summaryrefslogtreecommitdiff
path: root/lib/VMCore/Dominators.cpp
blob: f1d655fd24a6ed5a0a6788868696e7050b637bae (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
//===- Dominators.cpp - Dominator Calculation -----------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements simple dominator construction algorithms for finding
// forward dominators.  Postdominators are available in libanalysis, but are not
// included in libvmcore, because it's not needed.  Forward dominators are
// needed to support the Verifier pass.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/Dominators.h"
#include "llvm/Support/CFG.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SetOperations.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Instructions.h"
#include <algorithm>
using namespace llvm;

namespace llvm {
static std::ostream &operator<<(std::ostream &o,
                                const std::set<BasicBlock*> &BBs) {
  for (std::set<BasicBlock*>::const_iterator I = BBs.begin(), E = BBs.end();
       I != E; ++I)
    if (*I)
      WriteAsOperand(o, *I, false);
    else
      o << " <<exit node>>";
  return o;
}
}

//===----------------------------------------------------------------------===//
//  DominatorTree Implementation
//===----------------------------------------------------------------------===//
//
// DominatorTree construction - This pass constructs immediate dominator
// information for a flow-graph based on the algorithm described in this
// document:
//
//   A Fast Algorithm for Finding Dominators in a Flowgraph
//   T. Lengauer & R. Tarjan, ACM TOPLAS July 1979, pgs 121-141.
//
// This implements both the O(n*ack(n)) and the O(n*log(n)) versions of EVAL and
// LINK, but it turns out that the theoretically slower O(n*log(n))
// implementation is actually faster than the "efficient" algorithm (even for
// large CFGs) because the constant overheads are substantially smaller.  The
// lower-complexity version can be enabled with the following #define:
//
#define BALANCE_IDOM_TREE 0
//
//===----------------------------------------------------------------------===//

const char DominatorTree::ID = 0;
static RegisterPass<DominatorTree>
E("domtree", "Dominator Tree Construction", true);

unsigned DominatorTree::DFSPass(BasicBlock *V, InfoRec &VInfo,
                                      unsigned N) {
  // This is more understandable as a recursive algorithm, but we can't use the
  // recursive algorithm due to stack depth issues.  Keep it here for
  // documentation purposes.
#if 0
  VInfo.Semi = ++N;
  VInfo.Label = V;

  Vertex.push_back(V);        // Vertex[n] = V;
  //Info[V].Ancestor = 0;     // Ancestor[n] = 0
  //Info[V].Child = 0;        // Child[v] = 0
  VInfo.Size = 1;             // Size[v] = 1

  for (succ_iterator SI = succ_begin(V), E = succ_end(V); SI != E; ++SI) {
    InfoRec &SuccVInfo = Info[*SI];
    if (SuccVInfo.Semi == 0) {
      SuccVInfo.Parent = V;
      N = DFSPass(*SI, SuccVInfo, N);
    }
  }
#else
  std::vector<std::pair<BasicBlock*, unsigned> > Worklist;
  Worklist.push_back(std::make_pair(V, 0U));
  while (!Worklist.empty()) {
    BasicBlock *BB = Worklist.back().first;
    unsigned NextSucc = Worklist.back().second;
    
    // First time we visited this BB?
    if (NextSucc == 0) {
      InfoRec &BBInfo = Info[BB];
      BBInfo.Semi = ++N;
      BBInfo.Label = BB;
      
      Vertex.push_back(BB);       // Vertex[n] = V;
      //BBInfo[V].Ancestor = 0;   // Ancestor[n] = 0
      //BBInfo[V].Child = 0;      // Child[v] = 0
      BBInfo.Size = 1;            // Size[v] = 1
    }
    
    // If we are done with this block, remove it from the worklist.
    if (NextSucc == BB->getTerminator()->getNumSuccessors()) {
      Worklist.pop_back();
      continue;
    }
    
    // Otherwise, increment the successor number for the next time we get to it.
    ++Worklist.back().second;
    
