summaryrefslogtreecommitdiff
path: root/lib/VMCore/Type.cpp
blob: 566bb28c4a456930ccb06736086866bb22553287 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
//===-- Type.cpp - Implement the Type class -------------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Type class for the VMCore library.
//
//===----------------------------------------------------------------------===//

#include "LLVMContextImpl.h"
#include "llvm/ADT/SCCIterator.h"
#include <algorithm>
#include <cstdarg>
using namespace llvm;

// DEBUG_MERGE_TYPES - Enable this #define to see how and when derived types are
// created and later destroyed, all in an effort to make sure that there is only
// a single canonical version of a type.
//
// #define DEBUG_MERGE_TYPES 1

AbstractTypeUser::~AbstractTypeUser() {}

void AbstractTypeUser::setType(Value *V, const Type *NewTy) {
  V->VTy = NewTy;
}

//===----------------------------------------------------------------------===//
//                         Type Class Implementation
//===----------------------------------------------------------------------===//

/// Because of the way Type subclasses are allocated, this function is necessary
/// to use the correct kind of "delete" operator to deallocate the Type object.
/// Some type objects (FunctionTy, StructTy) allocate additional space
/// after the space for their derived type to hold the contained types array of
/// PATypeHandles. Using this allocation scheme means all the PATypeHandles are
/// allocated with the type object, decreasing allocations and eliminating the
/// need for a std::vector to be used in the Type class itself. 
/// @brief Type destruction function
void Type::destroy() const {
  // Nothing calls getForwardedType from here on.
  if (ForwardType && ForwardType->isAbstract()) {
    ForwardType->dropRef();
    ForwardType = NULL;
  }

  // Structures and Functions allocate their contained types past the end of
  // the type object itself. These need to be destroyed differently than the
  // other types.
  if (this->isFunctionTy() || this->isStructTy()) {
    // First, make sure we destruct any PATypeHandles allocated by these
    // subclasses.  They must be manually destructed. 
    for (unsigned i = 0; i < NumContainedTys; ++i)
      ContainedTys[i].PATypeHandle::~PATypeHandle();

    // Now call the destructor for the subclass directly because we're going
    // to delete this as an array of char.
    if (this->isFunctionTy())
      static_cast<const FunctionType*>(this)->FunctionType::~FunctionType();
    else {
      assert(isStructTy());
      static_cast<const StructType*>(this)->StructType::~StructType();
    }

    // Finally, remove the memory as an array deallocation of the chars it was
    // constructed from.
    operator delete(const_cast<Type *>(this));

    return;
  }
  
  if (const OpaqueType *opaque_this = dyn_cast<OpaqueType>(this)) {
    LLVMContextImpl *pImpl = this->getContext().pImpl;
    pImpl->OpaqueTypes.erase(opaque_this);
  }

  // For all the other type subclasses, there is either no contained types or 
  // just one (all Sequentials). For Sequentials, the PATypeHandle is not
  // allocated past the type object, its included directly in the SequentialType
  // class. This means we can safely just do "normal" delete of this object and
  // all the destructors that need to run will be run.
  delete this; 
}

const Type *Type::getPrimitiveType(LLVMContext &C, TypeID IDNumber) {
  switch (IDNumber) {
  case VoidTyID      : return getVoidTy(C);
  case FloatTyID     : return getFloatTy(C);
  case DoubleTyID    : return getDoubleTy(C);
  case X86_FP80TyID  : return getX86_FP80Ty(C);
  case FP128TyID     : return getFP128Ty(C);
  case PPC_FP128TyID : return getPPC_FP128Ty(C);
  case LabelTyID     : return getLabelTy(C);
  case MetadataTyID  : return getMetadataTy(C);
  case X86_MMXTyID   : return getX86_MMXTy(C);
  default:
    return 0;
  }
}

/// getScalarType - If this is a vector type, return the element type,
/// otherwise return this.
const Type *Type::getScalarType() const {
  if (const VectorType *VTy = dyn_cast<VectorType>(this))
    return VTy->getElementType();
  return this;
}

/// isIntegerTy - Return true if this is an IntegerType of the specified width.
bool Type::isIntegerTy(unsigned Bitwidth) const {
  return isIntegerTy() && cast<IntegerType>(this)->getBitWidth() == Bitwidth;
}

/// isIntOrIntVectorTy - Return true if this is an integer type or a vector of
/// integer types.
///
bool Type::isIntOrIntVectorTy() const {
  if (isIntegerTy())
    return true;
  if (ID != Type::VectorTyID) return false;
  
  return cast<VectorType>(this)->getElementType()->isIntegerTy();
}

/// isFPOrFPVectorTy - Return true if this is a FP type or a vector of FP types.
///
bool Type::isFPOrFPVectorTy() const {
  if (ID == Type::FloatTyID || ID == Type::DoubleTyID || 
      ID == Type::FP128TyID || ID == Type::X86_FP80TyID || 
      ID == Type::PPC_FP128TyID)
    return true;
  if (ID != Type::VectorTyID) return false;
  
  return cast<VectorType>(this)->getElementType()->isFloatingPointTy();
}

// canLosslesslyBitCastTo - Return true if this type can be converted to
// 'Ty' without any reinterpretation of bits.  For example, i8* to i32*.
//
bool Type::canLosslesslyBitCastTo(const Type *Ty) const {
  // Identity cast means no change so return true
  if (this == Ty) 
    return true;
  
  // They are not convertible unless they are at least first class types
  if (!this->isFirstClassType() || !Ty->isFirstClassType())
    return false;

