllSameScalar &= (VL[0] == VL[i]);
    // Must have a single use.
    Instruction *I = dyn_cast<Instruction>(VL[i]);
    MustScalarizeFlag |= MustScalarize.count(VL[i]);
    // This instruction is outside the basic block.
    if (I && I->getParent() != BB)
      return getScalarizationCost(VecTy);
  }

  // Is this a simple vector constant.
  if (AllConst) return 0;

  // If all of the operands are identical we can broadcast them.
  Instruction *VL0 = dyn_cast<Instruction>(VL[0]);
  if (AllSameScalar) {
    // If we are in a loop, and this is not an instruction (e.g. constant or
    // argument) or the instruction is defined outside the loop then assume
    // that the cost is zero.
    if (L && (!VL0 || !L->contains(VL0)))
      return 0;

    // We need to broadcast the scalar.
    return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0);
  }

  // If this is not a constant, or a scalar from outside the loop then we
  // need to scalarize it.
  if (MustScalarizeFlag)
    return getScalarizationCost(VecTy);

  if (!VL0) return getScalarizationCost(VecTy);
  assert(VL0->getParent() == BB && "Wrong BB");

  unsigned Opcode = VL0->getOpcode();
  for (unsigned i = 0, e = VL.size(); i < e; ++i) {
    Instruction *I = dyn_cast<Instruction>(VL[i]);
    // If not all of the instructions are identical then we have to scalarize.
    if (!I || Opcode != I->getOpcode()) return getScalarizationCost(VecTy);
  }

  // Check if it is safe to sink the loads or the stores.
  if (Opcode == Instruction::Load || Opcode == Instruction::Store) {
    int MaxIdx = InstrIdx[VL0];
    for (unsigned i = 1, e = VL.size(); i < e; ++i )
      MaxIdx = std::max(MaxIdx, InstrIdx[VL[i]]);

    Instruction *Last = InstrVec[MaxIdx];
    for (unsigned i = 0, e = VL.size(); i < e; ++i ) {
      if (VL[i] == Last) continue;
      Value *Barrier = isUnsafeToSink(cast<Instruction>(VL[i]), Last);
      if (Barrier) {
        DEBUG(dbgs() << "SLP: Can't sink " << *VL[i] << "\n down to " <<
              *Last << "\n because of " << *Barrier << "\n");
        return max_cost;
      }
    }
  }

  // Calculate the extract cost.
  unsigned ExternalUserExtractCost = 0;
  for (unsigned i = 0, e = VL.size(); i < e; ++i)
    if (MustExtract.count(VL[i]))
      ExternalUserExtractCost +=
        TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i);

  switch (Opcode) {
  case Instruction::ZExt:
  case Instruction::SExt:
  case Instruction::FPToUI:
  case Instruction::FPToSI:
  case Instruction::FPExt:
  case Instruction::PtrToInt:
  case Instruction::IntToPtr:
  case Instruction::SIToFP:
  case Instruction::UIToFP:
  case Instruction::Trunc:
  case Instruction::FPTrunc:
  case Instruction::BitCast: {
    int Cost = ExternalUserExtractCost;
    ValueList Operands;
    Type *SrcTy = VL0->getOperand(0)->getType();
    // Prepare the operand vector.
    for (unsigned j = 0; j < VL.size(); ++j) {
      Operands.push_back(cast<Instruction>(VL[j])->getOperand(0));
      // Check that the casted type is the same for all users.
      if (cast<Instruction>(VL[j])->getOperand(0)->getType() != SrcTy)
        return getScalarizationCost(VecTy);
    }

    Cost += getTreeCost_rec(Operands, Depth+1);
    if (Cost >= max_cost) return max_cost;

    // Calculate the cost of this instruction.
    int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(),
                                                       VL0->getType(), SrcTy);

    VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size());
    int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy);
    Cost += (VecCost - ScalarCost);
    return Cost;
  }
  case Instruction::Add:
  case Instruction::FAdd:
  case Instruction::Sub:
  case Instruction::FSub:
  case Instruction::Mul:
  case Instruction::FMul:
  case Instruction::UDiv:
  case Instruction::SDiv:
  case Instruction::FDiv:
  case Instruction::URem:
  case Instruction::SRem:
  case Instruction::FRem:
  case Instruction::Shl:
  case Instruction::LShr:
  case Instruction::AShr:
  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor: {
    int Cost = ExternalUserExtractCost;
    // Calculate the cost of all of the operands.
    for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
      ValueList Operands;
      // Prepare the operand vector.
      for (unsigned j = 0; j < VL.size(); ++j)
        Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));