    // Visit the successor next, if it isn't already visited.
    BasicBlock *Succ = BB->getTerminator()->getSuccessor(NextSucc);
    
    InfoRec &SuccVInfo = Info[Succ];
    if (SuccVInfo.Semi == 0) {
      SuccVInfo.Parent = BB;
      Worklist.push_back(std::make_pair(Succ, 0U));
    }
  }
#endif
  return N;
}

void DominatorTree::Compress(BasicBlock *V, InfoRec &VInfo) {
  BasicBlock *VAncestor = VInfo.Ancestor;
  InfoRec &VAInfo = Info[VAncestor];
  if (VAInfo.Ancestor == 0)
    return;

  Compress(VAncestor, VAInfo);

  BasicBlock *VAncestorLabel = VAInfo.Label;
  BasicBlock *VLabel = VInfo.Label;
  if (Info[VAncestorLabel].Semi < Info[VLabel].Semi)
    VInfo.Label = VAncestorLabel;

  VInfo.Ancestor = VAInfo.Ancestor;
}

BasicBlock *DominatorTree::Eval(BasicBlock *V) {
  InfoRec &VInfo = Info[V];
#if !BALANCE_IDOM_TREE
  // Higher-complexity but faster implementation
  if (VInfo.Ancestor == 0)
    return V;
  Compress(V, VInfo);
  return VInfo.Label;
#else
  // Lower-complexity but slower implementation
  if (VInfo.Ancestor == 0)
    return VInfo.Label;
  Compress(V, VInfo);
  BasicBlock *VLabel = VInfo.Label;

  BasicBlock *VAncestorLabel = Info[VInfo.Ancestor].Label;
  if (Info[VAncestorLabel].Semi >= Info[VLabel].Semi)
    return VLabel;
  else
    return VAncestorLabel;
#endif
}

void DominatorTree::Link(BasicBlock *V, BasicBlock *W, InfoRec &WInfo){
#if !BALANCE_IDOM_TREE
  // Higher-complexity but faster implementation
  WInfo.Ancestor = V;
#else
  // Lower-complexity but slower implementation
  BasicBlock *WLabel = WInfo.Label;
  unsigned WLabelSemi = Info[WLabel].Semi;
  BasicBlock *S = W;
  InfoRec *SInfo = &Info[S];

  BasicBlock *SChild = SInfo->Child;
  InfoRec *SChildInfo = &Info[SChild];

  while (WLabelSemi < Info[SChildInfo->Label].Semi) {
    BasicBlock *SChildChild = SChildInfo->Child;
    if (SInfo->Size+Info[SChildChild].Size >= 2*SChildInfo->Size) {
      SChildInfo->Ancestor = S;
      SInfo->Child = SChild = SChildChild;
      SChildInfo = &Info[SChild];
    } else {
      SChildInfo->Size = SInfo->Size;
      S = SInfo->Ancestor = SChild;
      SInfo = SChildInfo;
      SChild = SChildChild;
      SChildInfo = &Info[SChild];
    }
  }

  InfoRec &VInfo = Info[V];
  SInfo->Label = WLabel;

  assert(V != W && "The optimization here will not work in this case!");
  unsigned WSize = WInfo.Size;
  unsigned VSize = (VInfo.Size += WSize);

  if (VSize < 2*WSize)
    std::swap(S, VInfo.Child);

  while (S) {
    SInfo = &Info[S];
    SInfo->Ancestor = V;
    S = SInfo->Child;
  }
#endif
}

void DominatorTree::calculate(Function& F) {
  BasicBlock* Root = Roots[0];
  
  Nodes[Root] = RootNode = new Node(Root, 0); // Add a node for the root...