  // Vector -> Vector conversions are always lossless if the two vector types
  // have the same size, otherwise not.  Also, 64-bit vector types can be
  // converted to x86mmx.
  if (const VectorType *thisPTy = dyn_cast<VectorType>(this)) {
    if (const VectorType *thatPTy = dyn_cast<VectorType>(Ty))
      return thisPTy->getBitWidth() == thatPTy->getBitWidth();
    if (Ty->getTypeID() == Type::X86_MMXTyID &&
        thisPTy->getBitWidth() == 64)
      return true;
  }

  if (this->getTypeID() == Type::X86_MMXTyID)
    if (const VectorType *thatPTy = dyn_cast<VectorType>(Ty))
      if (thatPTy->getBitWidth() == 64)
        return true;

  // At this point we have only various mismatches of the first class types
  // remaining and ptr->ptr. Just select the lossless conversions. Everything
  // else is not lossless.
  if (this->isPointerTy())
    return Ty->isPointerTy();
  return false;  // Other types have no identity values
}

bool Type::isEmptyTy() const {
  const ArrayType *ATy = dyn_cast<ArrayType>(this);
  if (ATy) {
    unsigned NumElements = ATy->getNumElements();
    return NumElements == 0 || ATy->getElementType()->isEmptyTy();
  }

  const StructType *STy = dyn_cast<StructType>(this);
  if (STy) {
    unsigned NumElements = STy->getNumElements();
    for (unsigned i = 0; i < NumElements; ++i)
      if (!STy->getElementType(i)->isEmptyTy())
        return false;
    return true;
  }

  return false;
}

unsigned Type::getPrimitiveSizeInBits() const {
  switch (getTypeID()) {
  case Type::FloatTyID: return 32;
  case Type::DoubleTyID: return 64;
  case Type::X86_FP80TyID: return 80;
  case Type::FP128TyID: return 128;
  case Type::PPC_FP128TyID: return 128;
  case Type::X86_MMXTyID: return 64;
  case Type::IntegerTyID: return cast<IntegerType>(this)->getBitWidth();
  case Type::VectorTyID:  return cast<VectorType>(this)->getBitWidth();
  default: return 0;
  }
}

/// getScalarSizeInBits - If this is a vector type, return the
/// getPrimitiveSizeInBits value for the element type. Otherwise return the
/// getPrimitiveSizeInBits value for this type.
unsigned Type::getScalarSizeInBits() const {
  return getScalarType()->getPrimitiveSizeInBits();
}

/// getFPMantissaWidth - Return the width of the mantissa of this type.  This
/// is only valid on floating point types.  If the FP type does not
/// have a stable mantissa (e.g. ppc long double), this method returns -1.
int Type::getFPMantissaWidth() const {
  if (const VectorType *VTy = dyn_cast<VectorType>(this))
    return VTy->getElementType()->getFPMantissaWidth();
  assert(isFloatingPointTy() && "Not a floating point type!");
  if (ID == FloatTyID) return 24;
  if (ID == DoubleTyID) return 53;
  if (ID == X86_FP80TyID) return 64;
  if (ID == FP128TyID) return 113;
  assert(ID == PPC_FP128TyID && "unknown fp type");
  return -1;
}

/// isSizedDerivedType - Derived types like structures and arrays are sized
/// iff all of the members of the type are sized as well.  Since asking for
/// their size is relatively uncommon, move this operation out of line.
bool Type::isSizedDerivedType() const {
  if (this->isIntegerTy())
    return true;

  if (const ArrayType *ATy = dyn_cast<ArrayType>(this))
    return ATy->getElementType()->isSized();

  if (const VectorType *VTy = dyn_cast<VectorType>(this))
    return VTy->getElementType()->isSized();

  if (!this->isStructTy()) 
    return false;

  // Okay, our struct is sized if all of the elements are...
  for (subtype_iterator I = subtype_begin(), E = subtype_end(); I != E; ++I)
    if (!(*I)->isSized()) 
      return false;

  return true;
}

/// getForwardedTypeInternal - This method is used to implement the union-find
/// algorithm for when a type is being forwarded to another type.
const Type *Type::getForwardedTypeInternal() const {
  assert(ForwardType && "This type is not being forwarded to another type!");

  // Check to see if the forwarded type has been forwarded on.  If so, collapse
  // the forwarding links.
  const Type *RealForwardedType = ForwardType->getForwardedType();
  if (!RealForwardedType)
    return ForwardType;  // No it's not forwarded again

  // Yes, it is forwarded again.  First thing, add the reference to the new
  // forward type.
  if (RealForwardedType->isAbstract())
    RealForwardedType->addRef();

  // Now drop the old reference.  This could cause ForwardType to get deleted.
  // ForwardType must be abstract because only abstract types can have their own
  // ForwardTypes.
  ForwardType->dropRef();

  // Return the updated type.
  ForwardType = RealForwardedType;
  return ForwardType;
}

void Type::refineAbstractType(const DerivedType *OldTy, const Type *NewTy) {
  llvm_unreachable("Attempting to refine a derived type!");
}
void Type::typeBecameConcrete(const DerivedType *AbsTy) {
  llvm_unreachable("DerivedType is already a concrete type!");
}


std::string Type::getDescription() const {
  LLVMContextImpl *pImpl = getContext().pImpl;
  TypePrinting &Map =
    isAbstract() ?
      pImpl->AbstractTypeDescriptions :
      pImpl->ConcreteTypeDescriptions;
  
  std::string DescStr;
  raw_string_ostream DescOS(DescStr);
  Map.print(this, DescOS);
  return DescOS.str();
}


bool StructType::indexValid(const Value *V) const {
  // Structure indexes require 32-bit integer constants.
  if (V->getType()->isIntegerTy(32))
    if (const ConstantInt *CU = dyn_cast<ConstantInt>(V))
      return indexValid(CU->getZExtValue());
  return false;
}

bool StructType::indexValid(unsigned V) const {
  return V < NumContainedTys;
}

// getTypeAtIndex - Given an index value into the type, return the type of the
// element.  For a structure type, this must be a constant value...
//
const Type *StructType::getTypeAtIndex(const Value *V) const {
  unsigned Idx = (unsigned)cast<ConstantInt>(V)->getZExtValue();
  return getTypeAtIndex(Idx);
}

const Type *StructType::getTypeAtIndex(unsigned Idx) const {
  assert(indexValid(Idx) && "Invalid structure index!");
  return ContainedTys[Idx];
}


