/* * Copyright (c) 1991, 1992 Paul Kranenburg * Copyright (c) 1993 Branko Lankester * Copyright (c) 1993, 1994, 1995, 1996 Rick Sladkey * Copyright (c) 1996-1999 Wichert Akkerman * Copyright (c) 1999 IBM Deutschland Entwicklung GmbH, IBM Corporation * Linux for s390 port by D.J. Barrow * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "defs.h" #include #include #ifdef HAVE_SYS_REG_H # include #elif defined(HAVE_LINUX_PTRACE_H) # undef PTRACE_SYSCALL # ifdef HAVE_STRUCT_IA64_FPREG # define ia64_fpreg XXX_ia64_fpreg # endif # ifdef HAVE_STRUCT_PT_ALL_USER_REGS # define pt_all_user_regs XXX_pt_all_user_regs # endif # ifdef HAVE_STRUCT_PTRACE_PEEKSIGINFO_ARGS # define ptrace_peeksiginfo_args XXX_ptrace_peeksiginfo_args # endif # include # undef ptrace_peeksiginfo_args # undef ia64_fpreg # undef pt_all_user_regs #endif #if defined(SPARC64) # undef PTRACE_GETREGS # define PTRACE_GETREGS PTRACE_GETREGS64 # undef PTRACE_SETREGS # define PTRACE_SETREGS PTRACE_SETREGS64 #endif #if defined(IA64) # include # include #endif /* for struct iovec */ #include /* for NT_PRSTATUS */ #ifdef HAVE_ELF_H # include #endif #if defined(AARCH64) # include #endif #if defined(XTENSA) # include #endif #ifndef NSIG # warning: NSIG is not defined, using 32 # define NSIG 32 #endif #include "syscall.h" /* Define these shorthand notations to simplify the syscallent files. */ #define TD TRACE_DESC #define TF TRACE_FILE #define TI TRACE_IPC #define TN TRACE_NETWORK #define TP TRACE_PROCESS #define TS TRACE_SIGNAL #define TM TRACE_MEMORY #define NF SYSCALL_NEVER_FAILS #define MA MAX_ARGS const struct_sysent sysent0[] = { #include "syscallent.h" }; #if SUPPORTED_PERSONALITIES > 1 static const struct_sysent sysent1[] = { # include "syscallent1.h" }; #endif #if SUPPORTED_PERSONALITIES > 2 static const struct_sysent sysent2[] = { # include "syscallent2.h" }; #endif /* Now undef them since short defines cause wicked namespace pollution. */ #undef TD #undef TF #undef TI #undef TN #undef TP #undef TS #undef TM #undef NF #undef MA /* * `ioctlent.h' may be generated from `ioctlent.raw' by the auxiliary * program `ioctlsort', such that the list is sorted by the `code' field. * This has the side-effect of resolving the _IO.. macros into * plain integers, eliminating the need to include here everything * in "/usr/include". */ const char *const errnoent0[] = { #include "errnoent.h" }; const char *const signalent0[] = { #include "signalent.h" }; const struct_ioctlent ioctlent0[] = { #include "ioctlent.h" }; #if SUPPORTED_PERSONALITIES > 1 static const char *const errnoent1[] = { # include "errnoent1.h" }; static const char *const signalent1[] = { # include "signalent1.h" }; static const struct_ioctlent ioctlent1[] = { # include "ioctlent1.h" }; #endif #if SUPPORTED_PERSONALITIES > 2 static const char *const errnoent2[] = { # include "errnoent2.h" }; static const char *const signalent2[] = { # include "signalent2.h" }; static const struct_ioctlent ioctlent2[] = { # include "ioctlent2.h" }; #endif enum { nsyscalls0 = ARRAY_SIZE(sysent0) #if SUPPORTED_PERSONALITIES > 1 , nsyscalls1 = ARRAY_SIZE(sysent1) # if SUPPORTED_PERSONALITIES > 2 , nsyscalls2 = ARRAY_SIZE(sysent2) # endif #endif }; enum { nerrnos0 = ARRAY_SIZE(errnoent0) #if SUPPORTED_PERSONALITIES > 1 , nerrnos1 = ARRAY_SIZE(errnoent1) # if SUPPORTED_PERSONALITIES > 2 , nerrnos2 = ARRAY_SIZE(errnoent2) # endif #endif }; enum { nsignals0 = ARRAY_SIZE(signalent0) #if SUPPORTED_PERSONALITIES > 1 , nsignals1 = ARRAY_SIZE(signalent1) # if SUPPORTED_PERSONALITIES > 2 , nsignals2 = ARRAY_SIZE(signalent2) # endif #endif }; enum { nioctlents0 = ARRAY_SIZE(ioctlent0) #if SUPPORTED_PERSONALITIES > 1 , nioctlents1 = ARRAY_SIZE(ioctlent1) # if SUPPORTED_PERSONALITIES > 2 , nioctlents2 = ARRAY_SIZE(ioctlent2) # endif #endif }; #if SUPPORTED_PERSONALITIES > 1 const struct_sysent *sysent = sysent0; const