summaryrefslogtreecommitdiff
path: root/tools/bugpoint/ToolRunner.cpp
blob: 4a2401b530f52ea63747cfe40adc867145d222aa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
//===-- ToolRunner.cpp ----------------------------------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the interfaces described in the ToolRunner.h file.
//
//===----------------------------------------------------------------------===//

#include "ToolRunner.h"
#include "llvm/Config/config.h"   // for HAVE_LINK_R
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/FileUtilities.h"
#include "llvm/Support/Program.h"
#include "llvm/Support/raw_ostream.h"
#include <fstream>
#include <sstream>
using namespace llvm;

#define DEBUG_TYPE "toolrunner"

namespace llvm {
  cl::opt<bool>
  SaveTemps("save-temps", cl::init(false), cl::desc("Save temporary files"));
}

namespace {
  cl::opt<std::string>
  RemoteClient("remote-client",
               cl::desc("Remote execution client (rsh/ssh)"));

  cl::opt<std::string>
  RemoteHost("remote-host",
             cl::desc("Remote execution (rsh/ssh) host"));

  cl::opt<std::string>
  RemotePort("remote-port",
             cl::desc("Remote execution (rsh/ssh) port"));

  cl::opt<std::string>
  RemoteUser("remote-user",
             cl::desc("Remote execution (rsh/ssh) user id"));

  cl::opt<std::string>
  RemoteExtra("remote-extra-options",
          cl::desc("Remote execution (rsh/ssh) extra options"));
}

/// RunProgramWithTimeout - This function provides an alternate interface
/// to the sys::Program::ExecuteAndWait interface.
/// @see sys::Program::ExecuteAndWait
static int RunProgramWithTimeout(StringRef ProgramPath,
                                 const char **Args,
                                 StringRef StdInFile,
                                 StringRef StdOutFile,
                                 StringRef StdErrFile,
                                 unsigned NumSeconds = 0,
                                 unsigned MemoryLimit = 0,
                                 std::string *ErrMsg = nullptr) {
  const StringRef *Redirects[3] = { &StdInFile, &StdOutFile, &StdErrFile };

#if 0 // For debug purposes
  {
    errs() << "RUN:";
    for (unsigned i = 0; Args[i]; ++i)
      errs() << " " << Args[i];
    errs() << "\n";
  }
#endif

  return sys::ExecuteAndWait(ProgramPath, Args, nullptr, Redirects,
                             NumSeconds, MemoryLimit, ErrMsg);
}

/// RunProgramRemotelyWithTimeout - This function runs the given program
/// remotely using the given remote client and the sys::Program::ExecuteAndWait.
/// Returns the remote program exit code or reports a remote client error if it
/// fails. Remote client is required to return 255 if it failed or program exit
/// code otherwise.
/// @see sys::Program::ExecuteAndWait
static int RunProgramRemotelyWithTimeout(StringRef RemoteClientPath,
                                         const char **Args,
                                         StringRef StdInFile,
                                         StringRef StdOutFile,
                                         StringRef StdErrFile,
                                         unsigned NumSeconds = 0,
                                         unsigned MemoryLimit = 0) {
  const StringRef *Redirects[3] = { &StdInFile, &StdOutFile, &StdErrFile };

#if 0 // For debug purposes
  {
    errs() << "RUN:";
    for (unsigned i = 0; Args[i]; ++i)
      errs() << " " << Args[i];
    errs() << "\n";
  }
#endif

  // Run the program remotely with the remote client
  int ReturnCode = sys::ExecuteAndWait(RemoteClientPath, Args, nullptr,
                                       Redirects, NumSeconds, MemoryLimit);

  // Has the remote client fail?
  if (255 == ReturnCode) {
    std::ostringstream OS;
    OS << "\nError running remote client:\n ";
    for (const char **Arg = Args; *Arg; ++Arg)
      OS << " " << *Arg;
    OS << "\n";

    // The error message is in the output file, let's print it out from there.
    std::string StdOutFileName = StdOutFile.str();
    std::ifstream ErrorFile(StdOutFileName.c_str());
    if (ErrorFile) {
      std::copy(std::istreambuf_iterator<char>(ErrorFile),
                std::istreambuf_iterator<char>(),
                std::ostreambuf_iterator<char>(OS));
      ErrorFile.close();
    }

    errs() << OS.str();
  }

  return ReturnCode;
}

static std::string ProcessFailure(StringRef ProgPath, const char** Args,
                                  unsigned Timeout = 0,
                                  unsigned MemoryLimit = 0) {
  std::ostringstream OS;
  OS << "\nError running tool:\n ";
  for (const char **Arg = Args; *Arg; ++Arg)
    OS << " " << *Arg;
  OS << "\n";