  Vertex.push_back(0);

  // Step #1: Number blocks in depth-first order and initialize variables used
  // in later stages of the algorithm.
  unsigned N = 0;
  for (unsigned i = 0, e = Roots.size(); i != e; ++i)
    N = DFSPass(Roots[i], Info[Roots[i]], 0);

  for (unsigned i = N; i >= 2; --i) {
    BasicBlock *W = Vertex[i];
    InfoRec &WInfo = Info[W];

    // Step #2: Calculate the semidominators of all vertices
    for (pred_iterator PI = pred_begin(W), E = pred_end(W); PI != E; ++PI)
      if (Info.count(*PI)) {  // Only if this predecessor is reachable!
        unsigned SemiU = Info[Eval(*PI)].Semi;
        if (SemiU < WInfo.Semi)
          WInfo.Semi = SemiU;
      }

    Info[Vertex[WInfo.Semi]].Bucket.push_back(W);

    BasicBlock *WParent = WInfo.Parent;
    Link(WParent, W, WInfo);

    // Step #3: Implicitly define the immediate dominator of vertices
    std::vector<BasicBlock*> &WParentBucket = Info[WParent].Bucket;
    while (!WParentBucket.empty()) {
      BasicBlock *V = WParentBucket.back();
      WParentBucket.pop_back();
      BasicBlock *U = Eval(V);
      IDoms[V] = Info[U].Semi < Info[V].Semi ? U : WParent;
    }
  }

  // Step #4: Explicitly define the immediate dominator of each vertex
  for (unsigned i = 2; i <= N; ++i) {
    BasicBlock *W = Vertex[i];
    BasicBlock *&WIDom = IDoms[W];
    if (WIDom != Vertex[Info[W].Semi])
      WIDom = IDoms[WIDom];
  }

  // Loop over all of the reachable blocks in the function...
  for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
    if (BasicBlock *ImmDom = getIDom(I)) {  // Reachable block.
      Node *&BBNode = Nodes[I];
      if (!BBNode) {  // Haven't calculated this node yet?
        // Get or calculate the node for the immediate dominator
        Node *IDomNode = getNodeForBlock(ImmDom);

        // Add a new tree node for this BasicBlock, and link it as a child of
        // IDomNode
        BBNode = IDomNode->addChild(new Node(I, IDomNode));
      }
    }

  // Free temporary memory used to construct idom's
  Info.clear();
  IDoms.clear();
  std::vector<BasicBlock*>().swap(Vertex);
}

// DominatorTreeBase::reset - Free all of the tree node memory.
//
void DominatorTreeBase::reset() {
  for (NodeMapType::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I)
    delete I->second;
  Nodes.clear();
  IDoms.clear();
  Roots.clear();
  Vertex.clear();
  RootNode = 0;
}

void DominatorTreeBase::Node::setIDom(Node *NewIDom) {
  assert(IDom && "No immediate dominator?");
  if (IDom != NewIDom) {
    std::vector<Node*>::iterator I =
      std::find(IDom->Children.begin(), IDom->Children.end(), this);
    assert(I != IDom->Children.end() &&
           "Not in immediate dominator children set!");
    // I am no longer your child...
    IDom->Children.erase(I);

    // Switch to new dominator
    IDom = NewIDom;
    IDom->Children.push_back(this);
  }
}

DominatorTreeBase::Node *DominatorTree::getNodeForBlock(BasicBlock *BB) {
  Node *&BBNode = Nodes[BB];
  if (BBNode) return BBNode;

  // Haven't calculated this node yet?  Get or calculate the node for the
  // immediate dominator.
  BasicBlock *IDom = getIDom(BB);
  Node *IDomNode = getNodeForBlock(IDom);