char *const *errnoent = errnoent0; const char *const *signalent = signalent0; const struct_ioctlent *ioctlent = ioctlent0; #endif unsigned nsyscalls = nsyscalls0; unsigned nerrnos = nerrnos0; unsigned nsignals = nsignals0; unsigned nioctlents = nioctlents0; unsigned num_quals; qualbits_t *qual_vec[SUPPORTED_PERSONALITIES]; static const unsigned nsyscall_vec[SUPPORTED_PERSONALITIES] = { nsyscalls0, #if SUPPORTED_PERSONALITIES > 1 nsyscalls1, #endif #if SUPPORTED_PERSONALITIES > 2 nsyscalls2, #endif }; static const struct_sysent *const sysent_vec[SUPPORTED_PERSONALITIES] = { sysent0, #if SUPPORTED_PERSONALITIES > 1 sysent1, #endif #if SUPPORTED_PERSONALITIES > 2 sysent2, #endif }; enum { MAX_NSYSCALLS1 = (nsyscalls0 #if SUPPORTED_PERSONALITIES > 1 > nsyscalls1 ? nsyscalls0 : nsyscalls1 #endif ), MAX_NSYSCALLS2 = (MAX_NSYSCALLS1 #if SUPPORTED_PERSONALITIES > 2 > nsyscalls2 ? MAX_NSYSCALLS1 : nsyscalls2 #endif ), MAX_NSYSCALLS = MAX_NSYSCALLS2, /* We are ready for arches with up to 255 signals, * even though the largest known signo is on MIPS and it is 128. * The number of existing syscalls on all arches is * larger that 255 anyway, so it is just a pedantic matter. */ MIN_QUALS = MAX_NSYSCALLS > 255 ? MAX_NSYSCALLS : 255 }; #if SUPPORTED_PERSONALITIES > 1 unsigned current_personality; # ifndef current_wordsize unsigned current_wordsize; static const int personality_wordsize[SUPPORTED_PERSONALITIES] = { PERSONALITY0_WORDSIZE, PERSONALITY1_WORDSIZE, # if SUPPORTED_PERSONALITIES > 2 PERSONALITY2_WORDSIZE, # endif }; # endif void set_personality(int personality) { nsyscalls = nsyscall_vec[personality]; sysent = sysent_vec[personality]; switch (personality) { case 0: errnoent = errnoent0; nerrnos = nerrnos0; ioctlent = ioctlent0; nioctlents = nioctlents0; signalent = signalent0; nsignals = nsignals0; break; case 1: errnoent = errnoent1; nerrnos = nerrnos1; ioctlent = ioctlent1; nioctlents = nioctlents1; signalent = signalent1; nsignals = nsignals1; break; # if SUPPORTED_PERSONALITIES > 2 case 2: errnoent = errnoent2; nerrnos = nerrnos2; ioctlent = ioctlent2; nioctlents = nioctlents2; signalent = signalent2; nsignals = nsignals2; break; # endif } current_personality = personality; # ifndef current_wordsize current_wordsize = personality_wordsize[personality]; # endif } static void update_personality(struct tcb *tcp, int personality) { if (personality == current_personality) return; set_personality(personality); if (personality == tcp->currpers) return; tcp->currpers = personality; # if defined(POWERPC64) if (!qflag) { static const char *const names[] = {"64 bit", "32 bit"}; fprintf(stderr, "[ Process PID=%d runs in %s mode. ]\n", tcp->pid, names[personality]); } # elif defined(X86_64) if (!qflag) { static const char *const names[] = {"64 bit", "32 bit", "x32"}; fprintf(stderr, "[ Process PID=%d runs in %s mode. ]\n", tcp->pid, names[personality]); } # elif defined(X32) if (!qflag) { static const char *const names[] = {"x32", "32 bit"}; fprintf(stderr, "[ Process PID=%d runs in %s mode. ]\n", tcp->pid, names[personality]); } # elif defined(AARCH64) if (!qflag) { static const char *const names[] = {"32-bit", "AArch64"}; fprintf(stderr, "[ Process PID=%d runs in %s mode. ]\n", tcp->pid, names[personality]); } # elif defined(TILE) if (!qflag) { static const char *const names[] = {"64-bit", "32-bit"}; fprintf(stderr, "[ Process PID=%d runs in %s mode. ]\n", tcp->pid, names[personality]); } # endif } #endif static int qual_syscall(), qual_signal(), qual_desc(); static const struct qual_options { int bitflag; const char *option_name; int (*qualify)(const char *, int, int); const char *argument_name; } qual_options[] = { { QUAL_TRACE, "trace", qual_syscall, "system call" }, { QUAL_TRACE, "t", qual_syscall, "system call" }, { QUAL_ABBREV, "abbrev", qual_syscall, "system call" }, { QUAL_ABBREV, "a", qual_syscall, "system