      Cost += getTreeCost_rec(Operands, Depth+1);
      if (Cost >= max_cost) return max_cost;
    }

    // Calculate the cost of this instruction.
    int ScalarCost = VecTy->getNumElements() *
      TTI->getArithmeticInstrCost(Opcode, ScalarTy);

    int VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy);
    Cost += (VecCost - ScalarCost);
    return Cost;
  }
  case Instruction::Load: {
    // If we are scalarize the loads, add the cost of forming the vector.
    for (unsigned i = 0, e = VL.size()-1; i < e; ++i)
      if (!isConsecutiveAccess(VL[i], VL[i+1]))
        return getScalarizationCost(VecTy);

    // Cost of wide load - cost of scalar loads.
    int ScalarLdCost = VecTy->getNumElements() *
      TTI->getMemoryOpCost(Instruction::Load, ScalarTy, 1, 0);
    int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, ScalarTy, 1, 0);
    return VecLdCost - ScalarLdCost + ExternalUserExtractCost;
  }
  case Instruction::Store: {
    // We know that we can merge the stores. Calculate the cost.
    int ScalarStCost = VecTy->getNumElements() *
      TTI->getMemoryOpCost(Instruction::Store, ScalarTy, 1, 0);
    int VecStCost = TTI->getMemoryOpCost(Instruction::Store, ScalarTy, 1,0);
    int StoreCost = VecStCost - ScalarStCost;

    ValueList Operands;
    for (unsigned j = 0; j < VL.size(); ++j) {
      Operands.push_back(cast<Instruction>(VL[j])->getOperand(0));
      MemBarrierIgnoreList.insert(VL[j]);
    }

    int TotalCost = StoreCost + getTreeCost_rec(Operands, Depth + 1);
    return TotalCost + ExternalUserExtractCost;
  }
  default:
    // Unable to vectorize unknown instructions.
    return getScalarizationCost(VecTy);
  }
}

Instruction *BoUpSLP::GetLastInstr(ArrayRef<Value *> VL, unsigned VF) {
  int MaxIdx = InstrIdx[BB->getFirstNonPHI()];
  for (unsigned i = 0; i < VF; ++i )
    MaxIdx = std::max(MaxIdx, InstrIdx[VL[i]]);
  return InstrVec[MaxIdx + 1];
}

Value *BoUpSLP::Scalarize(ArrayRef<Value *> VL, VectorType *Ty) {
  IRBuilder<> Builder(GetLastInstr(VL, Ty->getNumElements()));
  Value *Vec = UndefValue::get(Ty);
  for (unsigned i=0; i < Ty->getNumElements(); ++i) {
    // Generate the 'InsertElement' instruction.
    Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i));
    // Remember that this instruction is used as part of a 'gather' sequence.
    // The caller of the bottom-up slp vectorizer can try to hoist the sequence
    // if the users are outside of the basic block.
    GatherInstructions.push_back(Vec);
  }

  return Vec;
}

Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL, int VF) {
  Value *V = vectorizeTree_rec(VL, VF);

  Instruction *LastInstr = GetLastInstr(VL, VL.size());
  IRBuilder<> Builder(LastInstr);
  for (ValueSet::iterator it = MustExtract.begin(), e = MustExtract.end();
       it != e; ++it) {
    Instruction *I = cast<Instruction>(*it);
    Value *Vec = VectorizedValues[I];
    assert(LaneMap.count(I) && "Unable to find the lane for the external use");
    Value *Idx = Builder.getInt32(LaneMap[I]);
    Value *Extract = Builder.CreateExtractElement(Vec, Idx);
    I->replaceAllUsesWith(Extract);
  }

  // We moved some instructions around. We have to number them again
  // before we can do any analysis.
  numberInstructions();
  MustScalarize.clear();
  MustExtract.clear();
  return V;
}

Value *BoUpSLP::vectorizeTree_rec(ArrayRef<Value *> VL, int VF) {
  Type *ScalarTy = VL[0]->getType();
  if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
    ScalarTy = SI->getValueOperand()->getType();
  VectorType *VecTy = VectorType::get(ScalarTy, VF);

  // Check if all of the operands are constants or identical.
  bool AllConst = true;
  bool AllSameScalar = true;
  for (unsigned i = 0, e = VF; i < e; ++i) {
    AllConst &= isa<Constant>(VL[i]);
    AllSameScalar &= (VL[0] == VL[i]);
    // The instruction must be in the same BB, and it must be vectorizable.
    Instruction *I = dyn_cast<Instruction>(VL[i]);
    if (MustScalarize.count(VL[i]) || (I && I->getParent() != BB))
      return Scalarize(VL, VecTy);
  }