  // Rerun the compiler, capturing any error messages to print them.
  SmallString<128> ErrorFilename;
  int ErrorFD;
  std::error_code EC = sys::fs::createTemporaryFile(
      "bugpoint.program_error_messages", "", ErrorFD, ErrorFilename);
  if (EC) {
    errs() << "Error making unique filename: " << EC.message() << "\n";
    exit(1);
  }
  RunProgramWithTimeout(ProgPath, Args, "", ErrorFilename.str(),
                        ErrorFilename.str(), Timeout, MemoryLimit);
  // FIXME: check return code ?

  // Print out the error messages generated by GCC if possible...
  std::ifstream ErrorFile(ErrorFilename.c_str());
  if (ErrorFile) {
    std::copy(std::istreambuf_iterator<char>(ErrorFile),
              std::istreambuf_iterator<char>(),
              std::ostreambuf_iterator<char>(OS));
    ErrorFile.close();
  }

  sys::fs::remove(ErrorFilename.c_str());
  return OS.str();
}

//===---------------------------------------------------------------------===//
// LLI Implementation of AbstractIntepreter interface
//
namespace {
  class LLI : public AbstractInterpreter {
    std::string LLIPath;          // The path to the LLI executable
    std::vector<std::string> ToolArgs; // Args to pass to LLI
  public:
    LLI(const std::string &Path, const std::vector<std::string> *Args)
      : LLIPath(Path) {
      ToolArgs.clear ();
      if (Args) { ToolArgs = *Args; }
    }

    int ExecuteProgram(const std::string &Bitcode,
                       const std::vector<std::string> &Args,
                       const std::string &InputFile,
                       const std::string &OutputFile,
                       std::string *Error,
                       const std::vector<std::string> &GCCArgs,
                       const std::vector<std::string> &SharedLibs =
                       std::vector<std::string>(),
                       unsigned Timeout = 0,
                       unsigned MemoryLimit = 0) override;
  };
}

int LLI::ExecuteProgram(const std::string &Bitcode,
                        const std::vector<std::string> &Args,
                        const std::string &InputFile,
                        const std::string &OutputFile,
                        std::string *Error,
                        const std::vector<std::string> &GCCArgs,
                        const std::vector<std::string> &SharedLibs,
                        unsigned Timeout,
                        unsigned MemoryLimit) {
  std::vector<const char*> LLIArgs;
  LLIArgs.push_back(LLIPath.c_str());
  LLIArgs.push_back("-force-interpreter=true");

  for (std::vector<std::string>::const_iterator i = SharedLibs.begin(),
         e = SharedLibs.end(); i != e; ++i) {
    LLIArgs.push_back("-load");
    LLIArgs.push_back((*i).c_str());
  }

  // Add any extra LLI args.
  for (unsigned i = 0, e = ToolArgs.size(); i != e; ++i)
    LLIArgs.push_back(ToolArgs[i].c_str());

  LLIArgs.push_back(Bitcode.c_str());
  // Add optional parameters to the running program from Argv
  for (unsigned i=0, e = Args.size(); i != e; ++i)
    LLIArgs.push_back(Args[i].c_str());
  LLIArgs.push_back(nullptr);

  outs() << "<lli>"; outs().flush();
  DEBUG(errs() << "\nAbout to run:\t";
        for (unsigned i=0, e = LLIArgs.size()-1; i != e; ++i)
          errs() << " " << LLIArgs[i];
        errs() << "\n";
        );
  return RunProgramWithTimeout(LLIPath, &LLIArgs[0],
      InputFile, OutputFile, OutputFile,
      Timeout, MemoryLimit, Error);
}

void AbstractInterpreter::anchor() { }

#if defined(LLVM_ON_UNIX)
const char EXESuffix[] = "";
#elif defined (LLVM_ON_WIN32)
const char EXESuffix[] = "exe";
#endif