//===----------------------------------------------------------------------===//
//                          Primitive 'Type' data
//===----------------------------------------------------------------------===//

const Type *Type::getVoidTy(LLVMContext &C) {
  return &C.pImpl->VoidTy;
}

const Type *Type::getLabelTy(LLVMContext &C) {
  return &C.pImpl->LabelTy;
}

const Type *Type::getFloatTy(LLVMContext &C) {
  return &C.pImpl->FloatTy;
}

const Type *Type::getDoubleTy(LLVMContext &C) {
  return &C.pImpl->DoubleTy;
}

const Type *Type::getMetadataTy(LLVMContext &C) {
  return &C.pImpl->MetadataTy;
}

const Type *Type::getX86_FP80Ty(LLVMContext &C) {
  return &C.pImpl->X86_FP80Ty;
}

const Type *Type::getFP128Ty(LLVMContext &C) {
  return &C.pImpl->FP128Ty;
}

const Type *Type::getPPC_FP128Ty(LLVMContext &C) {
  return &C.pImpl->PPC_FP128Ty;
}

const Type *Type::getX86_MMXTy(LLVMContext &C) {
  return &C.pImpl->X86_MMXTy;
}

const IntegerType *Type::getIntNTy(LLVMContext &C, unsigned N) {
  return IntegerType::get(C, N);
}

const IntegerType *Type::getInt1Ty(LLVMContext &C) {
  return &C.pImpl->Int1Ty;
}

const IntegerType *Type::getInt8Ty(LLVMContext &C) {
  return &C.pImpl->Int8Ty;
}

const IntegerType *Type::getInt16Ty(LLVMContext &C) {
  return &C.pImpl->Int16Ty;
}

const IntegerType *Type::getInt32Ty(LLVMContext &C) {
  return &C.pImpl->Int32Ty;
}

const IntegerType *Type::getInt64Ty(LLVMContext &C) {
  return &C.pImpl->Int64Ty;
}

const PointerType *Type::getFloatPtrTy(LLVMContext &C, unsigned AS) {
  return getFloatTy(C)->getPointerTo(AS);
}

const PointerType *Type::getDoublePtrTy(LLVMContext &C, unsigned AS) {
  return getDoubleTy(C)->getPointerTo(AS);
}

const PointerType *Type::getX86_FP80PtrTy(LLVMContext &C, unsigned AS) {
  return getX86_FP80Ty(C)->getPointerTo(AS);
}

const PointerType *Type::getFP128PtrTy(LLVMContext &C, unsigned AS) {
  return getFP128Ty(C)->getPointerTo(AS);
}

const PointerType *Type::getPPC_FP128PtrTy(LLVMContext &C, unsigned AS) {
  return getPPC_FP128Ty(C)->getPointerTo(AS);
}

const PointerType *Type::getX86_MMXPtrTy(LLVMContext &C, unsigned AS) {
  return getX86_MMXTy(C)->getPointerTo(AS);
}

const PointerType *Type::getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS) {
  return getIntNTy(C, N)->getPointerTo(AS);
}

const PointerType *Type::getInt1PtrTy(LLVMContext &C, unsigned AS) {
  return getInt1Ty(C)->getPointerTo(AS);
}

const PointerType *Type::getInt8PtrTy(LLVMContext &C, unsigned AS) {
  return getInt8Ty(C)->getPointerTo(AS);
}

const PointerType *Type::getInt16PtrTy(LLVMContext &C, unsigned AS) {
  return getInt16Ty(C)->getPointerTo(AS);
}

const PointerType *Type::getInt32PtrTy(LLVMContext &C, unsigned AS) {
  return getInt32Ty(C)->getPointerTo(AS);
}

const PointerType *Type::getInt64PtrTy(LLVMContext &C, unsigned AS) {
  return getInt64Ty(C)->getPointerTo(AS);
}

//===----------------------------------------------------------------------===//
//                          Derived Type Constructors
//===----------------------------------------------------------------------===//

/// isValidReturnType - Return true if the specified type is valid as a return
/// type.
bool FunctionType::isValidReturnType(const Type *RetTy) {
  return !RetTy->isFunctionTy() && !RetTy->isLabelTy() &&
         !RetTy->isMetadataTy();
}

/// isValidArgumentType - Return true if the specified type is valid as an
/// argument type.
bool FunctionType::isValidArgumentType(const Type *ArgTy) {
  return ArgTy->isFirstClassType() || ArgTy->isOpaqueTy();
}

FunctionType::FunctionType(const Type *Result,
                           ArrayRef<const Type*> Params,
                           bool IsVarArgs)
  : DerivedType(Result->getContext(), FunctionTyID) {
  ContainedTys = reinterpret_cast<PATypeHandle*>(this+1);
  NumContainedTys = Params.size() + 1; // + 1 for result type
  assert(isValidReturnType(Result) && "invalid return type for function");
  setSubclassData(IsVarArgs);

  bool isAbstract = Result->isAbstract();
  new (&ContainedTys[0]) PATypeHandle(Result, this);

  for (unsigned i = 0; i != Params.size(); ++i) {
    assert(isValidArgumentType(Params[i]) &&
           "Not a valid type for function argument!");
    new (&ContainedTys[i+1]) PATypeHandle(Params[i], this);
    isAbstract |= Params[i]->isAbstract();
  }