call" }, { QUAL_VERBOSE, "verbose", qual_syscall, "system call" }, { QUAL_VERBOSE, "v", qual_syscall, "system call" }, { QUAL_RAW, "raw", qual_syscall, "system call" }, { QUAL_RAW, "x", qual_syscall, "system call" }, { QUAL_SIGNAL, "signal", qual_signal, "signal" }, { QUAL_SIGNAL, "signals", qual_signal, "signal" }, { QUAL_SIGNAL, "s", qual_signal, "signal" }, { QUAL_READ, "read", qual_desc, "descriptor" }, { QUAL_READ, "reads", qual_desc, "descriptor" }, { QUAL_READ, "r", qual_desc, "descriptor" }, { QUAL_WRITE, "write", qual_desc, "descriptor" }, { QUAL_WRITE, "writes", qual_desc, "descriptor" }, { QUAL_WRITE, "w", qual_desc, "descriptor" }, { 0, NULL, NULL, NULL }, }; static void reallocate_qual(int n) { unsigned p; qualbits_t *qp; for (p = 0; p < SUPPORTED_PERSONALITIES; p++) { qp = qual_vec[p] = realloc(qual_vec[p], n * sizeof(qualbits_t)); if (!qp) die_out_of_memory(); memset(&qp[num_quals], 0, (n - num_quals) * sizeof(qualbits_t)); } num_quals = n; } static void qualify_one(int n, int bitflag, int not, int pers) { unsigned p; if (num_quals <= n) reallocate_qual(n + 1); for (p = 0; p < SUPPORTED_PERSONALITIES; p++) { if (pers == p || pers < 0) { if (not) qual_vec[p][n] &= ~bitflag; else qual_vec[p][n] |= bitflag; } } } static int qual_syscall(const char *s, int bitflag, int not) { unsigned p; unsigned i; int rc = -1; if (*s >= '0' && *s <= '9') { i = string_to_uint(s); if (i >= MAX_NSYSCALLS) return -1; qualify_one(i, bitflag, not, -1); return 0; } for (p = 0; p < SUPPORTED_PERSONALITIES; p++) { for (i = 0; i < nsyscall_vec[p]; i++) { if (sysent_vec[p][i].sys_name && strcmp(s, sysent_vec[p][i].sys_name) == 0 ) { qualify_one(i, bitflag, not, p); rc = 0; } } } return rc; } static int qual_signal(const char *s, int bitflag, int not) { int i; if (*s >= '0' && *s <= '9') { int signo = string_to_uint(s); if (signo < 0 || signo > 255) return -1; qualify_one(signo, bitflag, not, -1); return 0; } if (strncasecmp(s, "SIG", 3) == 0) s += 3; for (i = 0; i <= NSIG; i++) { if (strcasecmp(s, signame(i) + 3) == 0) { qualify_one(i, bitflag, not, -1); return 0; } } return -1; } static int qual_desc(const char *s, int bitflag, int not) { if (*s >= '0' && *s <= '9') { int desc = string_to_uint(s); if (desc < 0 || desc > 0x7fff) /* paranoia */ return -1; qualify_one(desc, bitflag, not, -1); return 0; } return -1; } static int lookup_class(const char *s) { if (strcmp(s, "file") == 0) return TRACE_FILE; if (strcmp(s, "ipc") == 0) return TRACE_IPC; if (strcmp(s, "network") == 0) return TRACE_NETWORK; if (strcmp(s, "process") == 0) return TRACE_PROCESS; if (strcmp(s, "signal") == 0) return TRACE_SIGNAL; if (strcmp(s, "desc") == 0) return TRACE_DESC; if (strcmp(s, "memory") == 0) return TRACE_MEMORY; return -1; } void qualify(const char *s) { const struct qual_options *opt; int not; char *copy; const char *p; int i, n; if (num_quals == 0) reallocate_qual(MIN_QUALS); opt = &qual_options[0]; for (i = 0; (p = qual_options[i].option_name); i++) { n = strlen(p); if (strncmp(s, p, n) == 0 && s[n] == '=') { opt = &qual_options[i]; s += n + 1; break; } } not = 0; if (*s == '!') { not = 1; s++; } if (strcmp(s, "none") == 0) { not = 1 - not; s = "all"; } if (strcmp(s, "all") == 0) { for (i = 0; i < num_quals; i++) { qualify_one(i, opt->bitflag, not, -1); } return; } for (i = 0; i < num_quals; i++) { qualify_one(i, opt->bitflag, !not, -1); } copy = strdup(s); if (!copy) die_out_of_memory(); for (p = strtok(copy, ","); p; p = strtok(NULL, ",")) { if (opt->bitflag == QUAL_TRACE && (n = lookup_class(p)) > 0) { unsigned pers; for (pers = 0; pers < SUPPORTED_PERSONALITIES; pers++) { for (i = 0; i < nsyscall_vec[pers]; i++) if (sysent_vec[pers][i].sys_flags & n) qualify_one(i, opt->bitflag, not, pers); } continue; } if (opt->qualify(p, opt->bitflag, not)) { error_msg_and_die("invalid %s '%s'", opt->argument_name, p); } } free(copy); return; } #ifdef