  // Add a new tree node for this BasicBlock, and link it as a child of
  // IDomNode
  return BBNode = IDomNode->addChild(new Node(BB, IDomNode));
}

static std::ostream &operator<<(std::ostream &o,
                                const DominatorTreeBase::Node *Node) {
  if (Node->getBlock())
    WriteAsOperand(o, Node->getBlock(), false);
  else
    o << " <<exit node>>";
  return o << "\n";
}

static void PrintDomTree(const DominatorTreeBase::Node *N, std::ostream &o,
                         unsigned Lev) {
  o << std::string(2*Lev, ' ') << "[" << Lev << "] " << N;
  for (DominatorTreeBase::Node::const_iterator I = N->begin(), E = N->end();
       I != E; ++I)
    PrintDomTree(*I, o, Lev+1);
}

void DominatorTreeBase::print(std::ostream &o, const Module* ) const {
  o << "=============================--------------------------------\n"
    << "Inorder Dominator Tree:\n";
  PrintDomTree(getRootNode(), o, 1);
}

bool DominatorTree::runOnFunction(Function &F) {
  reset();     // Reset from the last time we were run...
  Roots.push_back(&F.getEntryBlock());
  calculate(F);
  return false;
}

//===----------------------------------------------------------------------===//
//  DominanceFrontier Implementation
//===----------------------------------------------------------------------===//

const char DominanceFrontier::ID = 0;
static RegisterPass<DominanceFrontier>
G("domfrontier", "Dominance Frontier Construction", true);

namespace {
  class DFCalculateWorkObject {
  public:
    DFCalculateWorkObject(BasicBlock *B, BasicBlock *P, 
                          const DominatorTree::Node *N,
                          const DominatorTree::Node *PN)
    : currentBB(B), parentBB(P), Node(N), parentNode(PN) {}
    BasicBlock *currentBB;
    BasicBlock *parentBB;
    const DominatorTree::Node *Node;
    const DominatorTree::Node *parentNode;
  };
}

const DominanceFrontier::DomSetType &
DominanceFrontier::calculate(const DominatorTree &DT,
                             const DominatorTree::Node *Node) {
  BasicBlock *BB = Node->getBlock();
  DomSetType *Result = NULL;

  std::vector<DFCalculateWorkObject> workList;
  SmallPtrSet<BasicBlock *, 32> visited;

  workList.push_back(DFCalculateWorkObject(BB, NULL, Node, NULL));
  do {
    DFCalculateWorkObject *currentW = &workList.back();
    assert (currentW && "Missing work object.");

    BasicBlock *currentBB = currentW->currentBB;
    BasicBlock *parentBB = currentW->parentBB;
    const DominatorTree::Node *currentNode = currentW->Node;
    const DominatorTree::Node *parentNode = currentW->parentNode;
    assert (currentBB && "Invalid work object. Missing current Basic Block");
    assert (currentNode && "Invalid work object. Missing current Node");
    DomSetType &S = Frontiers[currentBB];

    // Visit each block only once.
    if (visited.count(currentBB) == 0) {
      visited.insert(currentBB);

      // Loop over CFG successors to calculate DFlocal[currentNode]
      for (succ_iterator SI = succ_begin(currentBB), SE = succ_end(currentBB);
           SI != SE; ++SI) {
        // Does Node immediately dominate this successor?
        if (DT[*SI]->getIDom() != currentNode)
          S.insert(*SI);
      }
    }

    // At this point, S is DFlocal.  Now we union in DFup's of our children...
    // Loop through and visit the nodes that Node immediately dominates (Node's
    // children in the IDomTree)
    bool visitChild = false;
    for (DominatorTree::Node::const_iterator NI = currentNode->begin(), 
           NE = currentNode->end(); NI != NE; ++NI) {
      DominatorTree::Node *IDominee = *NI;
      BasicBlock *childBB = IDominee->getBlock();
      if (visited.count(childBB) == 0) {
        workList.push_back(DFCalculateWorkObject(childBB, currentBB,
                                                 IDominee, currentNode));
        visitChild = true;
      }
    }

    // If all children are visited or there is any child then pop this block
    // from the workList.
    if (!visitChild) {

      if (!parentBB) {
        Result = &S;
        break;
      }

      DomSetType::const_iterator CDFI = S.begin(), CDFE = S.end();
      DomSetType &parentSet = Frontiers[parentBB];
      for (; CDFI != CDFE; ++CDFI) {
        if (!parentNode->properlyDominates(DT[*CDFI]))
          parentSet.insert(*CDFI);
      }
      workList.pop_back();
    }