  // Calculate whether or not this type is abstract
  setAbstract(isAbstract);
}

StructType::StructType(LLVMContext &C, 
                       ArrayRef<const Type*> Types, bool isPacked)
  : CompositeType(C, StructTyID) {
  ContainedTys = reinterpret_cast<PATypeHandle*>(this + 1);
  NumContainedTys = Types.size();
  setSubclassData(isPacked);
  bool isAbstract = false;
  for (unsigned i = 0; i < Types.size(); ++i) {
    assert(Types[i] && "<null> type for structure field!");
    assert(isValidElementType(Types[i]) &&
           "Invalid type for structure element!");
    new (&ContainedTys[i]) PATypeHandle(Types[i], this);
    isAbstract |= Types[i]->isAbstract();
  }

  // Calculate whether or not this type is abstract
  setAbstract(isAbstract);
}

ArrayType::ArrayType(const Type *ElType, uint64_t NumEl)
  : SequentialType(ArrayTyID, ElType) {
  NumElements = NumEl;

  // Calculate whether or not this type is abstract
  setAbstract(ElType->isAbstract());
}

VectorType::VectorType(const Type *ElType, unsigned NumEl)
  : SequentialType(VectorTyID, ElType) {
  NumElements = NumEl;
  setAbstract(ElType->isAbstract());
  assert(NumEl > 0 && "NumEl of a VectorType must be greater than 0");
  assert(isValidElementType(ElType) &&
         "Elements of a VectorType must be a primitive type");

}


PointerType::PointerType(const Type *E, unsigned AddrSpace)
  : SequentialType(PointerTyID, E) {
  setSubclassData(AddrSpace);
  // Calculate whether or not this type is abstract
  setAbstract(E->isAbstract());
}

OpaqueType::OpaqueType(LLVMContext &C) : DerivedType(C, OpaqueTyID) {
  setAbstract(true);
#ifdef DEBUG_MERGE_TYPES
  DEBUG(dbgs() << "Derived new type: " << *this << "\n");
#endif
}

void PATypeHolder::destroy() {
  Ty = 0;
}

// dropAllTypeUses - When this (abstract) type is resolved to be equal to
// another (more concrete) type, we must eliminate all references to other
// types, to avoid some circular reference problems.
void DerivedType::dropAllTypeUses() {
  if (NumContainedTys != 0) {
    // The type must stay abstract.  To do this, we insert a pointer to a type
    // that will never get resolved, thus will always be abstract.
    ContainedTys[0] = getContext().pImpl->AlwaysOpaqueTy;

    // Change the rest of the types to be Int32Ty's.  It doesn't matter what we
    // pick so long as it doesn't point back to this type.  We choose something
    // concrete to avoid overhead for adding to AbstractTypeUser lists and
    // stuff.
    const Type *ConcreteTy = Type::getInt32Ty(getContext());
    for (unsigned i = 1, e = NumContainedTys; i != e; ++i)
      ContainedTys[i] = ConcreteTy;
  }
}


namespace {

/// TypePromotionGraph and graph traits - this is designed to allow us to do
/// efficient SCC processing of type graphs.  This is the exact same as
/// GraphTraits<Type*>, except that we pretend that concrete types have no
/// children to avoid processing them.
struct TypePromotionGraph {
  Type *Ty;
  TypePromotionGraph(Type *T) : Ty(T) {}
};

}

namespace llvm {
  template <> struct GraphTraits<TypePromotionGraph> {
    typedef Type NodeType;
    typedef Type::subtype_iterator ChildIteratorType;

    static inline NodeType *getEntryNode(TypePromotionGraph G) { return G.Ty; }
    static inline ChildIteratorType child_begin(NodeType *N) {
      if (N->isAbstract())
        return N->subtype_begin();
      // No need to process children of concrete types.
      return N->subtype_end();
    }
    static inline ChildIteratorType child_end(NodeType *N) {
      return N->subtype_end();
    }
  };
}


// PromoteAbstractToConcrete - This is a recursive function that walks a type
// graph calculating whether or not a type is abstract.
//
void Type::PromoteAbstractToConcrete() {
  if (!isAbstract()) return;

  scc_iterator<TypePromotionGraph> SI = scc_begin(TypePromotionGraph(this));
  scc_iterator<TypePromotionGraph> SE = scc_end  (TypePromotionGraph(this));

  for (; SI != SE; ++SI) {
    std::vector<Type*> &SCC = *SI;

    // Concrete types are leaves in the tree.  Since an SCC will either be all
    // abstract or all concrete, we only need to check one type.
    if (!SCC[0]->isAbstract()) continue;
    
    if (SCC[0]->isOpaqueTy())
      return;     // Not going to be concrete, sorry.

    // If all of the children of all of the types in this SCC are concrete,
    // then this SCC is now concrete as well.  If not, neither this SCC, nor
    // any parent SCCs will be concrete, so we might as well just exit.
    for (unsigned i = 0, e = SCC.size(); i != e; ++i)
      for (Type::subtype_iterator CI = SCC[i]->subtype_begin(),
             E = SCC[i]->subtype_end(); CI != E; ++CI)
        if ((*CI)->isAbstract())
          // If the child type is in our SCC, it doesn't make the entire SCC
          // abstract unless there is a non-SCC abstract type.
          if (std::find(SCC.begin(), SCC.end(), *CI) == SCC.end())
            return;               // Not going to be concrete, sorry.