SYS_socket_subcall static void decode_socket_subcall(struct tcb *tcp) { unsigned long addr; unsigned int i, n, size; if (tcp->u_arg[0] < 0 || tcp->u_arg[0] >= SYS_socket_nsubcalls) return; tcp->scno = SYS_socket_subcall + tcp->u_arg[0]; tcp->qual_flg = qual_flags[tcp->scno]; tcp->s_ent = &sysent[tcp->scno]; addr = tcp->u_arg[1]; size = current_wordsize; n = tcp->s_ent->nargs; for (i = 0; i < n; ++i) { if (size == sizeof(int)) { unsigned int arg; if (umove(tcp, addr, &arg) < 0) arg = 0; tcp->u_arg[i] = arg; } else { unsigned long arg; if (umove(tcp, addr, &arg) < 0) arg = 0; tcp->u_arg[i] = arg; } addr += size; } } #endif #ifdef SYS_ipc_subcall static void decode_ipc_subcall(struct tcb *tcp) { unsigned int i, n; if (tcp->u_arg[0] < 0 || tcp->u_arg[0] >= SYS_ipc_nsubcalls) return; tcp->scno = SYS_ipc_subcall + tcp->u_arg[0]; tcp->qual_flg = qual_flags[tcp->scno]; tcp->s_ent = &sysent[tcp->scno]; n = tcp->s_ent->nargs; for (i = 0; i < n; i++) tcp->u_arg[i] = tcp->u_arg[i + 1]; } #endif int printargs(struct tcb *tcp) { if (entering(tcp)) { int i; int n = tcp->s_ent->nargs; for (i = 0; i < n; i++) tprintf("%s%#lx", i ? ", " : "", tcp->u_arg[i]); } return 0; } int printargs_lu(struct tcb *tcp) { if (entering(tcp)) { int i; int n = tcp->s_ent->nargs; for (i = 0; i < n; i++) tprintf("%s%lu", i ? ", " : "", tcp->u_arg[i]); } return 0; } int printargs_ld(struct tcb *tcp) { if (entering(tcp)) { int i; int n = tcp->s_ent->nargs; for (i = 0; i < n; i++) tprintf("%s%ld", i ? ", " : "", tcp->u_arg[i]); } return 0; } #if defined(SPARC) || defined(SPARC64) || defined(IA64) || defined(SH) long getrval2(struct tcb *tcp) { long val; # if defined(SPARC) || defined(SPARC64) val = sparc_regs.u_regs[U_REG_O1]; # elif defined(SH) if (upeek(tcp->pid, 4*(REG_REG0+1), &val) < 0) return -1; # elif defined(IA64) if (upeek(tcp->pid, PT_R9, &val) < 0) return -1; # endif return val; } #endif #if defined(I386) static struct user_regs_struct i386_regs; /* Cast suppresses signedness warning (.esp is long, not unsigned long) */ uint32_t *const i386_esp_ptr = (uint32_t*)&i386_regs.esp; # define ARCH_REGS_FOR_GETREGSET i386_regs #elif defined(X86_64) || defined(X32) /* * On i386, pt_regs and user_regs_struct are the same, * but on 64 bit x86, user_regs_struct has six more fields: * fs_base, gs_base, ds, es, fs, gs. * PTRACE_GETREGS fills them too, so struct pt_regs would overflow. */ struct i386_user_regs_struct { uint32_t ebx; uint32_t ecx; uint32_t edx; uint32_t esi; uint32_t edi; uint32_t ebp; uint32_t eax; uint32_t xds; uint32_t xes; uint32_t xfs; uint32_t xgs; uint32_t orig_eax; uint32_t eip; uint32_t xcs; uint32_t eflags; uint32_t esp; uint32_t xss; }; static union { struct user_regs_struct x86_64_r; struct i386_user_regs_struct i386_r; } x86_regs_union; # define x86_64_regs x86_regs_union.x86_64_r # define i386_regs x86_regs_union.i386_r uint32_t *const i386_esp_ptr = &i386_regs.esp; static struct iovec x86_io = { .iov_base = &x86_regs_union }; #elif defined(IA64) bool ia64_ia32mode = 0; /* not static */ static long ia64_r8, ia64_r10; #elif defined(POWERPC) struct pt_regs ppc_regs; #elif defined(M68K) static long m68k_d0; #elif defined(BFIN) static long bfin_r0; #elif defined(ARM) struct pt_regs arm_regs; /* not static */ # define ARCH_REGS_FOR_GETREGSET arm_regs #elif defined(AARCH64) static union { struct user_pt_regs aarch64_r; struct arm_pt_regs arm_r; } arm_regs_union; # define aarch64_regs arm_regs_union.aarch64_r # define arm_regs arm_regs_union.arm_r static struct iovec aarch64_io = { .iov_base = &arm_regs_union }; #elif defined(ALPHA) static long alpha_r0; static long alpha_a3; #elif defined(AVR32) static struct pt_regs avr32_regs; #elif defined(SPARC) || defined(SPARC64) struct pt_regs sparc_regs; /* not static */ #elif defined(LINUX_MIPSN32) static long long mips_a3; static long long