  } while (!workList.empty());

  return *Result;
}

void DominanceFrontierBase::print(std::ostream &o, const Module* ) const {
  for (const_iterator I = begin(), E = end(); I != E; ++I) {
    o << "  DomFrontier for BB";
    if (I->first)
      WriteAsOperand(o, I->first, false);
    else
      o << " <<exit node>>";
    o << " is:\t" << I->second << "\n";
  }
}

//===----------------------------------------------------------------------===//
// ETOccurrence Implementation
//===----------------------------------------------------------------------===//

void ETOccurrence::Splay() {
  ETOccurrence *father;
  ETOccurrence *grandfather;
  int occdepth;
  int fatherdepth;
  
  while (Parent) {
    occdepth = Depth;
    
    father = Parent;
    fatherdepth = Parent->Depth;
    grandfather = father->Parent;
    
    // If we have no grandparent, a single zig or zag will do.
    if (!grandfather) {
      setDepthAdd(fatherdepth);
      MinOccurrence = father->MinOccurrence;
      Min = father->Min;
      
      // See what we have to rotate
      if (father->Left == this) {
        // Zig
        father->setLeft(Right);
        setRight(father);
        if (father->Left)
          father->Left->setDepthAdd(occdepth);
      } else {
        // Zag
        father->setRight(Left);
        setLeft(father);
        if (father->Right)
          father->Right->setDepthAdd(occdepth);
      }
      father->setDepth(-occdepth);
      Parent = NULL;
      
      father->recomputeMin();
      return;
    }
    
    // If we have a grandfather, we need to do some
    // combination of zig and zag.
    int grandfatherdepth = grandfather->Depth;
    
    setDepthAdd(fatherdepth + grandfatherdepth);
    MinOccurrence = grandfather->MinOccurrence;
    Min = grandfather->Min;
    
    ETOccurrence *greatgrandfather = grandfather->Parent;
    
    if (grandfather->Left == father) {
      if (father->Left == this) {
        // Zig zig
        grandfather->setLeft(father->Right);
        father->setLeft(Right);
        setRight(father);
        father->setRight(grandfather);
        
        father->setDepth(-occdepth);
        
        if (father->Left)
          father->Left->setDepthAdd(occdepth);
        
        grandfather->setDepth(-fatherdepth);
        if (grandfather->Left)
          grandfather->Left->setDepthAdd(fatherdepth);
      } else {
        // Zag zig
        grandfather->setLeft(Right);
        father->setRight(Left);
        setLeft(father);
        setRight(grandfather);
        
        father->setDepth(-occdepth);
        if (father->Right)
          father->Right->setDepthAdd(occdepth);
        grandfather->setDepth(-occdepth - fatherdepth);
        if (grandfather->Left)
          grandfather->Left->setDepthAdd(occdepth + fatherdepth);
      }
    } else {
      if (father->Left == this) {
        // Zig zag
        grandfather->setRight(Left);
        father->setLeft(Right);
        setLeft(grandfather);
        setRight(father);
        
        father->setDepth(-occdepth);
        if (father->Left)
          father->Left->setDepthAdd(occdepth);
        grandfather->setDepth(-occdepth - fatherdepth);
        if (grandfather->Right)
          grandfather->Right->setDepthAdd(occdepth + fatherdepth);
      } else {              // Zag Zag
        grandfather->setRight(father->Left);
        father->setRight(Left);
        setLeft(father);
        father->setLeft(grandfather);
        
        father->setDepth(-occdepth);
        if (father->Right)
          father->Right->setDepthAdd(occdepth);
        grandfather->setDepth(-fatherdepth);
        if (grandfather->Right)
          grandfather->Right->setDepthAdd(fatherdepth);
      }
    }
    
    // Might need one more rotate depending on greatgrandfather.
    setParent(greatgrandfather);
    if (greatgrandfather) {
      if (greatgrandfather->Left == grandfather)
        greatgrandfather->Left = this;
      else
        greatgrandfather->Right = this;
      