    // Okay, we just discovered this whole SCC is now concrete, mark it as
    // such!
    for (unsigned i = 0, e = SCC.size(); i != e; ++i) {
      assert(SCC[i]->isAbstract() && "Why are we processing concrete types?");

      SCC[i]->setAbstract(false);
    }

    for (unsigned i = 0, e = SCC.size(); i != e; ++i) {
      assert(!SCC[i]->isAbstract() && "Concrete type became abstract?");
      // The type just became concrete, notify all users!
      cast<DerivedType>(SCC[i])->notifyUsesThatTypeBecameConcrete();
    }
  }
}


//===----------------------------------------------------------------------===//
//                      Type Structural Equality Testing
//===----------------------------------------------------------------------===//

// TypesEqual - Two types are considered structurally equal if they have the
// same "shape": Every level and element of the types have identical primitive
// ID's, and the graphs have the same edges/nodes in them.  Nodes do not have to
// be pointer equals to be equivalent though.  This uses an optimistic algorithm
// that assumes that two graphs are the same until proven otherwise.
//
static bool TypesEqual(const Type *Ty, const Type *Ty2,
                       std::map<const Type *, const Type *> &EqTypes) {
  if (Ty == Ty2) return true;
  if (Ty->getTypeID() != Ty2->getTypeID()) return false;
  if (Ty->isOpaqueTy())
    return false;  // Two unequal opaque types are never equal

  std::map<const Type*, const Type*>::iterator It = EqTypes.find(Ty);
  if (It != EqTypes.end())
    return It->second == Ty2;    // Looping back on a type, check for equality

  // Otherwise, add the mapping to the table to make sure we don't get
  // recursion on the types...
  EqTypes.insert(It, std::make_pair(Ty, Ty2));

  // Two really annoying special cases that breaks an otherwise nice simple
  // algorithm is the fact that arraytypes have sizes that differentiates types,
  // and that function types can be varargs or not.  Consider this now.
  //
  if (const IntegerType *ITy = dyn_cast<IntegerType>(Ty)) {
    const IntegerType *ITy2 = cast<IntegerType>(Ty2);
    return ITy->getBitWidth() == ITy2->getBitWidth();
  }
  
  if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
    const PointerType *PTy2 = cast<PointerType>(Ty2);
    return PTy->getAddressSpace() == PTy2->getAddressSpace() &&
           TypesEqual(PTy->getElementType(), PTy2->getElementType(), EqTypes);
  }
  
  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
    const StructType *STy2 = cast<StructType>(Ty2);
    if (STy->getNumElements() != STy2->getNumElements()) return false;
    if (STy->isPacked() != STy2->isPacked()) return false;
    for (unsigned i = 0, e = STy2->getNumElements(); i != e; ++i)
      if (!TypesEqual(STy->getElementType(i), STy2->getElementType(i), EqTypes))
        return false;
    return true;
  }
  
  if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
    const ArrayType *ATy2 = cast<ArrayType>(Ty2);
    return ATy->getNumElements() == ATy2->getNumElements() &&
           TypesEqual(ATy->getElementType(), ATy2->getElementType(), EqTypes);
  }
  
  if (const VectorType *PTy = dyn_cast<VectorType>(Ty)) {
    const VectorType *PTy2 = cast<VectorType>(Ty2);
    return PTy->getNumElements() == PTy2->getNumElements() &&
           TypesEqual(PTy->getElementType(), PTy2->getElementType(), EqTypes);
  }
  
  if (const FunctionType *FTy = dyn_cast<FunctionType>(Ty)) {
    const FunctionType *FTy2 = cast<FunctionType>(Ty2);
    if (FTy->isVarArg() != FTy2->isVarArg() ||
        FTy->getNumParams() != FTy2->getNumParams() ||
        !TypesEqual(FTy->getReturnType(), FTy2->getReturnType(), EqTypes))
      return false;
    for (unsigned i = 0, e = FTy2->getNumParams(); i != e; ++i) {
      if (!TypesEqual(FTy->getParamType(i), FTy2->getParamType(i), EqTypes))
        return false;
    }
    return true;
  }
  
  llvm_unreachable("Unknown derived type!");
  return false;
}

namespace llvm { // in namespace llvm so findable by ADL
static bool TypesEqual(const Type *Ty, const Type *Ty2) {
  std::map<const Type *, const Type *> EqTypes;
  return ::TypesEqual(Ty, Ty2, EqTypes);
}
}

// AbstractTypeHasCycleThrough - Return true there is a path from CurTy to
// TargetTy in the type graph.  We know that Ty is an abstract type, so if we
// ever reach a non-abstract type, we know that we don't need to search the
// subgraph.
static bool AbstractTypeHasCycleThrough(const Type *TargetTy, const Type *CurTy,
                                SmallPtrSet<const Type*, 128> &VisitedTypes) {
  if (TargetTy == CurTy) return true;
  if (!CurTy->isAbstract()) return false;

  if (!VisitedTypes.insert(CurTy))
    return false;  // Already been here.

  for (Type::subtype_iterator I = CurTy->subtype_begin(),
       E = CurTy->subtype_end(); I != E; ++I)
    if (AbstractTypeHasCycleThrough(TargetTy, *I, VisitedTypes))
      return true;
  return false;
}

static bool ConcreteTypeHasCycleThrough(const Type *TargetTy, const Type *CurTy,
                                SmallPtrSet<const Type*, 128> &VisitedTypes) {
  if (TargetTy == CurTy) return true;

  if (!VisitedTypes.insert(CurTy))
    return false;  // Already been here.

  for (Type::subtype_iterator I = CurTy->subtype_begin(),
       E = CurTy->subtype_end(); I != E; ++I)
    if (ConcreteTypeHasCycleThrough(TargetTy, *I, VisitedTypes))
      return true;
  return false;
}

/// TypeHasCycleThroughItself - Return true if the specified type has
/// a cycle back to itself.