/// Prepend the path to the program being executed
/// to \p ExeName, given the value of argv[0] and the address of main()
/// itself. This allows us to find another LLVM tool if it is built in the same
/// directory. An empty string is returned on error; note that this function
/// just mainpulates the path and doesn't check for executability.
/// @brief Find a named executable.
static std::string PrependMainExecutablePath(const std::string &ExeName,
                                             const char *Argv0,
                                             void *MainAddr) {
  // Check the directory that the calling program is in.  We can do
  // this if ProgramPath contains at least one / character, indicating that it
  // is a relative path to the executable itself.
  std::string Main = sys::fs::getMainExecutable(Argv0, MainAddr);
  StringRef Result = sys::path::parent_path(Main);

  if (!Result.empty()) {
    SmallString<128> Storage = Result;
    sys::path::append(Storage, ExeName);
    sys::path::replace_extension(Storage, EXESuffix);
    return Storage.str();
  }

  return Result.str();
}

// LLI create method - Try to find the LLI executable
AbstractInterpreter *AbstractInterpreter::createLLI(const char *Argv0,
                                                    std::string &Message,
                                     const std::vector<std::string> *ToolArgs) {
  std::string LLIPath =
      PrependMainExecutablePath("lli", Argv0, (void *)(intptr_t) & createLLI);
  if (!LLIPath.empty()) {
    Message = "Found lli: " + LLIPath + "\n";
    return new LLI(LLIPath, ToolArgs);
  }

  Message = "Cannot find `lli' in executable directory!\n";
  return nullptr;
}

//===---------------------------------------------------------------------===//
// Custom compiler command implementation of AbstractIntepreter interface
//
// Allows using a custom command for compiling the bitcode, thus allows, for
// example, to compile a bitcode fragment without linking or executing, then
// using a custom wrapper script to check for compiler errors.
namespace {
  class CustomCompiler : public AbstractInterpreter {
    std::string CompilerCommand;
    std::vector<std::string> CompilerArgs;
  public:
    CustomCompiler(
      const std::string &CompilerCmd, std::vector<std::string> CompArgs) :
      CompilerCommand(CompilerCmd), CompilerArgs(CompArgs) {}

    void compileProgram(const std::string &Bitcode,
                        std::string *Error,
                        unsigned Timeout = 0,
                        unsigned MemoryLimit = 0) override;

    int ExecuteProgram(const std::string &Bitcode,
                       const std::vector<std::string> &Args,
                       const std::string &InputFile,
                       const std::string &OutputFile,
                       std::string *Error,
                       const std::vector<std::string> &GCCArgs =
                       std::vector<std::string>(),
                       const std::vector<std::string> &SharedLibs =
                       std::vector<std::string>(),
                       unsigned Timeout = 0,
                       unsigned MemoryLimit = 0) override {
      *Error = "Execution not supported with -compile-custom";
      return -1;
    }
  };
}

void CustomCompiler::compileProgram(const std::string &Bitcode,
                                    std::string *Error,
                                    unsigned Timeout,
                                    unsigned MemoryLimit) {

  std::vector<const char*> ProgramArgs;
  ProgramArgs.push_back(CompilerCommand.c_str());

  for (std::size_t i = 0; i < CompilerArgs.size(); ++i)
    ProgramArgs.push_back(CompilerArgs.at(i).c_str());
  ProgramArgs.push_back(Bitcode.c_str());
  ProgramArgs.push_back(nullptr);

  // Add optional parameters to the running program from Argv
  for (unsigned i = 0, e = CompilerArgs.size(); i != e; ++i)
    ProgramArgs.push_back(CompilerArgs[i].c_str());

  if (RunProgramWithTimeout(CompilerCommand, &ProgramArgs[0],
                             "", "", "",
                             Timeout, MemoryLimit, Error))
    *Error = ProcessFailure(CompilerCommand, &ProgramArgs[0],
                           Timeout, MemoryLimit);
}

//===---------------------------------------------------------------------===//
// Custom execution command implementation of AbstractIntepreter interface
//
// Allows using a custom command for executing the bitcode, thus allows,
// for example, to invoke a cross compiler for code generation followed by
// a simulator that executes the generated binary.
namespace {
  class CustomExecutor : public AbstractInterpreter {
    std::string ExecutionCommand;
    std::vector<std::string> ExecutorArgs;
  public:
    CustomExecutor(
      const std::string &ExecutionCmd, std::vector<std::string> ExecArgs) :
      ExecutionCommand(ExecutionCmd), ExecutorArgs(ExecArgs) {}