    }
    grandfather->recomputeMin();
    father->recomputeMin();
  }
}

//===----------------------------------------------------------------------===//
// ETNode implementation
//===----------------------------------------------------------------------===//

void ETNode::Split() {
  ETOccurrence *right, *left;
  ETOccurrence *rightmost = RightmostOcc;
  ETOccurrence *parent;

  // Update the occurrence tree first.
  RightmostOcc->Splay();

  // Find the leftmost occurrence in the rightmost subtree, then splay
  // around it.
  for (right = rightmost->Right; right->Left; right = right->Left);

  right->Splay();

  // Start splitting
  right->Left->Parent = NULL;
  parent = ParentOcc;
  parent->Splay();
  ParentOcc = NULL;

  left = parent->Left;
  parent->Right->Parent = NULL;

  right->setLeft(left);

  right->recomputeMin();

  rightmost->Splay();
  rightmost->Depth = 0;
  rightmost->Min = 0;

  delete parent;

  // Now update *our* tree

  if (Father->Son == this)
    Father->Son = Right;

  if (Father->Son == this)
    Father->Son = NULL;
  else {
    Left->Right = Right;
    Right->Left = Left;
  }
  Left = Right = NULL;
  Father = NULL;
}

void ETNode::setFather(ETNode *NewFather) {
  ETOccurrence *rightmost;
  ETOccurrence *leftpart;
  ETOccurrence *NewFatherOcc;
  ETOccurrence *temp;

  // First update the path in the splay tree
  NewFatherOcc = new ETOccurrence(NewFather);

  rightmost = NewFather->RightmostOcc;
  rightmost->Splay();

  leftpart = rightmost->Left;

  temp = RightmostOcc;
  temp->Splay();

  NewFatherOcc->setLeft(leftpart);
  NewFatherOcc->setRight(temp);

  temp->Depth++;
  temp->Min++;
  NewFatherOcc->recomputeMin();

  rightmost->setLeft(NewFatherOcc);

  if (NewFatherOcc->Min + rightmost->Depth < rightmost->Min) {
    rightmost->Min = NewFatherOcc->Min + rightmost->Depth;
    rightmost->MinOccurrence = NewFatherOcc->MinOccurrence;
  }

  delete ParentOcc;
  ParentOcc = NewFatherOcc;

  // Update *our* tree
  ETNode *left;
  ETNode *right;

  Father = NewFather;
  right = Father->Son;

  if (right)
    left = right->Left;
  else
    left = right = this;

  left->Right = this;
  right->Left = this;
  Left = left;
  Right = right;

  Father->Son = this;
}

bool ETNode::Below(ETNode *other) {
  ETOccurrence *up = other->RightmostOcc;
  ETOccurrence *down = RightmostOcc;

  if (this == other)
    return true;

  up->Splay();

  ETOccurrence *left, *right;
  left = up->Left;
  right = up->Right;

  if (!left)
    return false;

  left->Parent = NULL;

  if (right)
    right->Parent = NULL;

  down->Splay();

  if (left == down || left->Parent != NULL) {
    if (right)
      right->Parent = up;
    up->setLeft(down);
  } else {
    left->Parent = up;

    // If the two occurrences are in different trees, put things
    // back the way they were.
    if (right && right->Parent != NULL)
      up->setRight(down);
    else
      up->setRight(right);
    return false;
  }

  if (down->Depth <= 0)
    return false;

  return !down->Right || down->Right->Min + down->Depth >= 0;
}

ETNode *ETNode::NCA(ETNode *other) {
  ETOccurrence *occ1 = RightmostOcc;
  ETOccurrence *occ2 = other->RightmostOcc;
  
