summaryrefslogtreecommitdiff
path: root/test/Transforms/LoopStrengthReduce/ARM/ivchain-ARM.ll
blob: 9189d79e2fb6ac8c91d6edb1b9514fd2495921c8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
; RUN: llc < %s -O3 -march=thumb -mcpu=cortex-a9 | FileCheck %s -check-prefix=A9

; @simple is the most basic chain of address induction variables. Chaining
; saves at least one register and avoids complex addressing and setup
; code.
;
; A9: @simple
; no expensive address computation in the preheader
; A9: lsl
; A9-NOT: lsl
; A9: %loop
; no complex address modes
; A9-NOT: lsl
define i32 @simple(i32* %a, i32* %b, i32 %x) nounwind {
entry:
  br label %loop
loop:
  %iv = phi i32* [ %a, %entry ], [ %iv4, %loop ]
  %s = phi i32 [ 0, %entry ], [ %s4, %loop ]
  %v = load i32* %iv
  %iv1 = getelementptr inbounds i32* %iv, i32 %x
  %v1 = load i32* %iv1
  %iv2 = getelementptr inbounds i32* %iv1, i32 %x
  %v2 = load i32* %iv2
  %iv3 = getelementptr inbounds i32* %iv2, i32 %x
  %v3 = load i32* %iv3
  %s1 = add i32 %s, %v
  %s2 = add i32 %s1, %v1
  %s3 = add i32 %s2, %v2
  %s4 = add i32 %s3, %v3
  %iv4 = getelementptr inbounds i32* %iv3, i32 %x
  %cmp = icmp eq i32* %iv4, %b
  br i1 %cmp, label %exit, label %loop
exit:
  ret i32 %s4
}

; @user is not currently chained because the IV is live across memory ops.
;
; A9: @user
; stride multiples computed in the preheader
; A9: lsl
; A9: lsl
; A9: %loop
; complex address modes
; A9: lsl
; A9: lsl
define i32 @user(i32* %a, i32* %b, i32 %x) nounwind {
entry:
  br label %loop
loop:
  %iv = phi i32* [ %a, %entry ], [ %iv4, %loop ]
  %s = phi i32 [ 0, %entry ], [ %s4, %loop ]
  %v = load i32* %iv
  %iv1 = getelementptr inbounds i32* %iv, i32 %x
  %v1 = load i32* %iv1
  %iv2 = getelementptr inbounds i32* %iv1, i32 %x
  %v2 = load i32* %iv2
  %iv3 = getelementptr inbounds i32* %iv2, i32 %x
  %v3 = load i32* %iv3
  %s1 = add i32 %s, %v
  %s2 = add i32 %s1, %v1
  %s3 = add i32 %s2, %v2
  %s4 = add i32 %s3, %v3
  %iv4 = getelementptr inbounds i32* %iv3, i32 %x
  store i32 %s4, i32* %iv
  %cmp = icmp eq i32* %iv4, %b
  br i1 %cmp, label %exit, label %loop
exit:
  ret i32 %s4
}

; @extrastride is a slightly more interesting case of a single
; complete chain with multiple strides. The test case IR is what LSR
; used to do, and exactly what we don't want to do. LSR's new IV
; chaining feature should now undo the damage.
;
; A9: extrastride:
; no spills
; A9-NOT: str
; only one stride multiple in the preheader
; A9: lsl
; A9-NOT: {{str r|lsl}}
; A9: %for.body{{$}}
; no complex address modes or reloads
; A9-NOT: {{ldr .*[sp]|lsl}}
define void @extrastride(i8* nocapture %main, i32 %main_stride, i32* nocapture %res, i32 %x, i32 %y, i32 %z) nounwind {
entry:
  %cmp8 = icmp eq i32 %z, 0
  br i1 %cmp8, label %for.end, label %for.body.lr.ph