namespace llvm { // in namespace llvm so it's findable by ADL
static bool TypeHasCycleThroughItself(const Type *Ty) {
  SmallPtrSet<const Type*, 128> VisitedTypes;

  if (Ty->isAbstract()) {  // Optimized case for abstract types.
    for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end();
         I != E; ++I)
      if (AbstractTypeHasCycleThrough(Ty, *I, VisitedTypes))
        return true;
  } else {
    for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end();
         I != E; ++I)
      if (ConcreteTypeHasCycleThrough(Ty, *I, VisitedTypes))
        return true;
  }
  return false;
}
}

//===----------------------------------------------------------------------===//
// Function Type Factory and Value Class...
//
const IntegerType *IntegerType::get(LLVMContext &C, unsigned NumBits) {
  assert(NumBits >= MIN_INT_BITS && "bitwidth too small");
  assert(NumBits <= MAX_INT_BITS && "bitwidth too large");

  // Check for the built-in integer types
  switch (NumBits) {
  case  1: return cast<IntegerType>(Type::getInt1Ty(C));
  case  8: return cast<IntegerType>(Type::getInt8Ty(C));
  case 16: return cast<IntegerType>(Type::getInt16Ty(C));
  case 32: return cast<IntegerType>(Type::getInt32Ty(C));
  case 64: return cast<IntegerType>(Type::getInt64Ty(C));
  default: 
    break;
  }

  LLVMContextImpl *pImpl = C.pImpl;
  
  IntegerValType IVT(NumBits);
  IntegerType *ITy = 0;
  
  // First, see if the type is already in the table, for which
  // a reader lock suffices.
  ITy = pImpl->IntegerTypes.get(IVT);
    
  if (!ITy) {
    // Value not found.  Derive a new type!
    ITy = new IntegerType(C, NumBits);
    pImpl->IntegerTypes.add(IVT, ITy);
  }
#ifdef DEBUG_MERGE_TYPES
  DEBUG(dbgs() << "Derived new type: " << *ITy << "\n");
#endif
  return ITy;
}

bool IntegerType::isPowerOf2ByteWidth() const {
  unsigned BitWidth = getBitWidth();
  return (BitWidth > 7) && isPowerOf2_32(BitWidth);
}

APInt IntegerType::getMask() const {
  return APInt::getAllOnesValue(getBitWidth());
}

FunctionValType FunctionValType::get(const FunctionType *FT) {
  // Build up a FunctionValType
  std::vector<const Type *> ParamTypes;
  ParamTypes.reserve(FT->getNumParams());
  for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
    ParamTypes.push_back(FT->getParamType(i));
  return FunctionValType(FT->getReturnType(), ParamTypes, FT->isVarArg());
}

FunctionType *FunctionType::get(const Type *Result, bool isVarArg) {
  return get(Result, ArrayRef<const Type *>(), isVarArg);
}

// FunctionType::get - The factory function for the FunctionType class...
FunctionType *FunctionType::get(const Type *ReturnType,
                                ArrayRef<const Type*> Params,
                                bool isVarArg) {
  FunctionValType VT(ReturnType, Params, isVarArg);
  FunctionType *FT = 0;
  
  LLVMContextImpl *pImpl = ReturnType->getContext().pImpl;
  
  FT = pImpl->FunctionTypes.get(VT);
  
  if (!FT) {
    FT = (FunctionType*) operator new(sizeof(FunctionType) +
                                    sizeof(PATypeHandle)*(Params.size()+1));
    new (FT) FunctionType(ReturnType, Params, isVarArg);
    pImpl->FunctionTypes.add(VT, FT);
  }

#ifdef DEBUG_MERGE_TYPES
  DEBUG(dbgs() << "Derived new type: " << FT << "\n");
#endif
  return FT;
}

ArrayType *ArrayType::get(const Type *ElementType, uint64_t NumElements) {
  assert(ElementType && "Can't get array of <null> types!");
  assert(isValidElementType(ElementType) && "Invalid type for array element!");

  ArrayValType AVT(ElementType, NumElements);
  ArrayType *AT = 0;

  LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
  
  AT = pImpl->ArrayTypes.get(AVT);
      
  if (!AT) {
    // Value not found.  Derive a new type!
    pImpl->ArrayTypes.add(AVT, AT = new ArrayType(ElementType, NumElements));
  }
#ifdef DEBUG_MERGE_TYPES
  DEBUG(dbgs() << "Derived new type: " << *AT << "\n");
#endif
  return AT;
}

bool ArrayType::isValidElementType(const Type *ElemTy) {
  return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
         !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy();
}

VectorType *VectorType::get(const Type *ElementType, unsigned NumElements) {
  assert(ElementType && "Can't get vector of <null> types!");

  VectorValType PVT(ElementType, NumElements);
  VectorType *PT = 0;
  
  LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
  
  PT = pImpl->VectorTypes.get(PVT);
    
  if (!PT) {
    pImpl->VectorTypes.add(PVT, PT = new VectorType(ElementType, NumElements));
  }
#ifdef DEBUG_MERGE_TYPES
  DEBUG(dbgs() << "Derived new type: " << *PT << "\n");
#endif
  return PT;
}

bool VectorType::isValidElementType(const Type *ElemTy) {
  return ElemTy->isIntegerTy() || ElemTy->isFloatingPointTy() ||
         ElemTy->isOpaqueTy();
}

//===----------------------------------------------------------------------===//
// Struct Type Factory.
//

StructType *StructType::get(LLVMContext &Context, bool isPacked) {
  return get(Context, llvm::ArrayRef<const Type*>(), isPacked);
}


StructType *StructType::get(LLVMContext &Context,
                            ArrayRef<const Type*> ETypes, 
                            bool isPacked) {
  StructValType STV(ETypes, isPacked);
  StructType *ST = 0;
  
  LLVMContextImpl *pImpl = Context.pImpl;
  