    int ExecuteProgram(const std::string &Bitcode,
                       const std::vector<std::string> &Args,
                       const std::string &InputFile,
                       const std::string &OutputFile,
                       std::string *Error,
                       const std::vector<std::string> &GCCArgs,
                       const std::vector<std::string> &SharedLibs =
                         std::vector<std::string>(),
                       unsigned Timeout = 0,
                       unsigned MemoryLimit = 0) override;
  };
}

int CustomExecutor::ExecuteProgram(const std::string &Bitcode,
                        const std::vector<std::string> &Args,
                        const std::string &InputFile,
                        const std::string &OutputFile,
                        std::string *Error,
                        const std::vector<std::string> &GCCArgs,
                        const std::vector<std::string> &SharedLibs,
                        unsigned Timeout,
                        unsigned MemoryLimit) {

  std::vector<const char*> ProgramArgs;
  ProgramArgs.push_back(ExecutionCommand.c_str());

  for (std::size_t i = 0; i < ExecutorArgs.size(); ++i)
    ProgramArgs.push_back(ExecutorArgs.at(i).c_str());
  ProgramArgs.push_back(Bitcode.c_str());
  ProgramArgs.push_back(nullptr);

  // Add optional parameters to the running program from Argv
  for (unsigned i = 0, e = Args.size(); i != e; ++i)
    ProgramArgs.push_back(Args[i].c_str());

  return RunProgramWithTimeout(
    ExecutionCommand,
    &ProgramArgs[0], InputFile, OutputFile,
    OutputFile, Timeout, MemoryLimit, Error);
}

// Tokenize the CommandLine to the command and the args to allow
// defining a full command line as the command instead of just the
// executed program. We cannot just pass the whole string after the command
// as a single argument because then program sees only a single
// command line argument (with spaces in it: "foo bar" instead
// of "foo" and "bar").
//
// code borrowed from:
// http://oopweb.com/CPP/Documents/CPPHOWTO/Volume/C++Programming-HOWTO-7.html
static void lexCommand(std::string &Message, const std::string &CommandLine,
                       std::string &CmdPath, std::vector<std::string> &Args) {

  std::string Command = "";
  std::string delimiters = " ";

  std::string::size_type lastPos = CommandLine.find_first_not_of(delimiters, 0);
  std::string::size_type pos = CommandLine.find_first_of(delimiters, lastPos);

  while (std::string::npos != pos || std::string::npos != lastPos) {
    std::string token = CommandLine.substr(lastPos, pos - lastPos);
    if (Command == "")
       Command = token;
    else
       Args.push_back(token);
    // Skip delimiters.  Note the "not_of"
    lastPos = CommandLine.find_first_not_of(delimiters, pos);
    // Find next "non-delimiter"
    pos = CommandLine.find_first_of(delimiters, lastPos);
  }

  CmdPath = sys::FindProgramByName(Command);
  if (CmdPath.empty()) {
    Message =
      std::string("Cannot find '") + Command +
      "' in PATH!\n";
    return;
  }

  Message = "Found command in: " + CmdPath + "\n";
}

// Custom execution environment create method, takes the execution command
// as arguments
AbstractInterpreter *AbstractInterpreter::createCustomCompiler(
                    std::string &Message,
                    const std::string &CompileCommandLine) {

  std::string CmdPath;
  std::vector<std::string> Args;
  lexCommand(Message, CompileCommandLine, CmdPath, Args);
  if (CmdPath.empty())
    return nullptr;

  return new CustomCompiler(CmdPath, Args);
}

// Custom execution environment create method, takes the execution command
// as arguments
AbstractInterpreter *AbstractInterpreter::createCustomExecutor(
                    std::string &Message,
                    const std::string &ExecCommandLine) {


  std::string CmdPath;
  std::vector<std::string> Args;
  lexCommand(Message, ExecCommandLine, CmdPath, Args);
  if (CmdPath.empty())
    return nullptr;

  return new CustomExecutor(CmdPath, Args);
}

//===----------------------------------------------------------------------===//
// LLC Implementation of AbstractIntepreter interface
//
GCC::FileType LLC::OutputCode(const std::string &Bitcode,
                              std::string &OutputAsmFile, std::string &Error,
                              unsigned Timeout, unsigned MemoryLimit) {
  const char *Suffix = (UseIntegratedAssembler ? ".llc.o" : ".llc.s");

  SmallString<128> UniqueFile;
  std::error_code EC =
      sys::fs::createUniqueFile(Bitcode + "-%%%%%%%" + Suffix, UniqueFile);
  if (EC) {
    errs() << "Error making unique filename: " << EC.message() << "\n";
    exit(1);
  }
  OutputAsmFile = UniqueFile.str();
  std::vector<const char *> LLCArgs;
  LLCArgs.push_back(LLCPath.c_str());