for.body.lr.ph:                                   ; preds = %entry
  %add.ptr.sum = shl i32 %main_stride, 1 ; s*2
  %add.ptr1.sum = add i32 %add.ptr.sum, %main_stride ; s*3
  %add.ptr2.sum = add i32 %x, %main_stride ; s + x
  %add.ptr4.sum = shl i32 %main_stride, 2 ; s*4
  %add.ptr3.sum = add i32 %add.ptr2.sum, %add.ptr4.sum ; total IV stride = s*5+x
  br label %for.body

for.body:                                         ; preds = %for.body.lr.ph, %for.body
  %main.addr.011 = phi i8* [ %main, %for.body.lr.ph ], [ %add.ptr6, %for.body ]
  %i.010 = phi i32 [ 0, %for.body.lr.ph ], [ %inc, %for.body ]
  %res.addr.09 = phi i32* [ %res, %for.body.lr.ph ], [ %add.ptr7, %for.body ]
  %0 = bitcast i8* %main.addr.011 to i32*
  %1 = load i32* %0, align 4
  %add.ptr = getelementptr inbounds i8* %main.addr.011, i32 %main_stride
  %2 = bitcast i8* %add.ptr to i32*
  %3 = load i32* %2, align 4
  %add.ptr1 = getelementptr inbounds i8* %main.addr.011, i32 %add.ptr.sum
  %4 = bitcast i8* %add.ptr1 to i32*
  %5 = load i32* %4, align 4
  %add.ptr2 = getelementptr inbounds i8* %main.addr.011, i32 %add.ptr1.sum
  %6 = bitcast i8* %add.ptr2 to i32*
  %7 = load i32* %6, align 4
  %add.ptr3 = getelementptr inbounds i8* %main.addr.011, i32 %add.ptr4.sum
  %8 = bitcast i8* %add.ptr3 to i32*
  %9 = load i32* %8, align 4
  %add = add i32 %3, %1
  %add4 = add i32 %add, %5
  %add5 = add i32 %add4, %7
  %add6 = add i32 %add5, %9
  store i32 %add6, i32* %res.addr.09, align 4
  %add.ptr6 = getelementptr inbounds i8* %main.addr.011, i32 %add.ptr3.sum
  %add.ptr7 = getelementptr inbounds i32* %res.addr.09, i32 %y
  %inc = add i32 %i.010, 1
  %cmp = icmp eq i32 %inc, %z
  br i1 %cmp, label %for.end, label %for.body

for.end:                                          ; preds = %for.body, %entry
  ret void
}

; @foldedidx is an unrolled variant of this loop:
;  for (unsigned long i = 0; i < len; i += s) {
;    c[i] = a[i] + b[i];
;  }
; where 's' can be folded into the addressing mode.
; Consequently, we should *not* form any chains.
;
; A9: foldedidx:
; A9: ldrb.w {{r[0-9]|lr}}, [{{r[0-9]|lr}}, #3]
define void @foldedidx(i8* nocapture %a, i8* nocapture %b, i8* nocapture %c) nounwind ssp {
entry:
  br label %for.body