  ST = pImpl->StructTypes.get(STV);
    
  if (!ST) {
    // Value not found.  Derive a new type!
    ST = (StructType*) operator new(sizeof(StructType) +
                                    sizeof(PATypeHandle) * ETypes.size());
    new (ST) StructType(Context, ETypes, isPacked);
    pImpl->StructTypes.add(STV, ST);
  }
#ifdef DEBUG_MERGE_TYPES
  DEBUG(dbgs() << "Derived new type: " << *ST << "\n");
#endif
  return ST;
}

StructType *StructType::get(LLVMContext &Context, const Type *type, ...) {
  va_list ap;
  std::vector<const llvm::Type*> StructFields;
  va_start(ap, type);
  while (type) {
    StructFields.push_back(type);
    type = va_arg(ap, llvm::Type*);
  }
  return llvm::StructType::get(Context, StructFields);
}

bool StructType::isValidElementType(const Type *ElemTy) {
  return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
         !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy();
}


//===----------------------------------------------------------------------===//
// Pointer Type Factory...
//

PointerType *PointerType::get(const Type *ValueType, unsigned AddressSpace) {
  assert(ValueType && "Can't get a pointer to <null> type!");
  assert(ValueType->getTypeID() != VoidTyID &&
         "Pointer to void is not valid, use i8* instead!");
  assert(isValidElementType(ValueType) && "Invalid type for pointer element!");
  PointerValType PVT(ValueType, AddressSpace);

  PointerType *PT = 0;
  
  LLVMContextImpl *pImpl = ValueType->getContext().pImpl;
  
  PT = pImpl->PointerTypes.get(PVT);
  
  if (!PT) {
    // Value not found.  Derive a new type!
    pImpl->PointerTypes.add(PVT, PT = new PointerType(ValueType, AddressSpace));
  }
#ifdef DEBUG_MERGE_TYPES
  DEBUG(dbgs() << "Derived new type: " << *PT << "\n");
#endif
  return PT;
}

const PointerType *Type::getPointerTo(unsigned addrs) const {
  return PointerType::get(this, addrs);
}

bool PointerType::isValidElementType(const Type *ElemTy) {
  return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
         !ElemTy->isMetadataTy();
}


//===----------------------------------------------------------------------===//
// Opaque Type Factory...
//

OpaqueType *OpaqueType::get(LLVMContext &C) {
  OpaqueType *OT = new OpaqueType(C);       // All opaque types are distinct.
  LLVMContextImpl *pImpl = C.pImpl;
  pImpl->OpaqueTypes.insert(OT);
  return OT;
}



//===----------------------------------------------------------------------===//
//                     Derived Type Refinement Functions
//===----------------------------------------------------------------------===//

// addAbstractTypeUser - Notify an abstract type that there is a new user of
// it.  This function is called primarily by the PATypeHandle class.
void Type::addAbstractTypeUser(AbstractTypeUser *U) const {
  assert(isAbstract() && "addAbstractTypeUser: Current type not abstract!");
  AbstractTypeUsers.push_back(U);
}


// removeAbstractTypeUser - Notify an abstract type that a user of the class
// no longer has a handle to the type.  This function is called primarily by
// the PATypeHandle class.  When there are no users of the abstract type, it
// is annihilated, because there is no way to get a reference to it ever again.
//
void Type::removeAbstractTypeUser(AbstractTypeUser *U) const {
  
  // Search from back to front because we will notify users from back to
  // front.  Also, it is likely that there will be a stack like behavior to
  // users that register and unregister users.
  //
  unsigned i;
  for (i = AbstractTypeUsers.size(); AbstractTypeUsers[i-1] != U; --i)
    assert(i != 0 && "AbstractTypeUser not in user list!");

  --i;  // Convert to be in range 0 <= i < size()
  assert(i < AbstractTypeUsers.size() && "Index out of range!");  // Wraparound?

  AbstractTypeUsers.erase(AbstractTypeUsers.begin()+i);

#ifdef DEBUG_MERGE_TYPES
  DEBUG(dbgs() << "  remAbstractTypeUser[" << (void*)this << ", "
               << *this << "][" << i << "] User = " << U << "\n");
#endif

  if (AbstractTypeUsers.empty() && getRefCount() == 0 && isAbstract()) {
#ifdef DEBUG_MERGE_TYPES
    DEBUG(dbgs() << "DELETEing unused abstract type: <" << *this
                 << ">[" << (void*)this << "]" << "\n");
#endif
  
    this->destroy();
  }
}

// refineAbstractTypeTo - This function is used when it is discovered
// that the 'this' abstract type is actually equivalent to the NewType
// specified. This causes all users of 'this' to switch to reference the more 
// concrete type NewType and for 'this' to be deleted.  Only used for internal
// callers.
//
void DerivedType::refineAbstractTypeTo(const Type *NewType) {
  assert(isAbstract() && "refineAbstractTypeTo: Current type is not abstract!");
  assert(this != NewType && "Can't refine to myself!");
  assert(ForwardType == 0 && "This type has already been refined!");

  LLVMContextImpl *pImpl = getContext().pImpl;

  // The descriptions may be out of date.  Conservatively clear them all!
  pImpl->AbstractTypeDescriptions.clear();

#ifdef DEBUG_MERGE_TYPES
  DEBUG(dbgs() << "REFINING abstract type [" << (void*)this << " "
               << *this << "] to [" << (void*)NewType << " "
               << *NewType << "]!\n");
#endif

  // Make sure to put the type to be refined to into a holder so that if IT gets
  // refined, that we will not continue using a dead reference...
  //
  PATypeHolder NewTy(NewType);
  // Any PATypeHolders referring to this type will now automatically forward to
  // the type we are resolved to.
  ForwardType = NewType;
  if (ForwardType->isAbstract())
    ForwardType->addRef();

  // Add a self use of the current type so that we don't delete ourself until
  // after the function exits.
  //
  PATypeHolder CurrentTy(this);