  ETOccurrence *left, *right, *ret;
  ETOccurrence *occmin;
  int mindepth;
  
  if (this == other)
    return this;
  
  occ1->Splay();
  left = occ1->Left;
  right = occ1->Right;
  
  if (left)
    left->Parent = NULL;
  
  if (right)
    right->Parent = NULL;
  occ2->Splay();

  if (left == occ2 || (left && left->Parent != NULL)) {
    ret = occ2->Right;
    
    occ1->setLeft(occ2);
    if (right)
      right->Parent = occ1;
  } else {
    ret = occ2->Left;
    
    occ1->setRight(occ2);
    if (left)
      left->Parent = occ1;
  }

  if (occ2->Depth > 0) {
    occmin = occ1;
    mindepth = occ1->Depth;
  } else {
    occmin = occ2;
    mindepth = occ2->Depth + occ1->Depth;
  }
  
  if (ret && ret->Min + occ1->Depth + occ2->Depth < mindepth)
    return ret->MinOccurrence->OccFor;
  else
    return occmin->OccFor;
}

void ETNode::assignDFSNumber(int num) {
  std::vector<ETNode *>  workStack;
  std::set<ETNode *> visitedNodes;
  
  workStack.push_back(this);
  visitedNodes.insert(this);
  this->DFSNumIn = num++;

  while (!workStack.empty()) {
    ETNode  *Node = workStack.back();
    
    // If this is leaf node then set DFSNumOut and pop the stack
    if (!Node->Son) {
      Node->DFSNumOut = num++;
      workStack.pop_back();
      continue;
    }
    
    ETNode *son = Node->Son;
    
    // Visit Node->Son first
    if (visitedNodes.count(son) == 0) {
      son->DFSNumIn = num++;
      workStack.push_back(son);
      visitedNodes.insert(son);
      continue;
    }
    
    bool visitChild = false;
    // Visit remaining children
    for (ETNode *s = son->Right;  s != son && !visitChild; s = s->Right) {
      if (visitedNodes.count(s) == 0) {
        visitChild = true;
        s->DFSNumIn = num++;
        workStack.push_back(s);
        visitedNodes.insert(s);
      }
    }
    
    if (!visitChild) {
      // If we reach here means all children are visited
      Node->DFSNumOut = num++;
      workStack.pop_back();
    }
  }
}

//===----------------------------------------------------------------------===//
// ETForest implementation
//===----------------------------------------------------------------------===//

const char ETForest::ID = 0;
static RegisterPass<ETForest>
D("etforest", "ET Forest Construction", true);

void ETForestBase::reset() {
  for (ETMapType::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I)
    delete I->second;
  Nodes.clear();
}

void ETForestBase::updateDFSNumbers()
{
  int dfsnum = 0;
  // Iterate over all nodes in depth first order.
  for (unsigned i = 0, e = Roots.size(); i != e; ++i)
    for (df_iterator<BasicBlock*> I = df_begin(Roots[i]),
           E = df_end(Roots[i]); I != E; ++I) {
      BasicBlock *BB = *I;
      ETNode *ETN = getNode(BB);
      if (ETN && !ETN->hasFather())
        ETN->assignDFSNumber(dfsnum);    
  }
  SlowQueries = 0;
  DFSInfoValid = true;
}

// dominates - Return true if A dominates B. THis performs the
// special checks necessary if A and B are in the same basic block.
bool ETForestBase::dominates(Instruction *A, Instruction *B) {
  BasicBlock *BBA = A->getParent(), *BBB = B->getParent();
  if (BBA != BBB) return dominates(BBA, BBB);
  
  // It is not possible to determine dominance between two PHI nodes 
  // based on their ordering.
  if (isa<PHINode>(A) && isa<PHINode>(B)) 
    return false;

  // Loop through the basic block until we find A or B.
  BasicBlock::iterator I = BBA->begin();
  for (; &*I != A && &*I != B; ++I) /*empty*/;
  
  if(!IsPostDominators) {
    // A dominates B if it is found first in the basic block.
    return &*I == A;
  } else {
    // A post-dominates B if B is found first in the basic block.
    return &*I == B;
  }
}