  // Add any extra LLC args.
  for (unsigned i = 0, e = ToolArgs.size(); i != e; ++i)
    LLCArgs.push_back(ToolArgs[i].c_str());

  LLCArgs.push_back("-o");
  LLCArgs.push_back(OutputAsmFile.c_str()); // Output to the Asm file
  LLCArgs.push_back(Bitcode.c_str());      // This is the input bitcode

  if (UseIntegratedAssembler)
    LLCArgs.push_back("-filetype=obj");

  LLCArgs.push_back (nullptr);

  outs() << (UseIntegratedAssembler ? "<llc-ia>" : "<llc>");
  outs().flush();
  DEBUG(errs() << "\nAbout to run:\t";
        for (unsigned i = 0, e = LLCArgs.size()-1; i != e; ++i)
          errs() << " " << LLCArgs[i];
        errs() << "\n";
        );
  if (RunProgramWithTimeout(LLCPath, &LLCArgs[0],
                            "", "", "",
                            Timeout, MemoryLimit))
    Error = ProcessFailure(LLCPath, &LLCArgs[0],
                           Timeout, MemoryLimit);
  return UseIntegratedAssembler ? GCC::ObjectFile : GCC::AsmFile;
}

void LLC::compileProgram(const std::string &Bitcode, std::string *Error,
                         unsigned Timeout, unsigned MemoryLimit) {
  std::string OutputAsmFile;
  OutputCode(Bitcode, OutputAsmFile, *Error, Timeout, MemoryLimit);
  sys::fs::remove(OutputAsmFile);
}

int LLC::ExecuteProgram(const std::string &Bitcode,
                        const std::vector<std::string> &Args,
                        const std::string &InputFile,
                        const std::string &OutputFile,
                        std::string *Error,
                        const std::vector<std::string> &ArgsForGCC,
                        const std::vector<std::string> &SharedLibs,
                        unsigned Timeout,
                        unsigned MemoryLimit) {

  std::string OutputAsmFile;
  GCC::FileType FileKind = OutputCode(Bitcode, OutputAsmFile, *Error, Timeout,
                                      MemoryLimit);
  FileRemover OutFileRemover(OutputAsmFile, !SaveTemps);

  std::vector<std::string> GCCArgs(ArgsForGCC);
  GCCArgs.insert(GCCArgs.end(), SharedLibs.begin(), SharedLibs.end());

  // Assuming LLC worked, compile the result with GCC and run it.
  return gcc->ExecuteProgram(OutputAsmFile, Args, FileKind,
                             InputFile, OutputFile, Error, GCCArgs,
                             Timeout, MemoryLimit);
}

/// createLLC - Try to find the LLC executable
///
LLC *AbstractInterpreter::createLLC(const char *Argv0,
                                    std::string &Message,
                                    const std::string &GCCBinary,
                                    const std::vector<std::string> *Args,
                                    const std::vector<std::string> *GCCArgs,
                                    bool UseIntegratedAssembler) {
  std::string LLCPath =
      PrependMainExecutablePath("llc", Argv0, (void *)(intptr_t) & createLLC);
  if (LLCPath.empty()) {
    Message = "Cannot find `llc' in executable directory!\n";
    return nullptr;
  }

  GCC *gcc = GCC::create(Message, GCCBinary, GCCArgs);
  if (!gcc) {
    errs() << Message << "\n";
    exit(1);
  }
  Message = "Found llc: " + LLCPath + "\n";
  return new LLC(LLCPath, gcc, Args, UseIntegratedAssembler);
}

//===---------------------------------------------------------------------===//
// JIT Implementation of AbstractIntepreter interface
//
namespace {
  class JIT : public AbstractInterpreter {
    std::string LLIPath;          // The path to the LLI executable
    std::vector<std::string> ToolArgs; // Args to pass to LLI
  public:
    JIT(const std::string &Path, const std::vector<std::string> *Args)
      : LLIPath(Path) {
      ToolArgs.clear ();
      if (Args) { ToolArgs = *Args; }
    }