  // To make the situation simpler, we ask the subclass to remove this type from
  // the type map, and to replace any type uses with uses of non-abstract types.
  // This dramatically limits the amount of recursive type trouble we can find
  // ourselves in.
  dropAllTypeUses();

  // Iterate over all of the uses of this type, invoking callback.  Each user
  // should remove itself from our use list automatically.  We have to check to
  // make sure that NewTy doesn't _become_ 'this'.  If it does, resolving types
  // will not cause users to drop off of the use list.  If we resolve to ourself
  // we succeed!
  //
  while (!AbstractTypeUsers.empty() && NewTy != this) {
    AbstractTypeUser *User = AbstractTypeUsers.back();

    unsigned OldSize = AbstractTypeUsers.size(); (void)OldSize;
#ifdef DEBUG_MERGE_TYPES
    DEBUG(dbgs() << " REFINING user " << OldSize-1 << "[" << (void*)User
                 << "] of abstract type [" << (void*)this << " "
                 << *this << "] to [" << (void*)NewTy.get() << " "
                 << *NewTy << "]!\n");
#endif
    User->refineAbstractType(this, NewTy);

    assert(AbstractTypeUsers.size() != OldSize &&
           "AbsTyUser did not remove self from user list!");
  }

  // If we were successful removing all users from the type, 'this' will be
  // deleted when the last PATypeHolder is destroyed or updated from this type.
  // This may occur on exit of this function, as the CurrentTy object is
  // destroyed.
}

// notifyUsesThatTypeBecameConcrete - Notify AbstractTypeUsers of this type that
// the current type has transitioned from being abstract to being concrete.
//
void DerivedType::notifyUsesThatTypeBecameConcrete() {
#ifdef DEBUG_MERGE_TYPES
  DEBUG(dbgs() << "typeIsREFINED type: " << (void*)this << " " << *this <<"\n");
#endif

  unsigned OldSize = AbstractTypeUsers.size(); (void)OldSize;
  while (!AbstractTypeUsers.empty()) {
    AbstractTypeUser *ATU = AbstractTypeUsers.back();
    ATU->typeBecameConcrete(this);

    assert(AbstractTypeUsers.size() < OldSize-- &&
           "AbstractTypeUser did not remove itself from the use list!");
  }
}

// refineAbstractType - Called when a contained type is found to be more
// concrete - this could potentially change us from an abstract type to a
// concrete type.
//
void FunctionType::refineAbstractType(const DerivedType *OldType,
                                      const Type *NewType) {
  LLVMContextImpl *pImpl = OldType->getContext().pImpl;
  pImpl->FunctionTypes.RefineAbstractType(this, OldType, NewType);
}

void FunctionType::typeBecameConcrete(const DerivedType *AbsTy) {
  LLVMContextImpl *pImpl = AbsTy->getContext().pImpl;
  pImpl->FunctionTypes.TypeBecameConcrete(this, AbsTy);
}


// refineAbstractType - Called when a contained type is found to be more
// concrete - this could potentially change us from an abstract type to a
// concrete type.
//
void ArrayType::refineAbstractType(const DerivedType *OldType,
                                   const Type *NewType) {
  LLVMContextImpl *pImpl = OldType->getContext().pImpl;
  pImpl->ArrayTypes.RefineAbstractType(this, OldType, NewType);
}

void ArrayType::typeBecameConcrete(const DerivedType *AbsTy) {
  LLVMContextImpl *pImpl = AbsTy->getContext().pImpl;
  pImpl->ArrayTypes.TypeBecameConcrete(this, AbsTy);
}

// refineAbstractType - Called when a contained type is found to be more
// concrete - this could potentially change us from an abstract type to a
// concrete type.
//
void VectorType::refineAbstractType(const DerivedType *OldType,
                                   const Type *NewType) {
  LLVMContextImpl *pImpl = OldType->getContext().pImpl;
  pImpl->VectorTypes.RefineAbstractType(this, OldType, NewType);
}

void VectorType::typeBecameConcrete(const DerivedType *AbsTy) {
  LLVMContextImpl *pImpl = AbsTy->getContext().pImpl;
  pImpl->VectorTypes.TypeBecameConcrete(this, AbsTy);
}

// refineAbstractType - Called when a contained type is found to be more
// concrete - this could potentially change us from an abstract type to a
// concrete type.
//
void StructType::refineAbstractType(const DerivedType *OldType,
                                    const Type *NewType) {
  LLVMContextImpl *pImpl = OldType->getContext().pImpl;
  pImpl->StructTypes.RefineAbstractType(this, OldType, NewType);
}

void StructType::typeBecameConcrete(const DerivedType *AbsTy) {
  LLVMContextImpl *pImpl = AbsTy->getContext().pImpl;
  pImpl->StructTypes.TypeBecameConcrete(this, AbsTy);
}

// refineAbstractType - Called when a contained type is found to be more
// concrete - this could potentially change us from an abstract type to a
// concrete type.
//
void PointerType::refineAbstractType(const DerivedType *OldType,
                                     const Type *NewType) {
  LLVMContextImpl *pImpl = OldType->getContext().pImpl;
  pImpl->PointerTypes.RefineAbstractType(this, OldType, NewType);
}

void PointerType::typeBecameConcrete(const DerivedType *AbsTy) {
  LLVMContextImpl *pImpl = AbsTy->getContext().pImpl;
  pImpl->PointerTypes.TypeBecameConcrete(this, AbsTy);
}

bool SequentialType::indexValid(const Value *V) const {
  if (V->getType()->isIntegerTy()) 
    return true;
  return false;
}

namespace llvm {
raw_ostream &operator<<(raw_ostream &OS, const Type &T) {
  T.print(OS);
  return OS;
}
}