/// isReachableFromEntry - Return true if A is dominated by the entry
/// block of the function containing it.
const bool ETForestBase::isReachableFromEntry(BasicBlock* A) {
  return dominates(&A->getParent()->getEntryBlock(), A);
}

ETNode *ETForest::getNodeForBlock(BasicBlock *BB) {
  ETNode *&BBNode = Nodes[BB];
  if (BBNode) return BBNode;

  // Haven't calculated this node yet?  Get or calculate the node for the
  // immediate dominator.
  DominatorTree::Node *node= getAnalysis<DominatorTree>().getNode(BB);

  // If we are unreachable, we may not have an immediate dominator.
  if (!node || !node->getIDom())
    return BBNode = new ETNode(BB);
  else {
    ETNode *IDomNode = getNodeForBlock(node->getIDom()->getBlock());
    
    // Add a new tree node for this BasicBlock, and link it as a child of
    // IDomNode
    BBNode = new ETNode(BB);
    BBNode->setFather(IDomNode);
    return BBNode;
  }
}

void ETForest::calculate(const DominatorTree &DT) {
  assert(Roots.size() == 1 && "ETForest should have 1 root block!");
  BasicBlock *Root = Roots[0];
  Nodes[Root] = new ETNode(Root); // Add a node for the root

  Function *F = Root->getParent();
  // Loop over all of the reachable blocks in the function...
  for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) {
    DominatorTree::Node* node = DT.getNode(I);
    if (node && node->getIDom()) {  // Reachable block.
      BasicBlock* ImmDom = node->getIDom()->getBlock();
      ETNode *&BBNode = Nodes[I];
      if (!BBNode) {  // Haven't calculated this node yet?
        // Get or calculate the node for the immediate dominator
        ETNode *IDomNode =  getNodeForBlock(ImmDom);

        // Add a new ETNode for this BasicBlock, and set it's parent
        // to it's immediate dominator.
        BBNode = new ETNode(I);
        BBNode->setFather(IDomNode);
      }
    }
  }

  // Make sure we've got nodes around for every block
  for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) {
    ETNode *&BBNode = Nodes[I];
    if (!BBNode)
      BBNode = new ETNode(I);
  }

  updateDFSNumbers ();
}

//===----------------------------------------------------------------------===//
// ETForestBase Implementation
//===----------------------------------------------------------------------===//

void ETForestBase::addNewBlock(BasicBlock *BB, BasicBlock *IDom) {
  ETNode *&BBNode = Nodes[BB];
  assert(!BBNode && "BasicBlock already in ET-Forest");

  BBNode = new ETNode(BB);
  BBNode->setFather(getNode(IDom));
  DFSInfoValid = false;
}

void ETForestBase::setImmediateDominator(BasicBlock *BB, BasicBlock *newIDom) {
  assert(getNode(BB) && "BasicBlock not in ET-Forest");
  assert(getNode(newIDom) && "IDom not in ET-Forest");
  
  ETNode *Node = getNode(BB);
  if (Node->hasFather()) {
    if (Node->getFather()->getData<BasicBlock>() == newIDom)
      return;
    Node->Split();
  }
  Node->setFather(getNode(newIDom));
  DFSInfoValid= false;
}

void ETForestBase::print(std::ostream &o, const Module *) const {
  o << "=============================--------------------------------\n";
  o << "ET Forest:\n";
  o << "DFS Info ";
  if (DFSInfoValid)
    o << "is";
  else
    o << "is not";
  o << " up to date\n";

  Function *F = getRoots()[0]->getParent();
  for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) {
    o << "  DFS Numbers For Basic Block:";
    WriteAsOperand(o, I, false);
    o << " are:";
    if (ETNode *EN = getNode(I)) {
      o << "In: " << EN->getDFSNumIn();
      o << " Out: " << EN->getDFSNumOut() << "\n";
    } else {
      o << "No associated ETNode";
    }
    o << "\n";
  }
  o << "\n";
}