  // Check that this is a simple vector constant.
  if (AllConst || AllSameScalar) return Scalarize(VL, VecTy);

  // Scalarize unknown structures.
  Instruction *VL0 = dyn_cast<Instruction>(VL[0]);
  if (!VL0) return Scalarize(VL, VecTy);

  if (VectorizedValues.count(VL0)) return VectorizedValues[VL0];

  unsigned Opcode = VL0->getOpcode();
  for (unsigned i = 0, e = VF; i < e; ++i) {
    Instruction *I = dyn_cast<Instruction>(VL[i]);
    // If not all of the instructions are identical then we have to scalarize.
    if (!I || Opcode != I->getOpcode()) return Scalarize(VL, VecTy);
  }

  switch (Opcode) {
  case Instruction::ZExt:
  case Instruction::SExt:
  case Instruction::FPToUI:
  case Instruction::FPToSI:
  case Instruction::FPExt:
  case Instruction::PtrToInt:
  case Instruction::IntToPtr:
  case Instruction::SIToFP:
  case Instruction::UIToFP:
  case Instruction::Trunc:
  case Instruction::FPTrunc:
  case Instruction::BitCast: {
    ValueList INVL;
    for (int i = 0; i < VF; ++i)
      INVL.push_back(cast<Instruction>(VL[i])->getOperand(0));
    Value *InVec = vectorizeTree_rec(INVL, VF);
    IRBuilder<> Builder(GetLastInstr(VL, VF));
    CastInst *CI = dyn_cast<CastInst>(VL0);
    Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
    VectorizedValues[VL0] = V;
    return V;
  }
  case Instruction::Add:
  case Instruction::FAdd:
  case Instruction::Sub:
  case Instruction::FSub:
  case Instruction::Mul:
  case Instruction::FMul:
  case Instruction::UDiv:
  case Instruction::SDiv:
  case Instruction::FDiv:
  case Instruction::URem:
  case Instruction::SRem:
  case Instruction::FRem:
  case Instruction::Shl:
  case Instruction::LShr:
  case Instruction::AShr:
  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor: {
    ValueList LHSVL, RHSVL;
    for (int i = 0; i < VF; ++i) {
      RHSVL.push_back(cast<Instruction>(VL[i])->getOperand(0));
      LHSVL.push_back(cast<Instruction>(VL[i])->getOperand(1));
    }

    Value *RHS = vectorizeTree_rec(RHSVL, VF);
    Value *LHS = vectorizeTree_rec(LHSVL, VF);
    IRBuilder<> Builder(GetLastInstr(VL, VF));
    BinaryOperator *BinOp = cast<BinaryOperator>(VL0);
    Value *V = Builder.CreateBinOp(BinOp->getOpcode(), RHS,LHS);
    VectorizedValues[VL0] = V;
    return V;
  }
  case Instruction::Load: {
    LoadInst *LI = cast<LoadInst>(VL0);
    unsigned Alignment = LI->getAlignment();

    // Check if all of the loads are consecutive.
    for (unsigned i = 1, e = VF; i < e; ++i)
      if (!isConsecutiveAccess(VL[i-1], VL[i]))
        return Scalarize(VL, VecTy);

    IRBuilder<> Builder(GetLastInstr(VL, VF));
    Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(),
                                          VecTy->getPointerTo());
    LI = Builder.CreateLoad(VecPtr);
    LI->setAlignment(Alignment);
    VectorizedValues[VL0] = LI;
    return LI;
  }
  case Instruction::Store: {
    StoreInst *SI = cast<StoreInst>(VL0);
    unsigned Alignment = SI->getAlignment();

    ValueList ValueOp;
    for (int i = 0; i < VF; ++i)
      ValueOp.push_back(cast<StoreInst>(VL[i])->getValueOperand());

    Value *VecValue = vectorizeTree_rec(ValueOp, VF);

    IRBuilder<> Builder(GetLastInstr(VL, VF));
    Value *VecPtr = Builder.CreateBitCast(SI->getPointerOperand(),
                                          VecTy->getPointerTo());
    Builder.CreateStore(VecValue, VecPtr)->setAlignment(Alignment);

    for (int i = 0; i < VF; ++i)
      cast<Instruction>(VL[i])->eraseFromParent();
    return 0;
  }
  default:
    Value *S = Scalarize(VL, VecTy);
    VectorizedValues[VL0] = S;
    return S;
  }
}

} // end of namespace