mips_r2; #elif defined(MIPS) static long mips_a3; static long mips_r2; #elif defined(S390) || defined(S390X) static long s390_gpr2; #elif defined(HPPA) static long hppa_r28; #elif defined(SH) static long sh_r0; #elif defined(SH64) static long sh64_r9; #elif defined(CRISV10) || defined(CRISV32) static long cris_r10; #elif defined(TILE) struct pt_regs tile_regs; #elif defined(MICROBLAZE) static long microblaze_r3; #elif defined(OR1K) static struct user_regs_struct or1k_regs; # define ARCH_REGS_FOR_GETREGSET or1k_regs #elif defined(METAG) static struct user_gp_regs metag_regs; # define ARCH_REGS_FOR_GETREGSET metag_regs #elif defined(XTENSA) static long xtensa_a2; # elif defined(ARC) static struct user_regs_struct arc_regs; # define ARCH_REGS_FOR_GETREGSET arc_regs #endif void print_pc(struct tcb *tcp) { #define PRINTBADPC tprintf(sizeof(long) == 4 ? "[????????] " : \ sizeof(long) == 8 ? "[????????????????] " : \ NULL /* crash */) if (get_regs_error) { PRINTBADPC; return; } #if defined(I386) tprintf("[%08lx] ", i386_regs.eip); #elif defined(S390) || defined(S390X) long psw; if (upeek(tcp->pid, PT_PSWADDR, &psw) < 0) { PRINTBADPC; return; } # ifdef S390 tprintf("[%08lx] ", psw); # elif S390X tprintf("[%016lx] ", psw); # endif #elif defined(X86_64) || defined(X32) if (x86_io.iov_len == sizeof(i386_regs)) { tprintf("[%08x] ", (unsigned) i386_regs.eip); } else { # if defined(X86_64) tprintf("[%016lx] ", (unsigned long) x86_64_regs.rip); # elif defined(X32) /* Note: this truncates 64-bit rip to 32 bits */ tprintf("[%08lx] ", (unsigned long) x86_64_regs.rip); # endif } #elif defined(IA64) long ip; if (upeek(tcp->pid, PT_B0, &ip) < 0) { PRINTBADPC; return; } tprintf("[%08lx] ", ip); #elif defined(POWERPC) long pc = ppc_regs.nip; # ifdef POWERPC64 tprintf("[%016lx] ", pc); # else tprintf("[%08lx] ", pc); # endif #elif defined(M68K) long pc; if (upeek(tcp->pid, 4*PT_PC, &pc) < 0) { tprints("[????????] "); return; } tprintf("[%08lx] ", pc); #elif defined(ALPHA) long pc; if (upeek(tcp->pid, REG_PC, &pc) < 0) { tprints("[????????????????] "); return; } tprintf("[%08lx] ", pc); #elif defined(SPARC) tprintf("[%08lx] ", sparc_regs.pc); #elif defined(SPARC64) tprintf("[%08lx] ", sparc_regs.tpc); #elif defined(HPPA) long pc; if (upeek(tcp->pid, PT_IAOQ0, &pc) < 0) { tprints("[????????] "); return; } tprintf("[%08lx] ", pc); #elif defined(MIPS) long pc; if (upeek(tcp->pid, REG_EPC, &pc) < 0) { tprints("[????????] "); return; } tprintf("[%08lx] ", pc); #elif defined(SH) long pc; if (upeek(tcp->pid, 4*REG_PC, &pc) < 0) { tprints("[????????] "); return; } tprintf("[%08lx] ", pc); #elif defined(SH64) long pc; if (upeek(tcp->pid, REG_PC, &pc) < 0) { tprints("[????????????????] "); return; } tprintf("[%08lx] ", pc); #elif defined(ARM) tprintf("[%08lx] ", arm_regs.ARM_pc); #elif defined(AARCH64) /* tprintf("[%016lx] ", aarch64_regs.regs[???]); */ #elif defined(AVR32) tprintf("[%08lx] ", avr32_regs.pc); #elif defined(BFIN) long pc; if (upeek(tcp->pid, PT_PC, &pc) < 0) { PRINTBADPC; return; } tprintf("[%08lx] ", pc); #elif defined(CRISV10) long pc; if (upeek(tcp->pid, 4*PT_IRP, &pc) < 0) { PRINTBADPC; return; } tprintf("[%08lx] ", pc); #elif defined(CRISV32) long pc; if (upeek(tcp->pid, 4*PT_ERP, &pc) < 0) { PRINTBADPC; return; } tprintf("[%08lx] ", pc); #elif defined(TILE) # ifdef _LP64 tprintf("[%016lx] ", (unsigned long) tile_regs.pc); # else tprintf("[%08lx] ", (unsigned long) tile_regs.pc); # endif #elif defined(OR1K) tprintf("[%08lx] ", or1k_regs.pc); #elif defined(METAG) tprintf("[%08lx] ", metag_regs.pc); #elif defined(XTENSA) long pc; if (upeek(tcp->pid, REG_PC, &pc) < 0) { PRINTBADPC; return; } tprintf("[%08lx] ", pc); #elif defined(ARC) tprintf("[%08lx] ", arc_regs.efa); #endif /* architecture */ } /* Shuffle syscall numbers so that we don't have huge gaps in syscall table. * The shuffling should be reversible: shuffle_scno(shuffle_scno(n)) == n. */ #if defined(ARM) || defined(AARCH64) /* So far only 32-bit ARM needs this */ static long shuffle_scno(unsigned long scno) { if (scno <= ARM_LAST_ORDINARY_SYSCALL) return scno; /* __ARM_NR_cmpxchg? Swap with LAST_ORDINARY+1 */ if (scno == 0x000ffff0) return ARM_LAST_ORDINARY_SYSCALL+1; if (scno == ARM_LAST_ORDINARY_SYSCALL+1) return 0x000ffff0; /* Is it ARM specific syscall? * Swap with [LAST_ORDINARY+2, LAST_ORDINARY+2 + LAST_SPECIAL] range. */ if (scno >= 0x000f0000 && scno <= 0x000f0000 + ARM_LAST_SPECIAL_SYSCALL ) { return scno - 0x000f0000 + (ARM_LAST_ORDINARY_SYSCALL+2); } if (/* scno >= ARM_LAST_ORDINARY_SYSCALL+2 - always true */ 1 && scno <= (ARM_LAST_ORDINARY_SYSCALL+2) + ARM_LAST_SPECIAL_SYSCALL ) { return scno + 0x000f0000 - (ARM_LAST_ORDINARY_SYSCALL+2); } return scno; } #else # define shuffle_scno(scno) ((long)(scno)) #endif static char* undefined_scno_name(struct tcb *tcp) { static char buf[sizeof("syscall_%lu") + sizeof(long)*3]; sprintf(buf, "syscall_%lu", shuffle_scno(tcp->scno)); return buf; } #ifdef POWERPC /* * PTRACE_GETREGS was added to the PowerPC kernel in v2.6.23, * we provide a slow fallback for old kernels. */ static int powerpc_getregs_old(pid_t pid) { int i; long r; if (iflag) { r = upeek(pid, sizeof(long) * PT_NIP, (long *)&ppc_regs.nip); if (r) goto out; } #ifdef POWERPC64 /* else we never use it */ r = upeek(pid, sizeof(long) * PT_MSR, (long *)&ppc_regs.msr); if (r) goto out; #endif r = upeek(pid, sizeof(long) * PT_CCR, (long *)&ppc_regs.ccr); if (r) goto out; r = upeek(pid, sizeof(long) * PT_ORIG_R3, (long *)&ppc_regs.orig_gpr3); if (r) goto out; for (i = 0; i <= 8; i++) { r = upeek(pid, sizeof(long) * (PT_R0 + i), (long *)&ppc_regs.gpr[i]); if (r) goto out; } out: return r; } #endif #ifndef get_regs long get_regs_error; #if defined(PTRACE_GETREGSET) && defined(NT_PRSTATUS) static void get_regset(pid_t pid) { /* constant iovec */ # if defined(ARM) \ || defined(I386) \ || defined(METAG) \ || defined(OR1K) \ || defined(ARC) static struct iovec io = { .iov_base = &ARCH_REGS_FOR_GETREGSET, .iov_len = sizeof(ARCH_REGS_FOR_GETREGSET) }; get_regs_error = ptrace(PTRACE_GETREGSET, pid, NT_PRSTATUS, &io); /* variable iovec */ # elif defined(X86_64) || defined(X32) /* x86_io.iov_base = &x86_regs_union; - already is */ x86_io.iov_len = sizeof(x86_regs_union); get_regs_error = ptrace(PTRACE_GETREGSET, pid, NT_PRSTATUS, &x86_io); # elif defined(AARCH64) /* aarch64_io.iov_base = &arm_regs_union; - already is */ aarch64_io.iov_len = sizeof(arm_regs_union); get_regs_error = ptrace(PTRACE_GETREGSET, pid, NT_PRSTATUS, &aarch64_io); # else # warning both PTRACE_GETREGSET and NT_PRSTATUS are available but not yet used # endif } #endif /* PTRACE_GETREGSET && NT_PRSTATUS */ void get_regs(pid_t pid) { /* PTRACE_GETREGSET only */ # if defined(METAG) || defined(OR1K) || defined(X32) || defined(AARCH64) || defined(ARC) get_regset(pid); /* PTRACE_GETREGS only */ # elif defined(AVR32) get_regs_error = ptrace(PTRACE_GETREGS, pid, NULL, &avr32_regs); # elif defined(TILE) get_regs_error = ptrace(PTRACE_GETREGS, pid, NULL, &tile_regs); # elif defined(SPARC) || defined(SPARC64) get_regs_error = ptrace(PTRACE_GETREGS, pid, (char *)&sparc_regs, 0); # elif defined(POWERPC) static bool old_kernel = 0; if (old_kernel) goto old; get_regs_error = ptrace(PTRACE_GETREGS, pid, NULL, (long) &ppc_regs); if (get_regs_error && errno == EIO) { old_kernel = 1; old: get_regs_error = powerpc_getregs_old(pid); } /* try PTRACE_GETREGSET first, fallback to PTRACE_GETREGS */ # else # if defined(PTRACE_GETREGSET) && defined(NT_PRSTATUS) static int getregset_support; if (getregset_support >= 0) { get_regset(pid); if (getregset_support > 0) return; if (get_regs_error >= 0) { getregset_support = 1; return; } if (errno == EPERM || errno == ESRCH) return; getregset_support = -1; } # endif /* PTRACE_GETREGSET && NT_PRSTATUS */ # if defined(ARM) get_regs_error = ptrace(PTRACE_GETREGS, pid, NULL, &arm_regs); # elif defined(I386) get_regs_error = ptrace(PTRACE_GETREGS, pid, NULL, &i386_regs); # elif defined(X86_64) /* Use old method, with unreliable heuristical detection of 32-bitness. */ x86_io.iov_len = sizeof(x86_64_regs); get_regs_error = ptrace(PTRACE_GETREGS, pid, NULL, &x86_64_regs); if (!get_regs_error && x86_64_regs.cs == 0x23) { x86_io.iov_len = sizeof(i386_regs); /* * The order is important: i386_regs and x86_64_regs * are overlaid in memory! */ i386_regs.ebx = x86_64_regs.rbx; i386_regs.ecx = x86_64_regs.rcx; i386_regs.edx = x86_64_regs.rdx; i386_regs.esi = x86_64_regs.rsi; i386_regs.edi = x86_64_regs.rdi; i386_regs.ebp = x86_64_regs.rbp; i386_regs.eax = x86_64_regs.rax; /* i386_regs.xds = x86_64_regs.ds; unused by strace */ /* i386_regs.xes = x86_64_regs.es; ditto... */ /* i386_regs.xfs = x86_64_regs.fs; */ /* i386_regs.xgs = x86_64_regs.gs; */ i386_regs.orig_eax = x86_64_regs.orig_rax; i386_regs.eip = x86_64_regs.rip; /* i386_regs.xcs = x86_64_regs.cs; */ /* i386_regs.eflags = x86_64_regs.eflags; */ i386_regs.esp = x86_64_regs.rsp; /* i386_regs.xss = x86_64_regs.ss; */ } # else # error unhandled architecture # endif /* ARM || I386 || X86_64 */ # endif } #endif /* !get_regs */ /* Returns: * 0: "ignore this ptrace stop", bail out of trace_syscall_entering() silently. * 1: ok, continue in trace_syscall_entering(). * other: error, trace_syscall_entering() should print error indicator * ("????" etc) and bail out. */ static int get_scno(struct tcb *tcp) { long scno = 0; #if defined(S390) || defined(S390X) if (upeek(tcp->pid, PT_GPR2, &s390_gpr2) < 0) return -1; if (s390_gpr2 != -ENOSYS) { /* * Since kernel version 2.5.44 the scno gets passed in gpr2. */ scno = s390_gpr2; } else { /* * Old style of "passing" the scno via the SVC instruction. */ long psw; long opcode, offset_reg, tmp; void *svc_addr; static const int gpr_offset[16] = { PT_GPR0, PT_GPR1, PT_ORIGGPR2, PT_GPR3, PT_GPR4, PT_GPR5, PT_GPR6, PT_GPR7, PT_GPR8, PT_GPR9, PT_GPR10, PT_GPR11, PT_GPR12, PT_GPR13, PT_GPR14, PT_GPR15 }; if (upeek(tcp->pid, PT_PSWADDR, &psw) < 0) return -1; errno = 0; opcode = ptrace(PTRACE_PEEKTEXT, tcp->pid, (char *)(psw - sizeof(long)), 0); if (errno) { perror_msg("peektext(psw-oneword)"); return -1; } /* * We have to check if the SVC got executed directly or via an * EXECUTE instruction. In case of EXECUTE it is necessary to do * instruction decoding to derive the system call number. * Unfortunately the opcode sizes of EXECUTE and SVC are differently, * so that this doesn't work if a SVC opcode is part of an EXECUTE * opcode. Since there is no way to find out the opcode size this * is the best we can do... */ if ((opcode & 0xff00) == 0x0a00) { /* SVC opcode */ scno = opcode & 0xff; } else { /* SVC got executed by EXECUTE instruction */ /* * Do instruction decoding of EXECUTE. If you really want to * understand this, read the Principles of Operations. */ svc_addr = (void *) (opcode & 0xfff); tmp = 0; offset_reg = (opcode & 0x000f0000) >> 16; if (offset_reg && (upeek(tcp->pid, gpr_offset[offset_reg], &tmp) < 0)) return -1; svc_addr += tmp; tmp = 0; offset_reg = (opcode & 0x0000f000) >> 12; if (offset_reg && (upeek(tcp->pid, gpr_offset[offset_reg], &tmp) < 0)) return -1; svc_addr += tmp; scno = ptrace(PTRACE_PEEKTEXT, tcp->pid, svc_addr, 0); if (errno) return -1; # if defined(S390X) scno >>= 48; # else scno >>= 16; # endif tmp = 0; offset_reg = (opcode & 0x00f00000) >> 20; if (offset_reg && (upeek(tcp->pid, gpr_offset[offset_reg], &tmp) < 0)) return -1; scno = (scno | tmp) & 0xff; } } #elif defined(POWERPC) scno = ppc_regs.gpr[0]; # ifdef POWERPC64 int currpers; /* * Check for 64/32 bit mode. * Embedded implementations covered by Book E extension of PPC use * bit 0 (CM) of 32-bit Machine state register (MSR). * Other implementations use bit 0 (SF) of 64-bit MSR. */ currpers = (ppc_regs.msr & 0x8000000080000000) ? 