    int ExecuteProgram(const std::string &Bitcode,
                       const std::vector<std::string> &Args,
                       const std::string &InputFile,
                       const std::string &OutputFile,
                       std::string *Error,
                       const std::vector<std::string> &GCCArgs =
                         std::vector<std::string>(),
                       const std::vector<std::string> &SharedLibs =
                         std::vector<std::string>(),
                       unsigned Timeout = 0,
                       unsigned MemoryLimit = 0) override;
  };
}

int JIT::ExecuteProgram(const std::string &Bitcode,
                        const std::vector<std::string> &Args,
                        const std::string &InputFile,
                        const std::string &OutputFile,
                        std::string *Error,
                        const std::vector<std::string> &GCCArgs,
                        const std::vector<std::string> &SharedLibs,
                        unsigned Timeout,
                        unsigned MemoryLimit) {
  // Construct a vector of parameters, incorporating those from the command-line
  std::vector<const char*> JITArgs;
  JITArgs.push_back(LLIPath.c_str());
  JITArgs.push_back("-force-interpreter=false");

  // Add any extra LLI args.
  for (unsigned i = 0, e = ToolArgs.size(); i != e; ++i)
    JITArgs.push_back(ToolArgs[i].c_str());

  for (unsigned i = 0, e = SharedLibs.size(); i != e; ++i) {
    JITArgs.push_back("-load");
    JITArgs.push_back(SharedLibs[i].c_str());
  }
  JITArgs.push_back(Bitcode.c_str());
  // Add optional parameters to the running program from Argv
  for (unsigned i=0, e = Args.size(); i != e; ++i)
    JITArgs.push_back(Args[i].c_str());
  JITArgs.push_back(nullptr);

  outs() << "<jit>"; outs().flush();
  DEBUG(errs() << "\nAbout to run:\t";
        for (unsigned i=0, e = JITArgs.size()-1; i != e; ++i)
          errs() << " " << JITArgs[i];
        errs() << "\n";
        );
  DEBUG(errs() << "\nSending output to " << OutputFile << "\n");
  return RunProgramWithTimeout(LLIPath, &JITArgs[0],
      InputFile, OutputFile, OutputFile,
      Timeout, MemoryLimit, Error);
}

/// createJIT - Try to find the LLI executable
///
AbstractInterpreter *AbstractInterpreter::createJIT(const char *Argv0,
                   std::string &Message, const std::vector<std::string> *Args) {
  std::string LLIPath =
      PrependMainExecutablePath("lli", Argv0, (void *)(intptr_t) & createJIT);
  if (!LLIPath.empty()) {
    Message = "Found lli: " + LLIPath + "\n";
    return new JIT(LLIPath, Args);
  }

  Message = "Cannot find `lli' in executable directory!\n";
  return nullptr;
}

//===---------------------------------------------------------------------===//
// GCC abstraction
//

static bool IsARMArchitecture(std::vector<const char*> Args) {
  for (std::vector<const char*>::const_iterator
         I = Args.begin(), E = Args.end(); I != E; ++I) {
    if (StringRef(*I).equals_lower("-arch")) {
      ++I;
      if (I != E && StringRef(*I).startswith_lower("arm"))
        return true;
    }
  }

  return false;
}

int GCC::ExecuteProgram(const std::string &ProgramFile,
                        const std::vector<std::string> &Args,
                        FileType fileType,
                        const std::string &InputFile,
                        const std::string &OutputFile,
                        std::string *Error,
                        const std::vector<std::string> &ArgsForGCC,
                        unsigned Timeout,
                        unsigned MemoryLimit) {
  std::vector<const char*> GCCArgs;

  GCCArgs.push_back(GCCPath.c_str());

  if (TargetTriple.getArch() == Triple::x86)
    GCCArgs.push_back("-m32");

  for (std::vector<std::string>::const_iterator
         I = gccArgs.begin(), E = gccArgs.end(); I != E; ++I)
    GCCArgs.push_back(I->c_str());

  // Specify -x explicitly in case the extension is wonky
  if (fileType != ObjectFile) {
    GCCArgs.push_back("-x");
    if (fileType == CFile) {
      GCCArgs.push_back("c");
      GCCArgs.push_back("-fno-strict-aliasing");
    } else {
      GCCArgs.push_back("assembler");

      // For ARM architectures we don't want this flag. bugpoint isn't
      // explicitly told what architecture it is working on, so we get
      // it from gcc flags
      if (TargetTriple.isOSDarwin() && !IsARMArchitecture(GCCArgs))
        GCCArgs.push_back("-force_cpusubtype_ALL");
    }
  }

  GCCArgs.push_back(ProgramFile.c_str());  // Specify the input filename.