for.body:                                         ; preds = %for.body, %entry
  %i.07 = phi i32 [ 0, %entry ], [ %inc.3, %for.body ]
  %arrayidx = getelementptr inbounds i8* %a, i32 %i.07
  %0 = load i8* %arrayidx, align 1
  %conv5 = zext i8 %0 to i32
  %arrayidx1 = getelementptr inbounds i8* %b, i32 %i.07
  %1 = load i8* %arrayidx1, align 1
  %conv26 = zext i8 %1 to i32
  %add = add nsw i32 %conv26, %conv5
  %conv3 = trunc i32 %add to i8
  %arrayidx4 = getelementptr inbounds i8* %c, i32 %i.07
  store i8 %conv3, i8* %arrayidx4, align 1
  %inc1 = or i32 %i.07, 1
  %arrayidx.1 = getelementptr inbounds i8* %a, i32 %inc1
  %2 = load i8* %arrayidx.1, align 1
  %conv5.1 = zext i8 %2 to i32
  %arrayidx1.1 = getelementptr inbounds i8* %b, i32 %inc1
  %3 = load i8* %arrayidx1.1, align 1
  %conv26.1 = zext i8 %3 to i32
  %add.1 = add nsw i32 %conv26.1, %conv5.1
  %conv3.1 = trunc i32 %add.1 to i8
  %arrayidx4.1 = getelementptr inbounds i8* %c, i32 %inc1
  store i8 %conv3.1, i8* %arrayidx4.1, align 1
  %inc.12 = or i32 %i.07, 2
  %arrayidx.2 = getelementptr inbounds i8* %a, i32 %inc.12
  %4 = load i8* %arrayidx.2, align 1
  %conv5.2 = zext i8 %4 to i32
  %arrayidx1.2 = getelementptr inbounds i8* %b, i32 %inc.12
  %5 = load i8* %arrayidx1.2, align 1
  %conv26.2 = zext i8 %5 to i32
  %add.2 = add nsw i32 %conv26.2, %conv5.2
  %conv3.2 = trunc i32 %add.2 to i8
  %arrayidx4.2 = getelementptr inbounds i8* %c, i32 %inc.12
  store i8 %conv3.2, i8* %arrayidx4.2, align 1
  %inc.23 = or i32 %i.07, 3
  %arrayidx.3 = getelementptr inbounds i8* %a, i32 %inc.23
  %6 = load i8* %arrayidx.3, align 1
  %conv5.3 = zext i8 %6 to i32
  %arrayidx1.3 = getelementptr inbounds i8* %b, i32 %inc.23
  %7 = load i8* %arrayidx1.3, align 1
  %conv26.3 = zext i8 %7 to i32
  %add.3 = add nsw i32 %conv26.3, %conv5.3
  %conv3.3 = trunc i32 %add.3 to i8
  %arrayidx4.3 = getelementptr inbounds i8* %c, i32 %inc.23
  store i8 %conv3.3, i8* %arrayidx4.3, align 1
  %inc.3 = add nsw i32 %i.07, 4
  %exitcond.3 = icmp eq i32 %inc.3, 400
  br i1 %exitcond.3, label %for.end, label %for.body

for.end:                                          ; preds = %for.body
  ret void
}

; @testNeon is an important example of the nead for ivchains.
;
; Currently we have three extra add.w's that keep the store address
; live past the next increment because ISEL is unfortunately undoing
; the store chain. ISEL also fails to convert the stores to
; post-increment addressing. However, the loads should use
; post-increment addressing, no add's or add.w's beyond the three
; mentioned. Most importantly, there should be no spills or reloads!
;
; CHECK: testNeon:
; CHECK: %.lr.ph
; CHECK-NOT: lsl.w
; CHECK-NOT: {{ldr|str|adds|add r}}
; CHECK: add.w r
; CHECK-NOT: {{ldr|str|adds|add r}}
; CHECK: add.w r
; CHECK-NOT: {{ldr|str|adds|add r}}
; CHECK: add.w r
; CHECK-NOT: {{ldr|str|adds|add r}}
; CHECK-NOT: add.w r
; CHECK: bne
define hidden void @testNeon(i8* %ref_data, i32 %ref_stride, i32 %limit, <16 x i8>* nocapture %data) nounwind optsize {
  %1 = icmp sgt i32 %limit, 0
  br i1 %1, label %.lr.ph, label %45

.lr.ph:                                           ; preds = %0
  %2 = shl nsw i32 %ref_stride, 1
  %3 = mul nsw i32 %ref_stride, 3
  %4 = shl nsw i32 %ref_stride, 2
  %5 = mul nsw i32 %ref_stride, 5
  %6 = mul nsw i32 %ref_stride, 6
  %7 = mul nsw i32 %ref_stride, 7
  %8 = shl nsw i32 %ref_stride, 3
  %9 = sub i32 0, %8
  %10 = mul i32 %limit, -64
  br label %11