  GCCArgs.push_back("-x");
  GCCArgs.push_back("none");
  GCCArgs.push_back("-o");

  SmallString<128> OutputBinary;
  std::error_code EC =
      sys::fs::createUniqueFile(ProgramFile + "-%%%%%%%.gcc.exe", OutputBinary);
  if (EC) {
    errs() << "Error making unique filename: " << EC.message() << "\n";
    exit(1);
  }
  GCCArgs.push_back(OutputBinary.c_str()); // Output to the right file...

  // Add any arguments intended for GCC. We locate them here because this is
  // most likely -L and -l options that need to come before other libraries but
  // after the source. Other options won't be sensitive to placement on the
  // command line, so this should be safe.
  for (unsigned i = 0, e = ArgsForGCC.size(); i != e; ++i)
    GCCArgs.push_back(ArgsForGCC[i].c_str());

  GCCArgs.push_back("-lm");                // Hard-code the math library...
  GCCArgs.push_back("-O2");                // Optimize the program a bit...
#if defined (HAVE_LINK_R)
  GCCArgs.push_back("-Wl,-R.");            // Search this dir for .so files
#endif
  if (TargetTriple.getArch() == Triple::sparc)
    GCCArgs.push_back("-mcpu=v9");
  GCCArgs.push_back(nullptr);                    // NULL terminator

  outs() << "<gcc>"; outs().flush();
  DEBUG(errs() << "\nAbout to run:\t";
        for (unsigned i = 0, e = GCCArgs.size()-1; i != e; ++i)
          errs() << " " << GCCArgs[i];
        errs() << "\n";
        );
  if (RunProgramWithTimeout(GCCPath, &GCCArgs[0], "", "", "")) {
    *Error = ProcessFailure(GCCPath, &GCCArgs[0]);
    return -1;
  }

  std::vector<const char*> ProgramArgs;

  // Declared here so that the destructor only runs after
  // ProgramArgs is used.
  std::string Exec;

  if (RemoteClientPath.empty())
    ProgramArgs.push_back(OutputBinary.c_str());
  else {
    ProgramArgs.push_back(RemoteClientPath.c_str());
    ProgramArgs.push_back(RemoteHost.c_str());
    if (!RemoteUser.empty()) {
      ProgramArgs.push_back("-l");
      ProgramArgs.push_back(RemoteUser.c_str());
    }
    if (!RemotePort.empty()) {
      ProgramArgs.push_back("-p");
      ProgramArgs.push_back(RemotePort.c_str());
    }
    if (!RemoteExtra.empty()) {
      ProgramArgs.push_back(RemoteExtra.c_str());
    }

    // Full path to the binary. We need to cd to the exec directory because
    // there is a dylib there that the exec expects to find in the CWD
    char* env_pwd = getenv("PWD");
    Exec = "cd ";
    Exec += env_pwd;
    Exec += "; ./";
    Exec += OutputBinary.c_str();
    ProgramArgs.push_back(Exec.c_str());
  }

  // Add optional parameters to the running program from Argv
  for (unsigned i = 0, e = Args.size(); i != e; ++i)
    ProgramArgs.push_back(Args[i].c_str());
  ProgramArgs.push_back(nullptr);                // NULL terminator

  // Now that we have a binary, run it!
  outs() << "<program>"; outs().flush();
  DEBUG(errs() << "\nAbout to run:\t";
        for (unsigned i = 0, e = ProgramArgs.size()-1; i != e; ++i)
          errs() << " " << ProgramArgs[i];
        errs() << "\n";
        );

  FileRemover OutputBinaryRemover(OutputBinary.str(), !SaveTemps);

  if (RemoteClientPath.empty()) {
    DEBUG(errs() << "<run locally>");
    int ExitCode = RunProgramWithTimeout(OutputBinary.str(), &ProgramArgs[0],
                                         InputFile, OutputFile, OutputFile,
                                         Timeout, MemoryLimit, Error);
    // Treat a signal (usually SIGSEGV) or timeout as part of the program output
    // so that crash-causing miscompilation is handled seamlessly.
    if (ExitCode < -1) {
      std::ofstream outFile(OutputFile.c_str(), std::ios_base::app);
      outFile << *Error << '\n';
      outFile.close();
      Error->clear();
    }
    return ExitCode;
  } else {
    outs() << "<run remotely>"; outs().flush();
    return RunProgramRemotelyWithTimeout(RemoteClientPath,
        &ProgramArgs[0], InputFile, OutputFile,
        OutputFile, Timeout, MemoryLimit);
  }
}

int GCC::MakeSharedObject(const std::string &InputFile, FileType fileType,
                          std::string &OutputFile,
                          const std::vector<std::string> &ArgsForGCC,
                          std::string &Error) {
  SmallString<128> UniqueFilename;
  std::error_code EC = sys::fs::createUniqueFile(
      InputFile + "-%%%%%%%" + LTDL_SHLIB_EXT, UniqueFilename);
  if (EC) {
    errs() << "Error making unique filename: " << EC.message() << "\n";
    exit(1);
  }
  OutputFile = UniqueFilename.str();

  std::vector<const char*> GCCArgs;

  GCCArgs.push_back(GCCPath.c_str());

  if (TargetTriple.getArch() == Triple::x86)
    GCCArgs.push_back("-m32");

  for (std::vector<std::string>::const_iterator
         I = gccArgs.begin(), E = gccArgs.end(); I != E; ++I)
    GCCArgs.push_back(I->c_str());

  // Compile the C/asm file into a shared object
  if (fileType != ObjectFile) {
    GCCArgs.push_back("-x");
    GCCArgs.push_back(fileType == AsmFile ? "assembler" : "c");
  }
  GCCArgs.push_back("-fno-strict-aliasing");
  GCCArgs.push_back(InputFile.c_str());   // Specify the input filename.
  GCCArgs.push_back("-x");
  GCCArgs.push_back("none");
  if (TargetTriple.getArch() == Triple::sparc)
    GCCArgs.push_back("-G");       // Compile a shared library, `-G' for Sparc
  else if (TargetTriple.isOSDarwin()) {
    // link all source files into a single module in data segment, rather than
    // generating blocks. dynamic_lookup requires that you set
    // MACOSX_DEPLOYMENT_TARGET=10.3 in your env.  FIXME: it would be better for
    // bugpoint to just pass that in the environment of GCC.
    GCCArgs.push_back("-single_module");
    GCCArgs.push_back("-dynamiclib");   // `-dynamiclib' for MacOS X/PowerPC
    GCCArgs.push_back("-undefined");
    GCCArgs.push_back("dynamic_lookup");
  } else
    GCCArgs.push_back("-shared");  // `-shared' for Linux/X86, maybe others

  if (TargetTriple.getArch() == Triple::x86_64)
    GCCArgs.push_back("-fPIC");   // Requires shared objs to contain PIC

  if (TargetTriple.getArch() == Triple::sparc)
    GCCArgs.push_back("-mcpu=v9");

  GCCArgs.push_back("-o");
  GCCArgs.push_back(OutputFile.c_str()); // Output to the right filename.
  GCCArgs.push_back("-O2");              // Optimize the program a bit.



  // Add any arguments intended for GCC. We locate them here because this is
  // most likely -L and -l options that need to come before other libraries but
  // after the source. Other options won't be sensitive to placement on the
  // command line, so this should be safe.
  for (unsigned i = 0, e = ArgsForGCC.size(); i != e; ++i)
    GCCArgs.push_back(ArgsForGCC[i].c_str());
  GCCArgs.push_back(nullptr);                    // NULL terminator



  outs() << "<gcc>"; outs().flush();
  DEBUG(errs() << "\nAbout to run:\t";
        for (unsigned i = 0, e = GCCArgs.size()-1; i != e; ++i)
          errs() << " " << GCCArgs[i];
        errs() << "\n";
        );
  if (RunProgramWithTimeout(GCCPath, &GCCArgs[0], "", "", "")) {
    Error = ProcessFailure(GCCPath, &GCCArgs[0]);
    return 1;
  }
  return 0;
}

/// create - Try to find the `gcc' executable
///
GCC *GCC::create(std::string &Message,
                 const std::string &GCCBinary,
                 const std::vector<std::string> *Args) {
  std::string GCCPath = sys::FindProgramByName(GCCBinary);
  if (GCCPath.empty()) {
    Message = "Cannot find `"+ GCCBinary +"' in PATH!\n";
    return nullptr;
  }

  std::string RemoteClientPath;
  if (!RemoteClient.empty())
    RemoteClientPath = sys::FindProgramByName(RemoteClient);

  Message = "Found gcc: " + GCCPath + "\n";
  return new GCC(GCCPath, RemoteClientPath, Args);
}