; <label>:11                                      ; preds = %11, %.lr.ph
  %.05 = phi i8* [ %ref_data, %.lr.ph ], [ %42, %11 ]
  %counter.04 = phi i32 [ 0, %.lr.ph ], [ %44, %11 ]
  %result.03 = phi <16 x i8> [ zeroinitializer, %.lr.ph ], [ %41, %11 ]
  %.012 = phi <16 x i8>* [ %data, %.lr.ph ], [ %43, %11 ]
  %12 = tail call <1 x i64> @llvm.arm.neon.vld1.v1i64(i8* %.05, i32 1) nounwind
  %13 = getelementptr inbounds i8* %.05, i32 %ref_stride
  %14 = tail call <1 x i64> @llvm.arm.neon.vld1.v1i64(i8* %13, i32 1) nounwind
  %15 = shufflevector <1 x i64> %12, <1 x i64> %14, <2 x i32> <i32 0, i32 1>
  %16 = bitcast <2 x i64> %15 to <16 x i8>
  %17 = getelementptr inbounds <16 x i8>* %.012, i32 1
  store <16 x i8> %16, <16 x i8>* %.012, align 4
  %18 = getelementptr inbounds i8* %.05, i32 %2
  %19 = tail call <1 x i64> @llvm.arm.neon.vld1.v1i64(i8* %18, i32 1) nounwind
  %20 = getelementptr inbounds i8* %.05, i32 %3
  %21 = tail call <1 x i64> @llvm.arm.neon.vld1.v1i64(i8* %20, i32 1) nounwind
  %22 = shufflevector <1 x i64> %19, <1 x i64> %21, <2 x i32> <i32 0, i32 1>
  %23 = bitcast <2 x i64> %22 to <16 x i8>
  %24 = getelementptr inbounds <16 x i8>* %.012, i32 2
  store <16 x i8> %23, <16 x i8>* %17, align 4
  %25 = getelementptr inbounds i8* %.05, i32 %4
  %26 = tail call <1 x i64> @llvm.arm.neon.vld1.v1i64(i8* %25, i32 1) nounwind
  %27 = getelementptr inbounds i8* %.05, i32 %5
  %28 = tail call <1 x i64> @llvm.arm.neon.vld1.v1i64(i8* %27, i32 1) nounwind
  %29 = shufflevector <1 x i64> %26, <1 x i64> %28, <2 x i32> <i32 0, i32 1>
  %30 = bitcast <2 x i64> %29 to <16 x i8>
  %31 = getelementptr inbounds <16 x i8>* %.012, i32 3
  store <16 x i8> %30, <16 x i8>* %24, align 4
  %32 = getelementptr inbounds i8* %.05, i32 %6
  %33 = tail call <1 x i64> @llvm.arm.neon.vld1.v1i64(i8* %32, i32 1) nounwind
  %34 = getelementptr inbounds i8* %.05, i32 %7
  %35 = tail call <1 x i64> @llvm.arm.neon.vld1.v1i64(i8* %34, i32 1) nounwind
  %36 = shufflevector <1 x i64> %33, <1 x i64> %35, <2 x i32> <i32 0, i32 1>
  %37 = bitcast <2 x i64> %36 to <16 x i8>
  store <16 x i8> %37, <16 x i8>* %31, align 4
  %38 = add <16 x i8> %16, %23
  %39 = add <16 x i8> %38, %30
  %40 = add <16 x i8> %39, %37
  %41 = add <16 x i8> %result.03, %40
  %42 = getelementptr i8* %.05, i32 %9
  %43 = getelementptr inbounds <16 x i8>* %.012, i32 -64
  %44 = add nsw i32 %counter.04, 1
  %exitcond = icmp eq i32 %44, %limit
  br i1 %exitcond, label %._crit_edge, label %11

._crit_edge:                                      ; preds = %11
  %scevgep = getelementptr <16 x i8>* %data, i32 %10
  br label %45

; <label>:45                                      ; preds = %._crit_edge, %0
  %result.0.lcssa = phi <16 x i8> [ %41, %._crit_edge ], [ zeroinitializer, %0 ]
  %.01.lcssa = phi <16 x i8>* [ %scevgep, %._crit_edge ], [ %data, %0 ]
  store <16 x i8> %result.0.lcssa, <16 x i8>* %.01.lcssa, align 4
  ret void
}

declare <1 x i64> @llvm.arm.neon.vld1.v1i64(i8*, i32) nounwind readonly