0 : 1; update_personality(tcp, currpers); # endif #elif defined(AVR32) scno = avr32_regs.r8; #elif defined(BFIN) if (upeek(tcp->pid, PT_ORIG_P0, &scno)) return -1; #elif defined(I386) scno = i386_regs.orig_eax; #elif defined(X86_64) || defined(X32) # ifndef __X32_SYSCALL_BIT # define __X32_SYSCALL_BIT 0x40000000 # endif int currpers; # if 1 /* GETREGSET of NT_PRSTATUS tells us regset size, * which unambiguously detects i386. * * Linux kernel distinguishes x86-64 and x32 processes * solely by looking at __X32_SYSCALL_BIT: * arch/x86/include/asm/compat.h::is_x32_task(): * if (task_pt_regs(current)->orig_ax & __X32_SYSCALL_BIT) * return true; */ if (x86_io.iov_len == sizeof(i386_regs)) { scno = i386_regs.orig_eax; currpers = 1; } else { scno = x86_64_regs.orig_rax; currpers = 0; if (scno & __X32_SYSCALL_BIT) { scno -= __X32_SYSCALL_BIT; currpers = 2; } } # elif 0 /* cs = 0x33 for long mode (native 64 bit and x32) * cs = 0x23 for compatibility mode (32 bit) * ds = 0x2b for x32 mode (x86-64 in 32 bit) */ scno = x86_64_regs.orig_rax; switch (x86_64_regs.cs) { case 0x23: currpers = 1; break; case 0x33: if (x86_64_regs.ds == 0x2b) { currpers = 2; scno &= ~__X32_SYSCALL_BIT; } else currpers = 0; break; default: fprintf(stderr, "Unknown value CS=0x%08X while " "detecting personality of process " "PID=%d\n", (int)x86_64_regs.cs, tcp->pid); currpers = current_personality; break; } # elif 0 /* This version analyzes the opcode of a syscall instruction. * (int 0x80 on i386 vs. syscall on x86-64) * It works, but is too complicated, and strictly speaking, unreliable. */ unsigned long call, rip = x86_64_regs.rip; /* sizeof(syscall) == sizeof(int 0x80) == 2 */ rip -= 2; errno = 0; call = ptrace(PTRACE_PEEKTEXT, tcp->pid, (char *)rip, (char *)0); if (errno) fprintf(stderr, "ptrace_peektext failed: %s\n", strerror(errno)); switch (call & 0xffff) { /* x86-64: syscall = 0x0f 0x05 */ case 0x050f: currpers = 0; break; /* i386: int 0x80 = 0xcd 0x80 */ case 0x80cd: currpers = 1; break; default: currpers = current_personality; fprintf(stderr, "Unknown syscall opcode (0x%04X) while " "detecting personality of process " "PID=%d\n", (int)call, tcp->pid); break; } # endif # ifdef X32 /* If we are built for a x32 system, then personality 0 is x32 * (not x86_64), and stracing of x86_64 apps is not supported. * Stracing of i386 apps is still supported. */ if (currpers == 0) { fprintf(stderr, "syscall_%lu(...) in unsupported " "64-bit mode of process PID=%d\n", scno, tcp->pid); return 0; } currpers &= ~2; /* map 2,1 to 0,1 */ # endif update_personality(tcp, currpers); #elif defined(IA64) # define IA64_PSR_IS ((long)1 << 34) long psr; if (upeek(tcp->pid, PT_CR_IPSR, &psr) >= 0) ia64_ia32mode = ((psr & IA64_PSR_IS) != 0); if (ia64_ia32mode) { if (upeek(tcp->pid, PT_R1, &scno) < 0) return -1; } else { if (upeek(tcp->pid, PT_R15, &scno) < 0) return -1; } #elif defined(AARCH64) switch (aarch64_io.iov_len) { case sizeof(aarch64_regs): /* We are in 64-bit mode */ scno = aarch64_regs.regs[8]; update_personality(tcp, 1); break; case sizeof(arm_regs): /* We are in 32-bit mode */ /* Note: we don't support OABI, unlike 32-bit ARM build */ scno = arm_regs.ARM_r7; scno = shuffle_scno(scno); update_personality(tcp, 0); break; } #elif defined(ARM) if (arm_regs.ARM_ip != 0) { /* It is not a syscall entry */ fprintf(stderr, "pid %d stray syscall exit\n", tcp->pid); tcp->flags |= TCB_INSYSCALL; return 0; } /* Note: we support only 32-bit CPUs, not 26-bit */ # if !defined(__ARM_EABI__) || ENABLE_ARM_OABI if (arm_regs.ARM_cpsr & 0x20) /* Thumb mode */ goto scno_in_r7; /* ARM mode */ /* Check EABI/OABI by examining SVC insn's low 24 bits */ errno = 0; scno = ptrace(PTRACE_PEEKTEXT, tcp->pid, (void *)(arm_regs.ARM_pc - 4), NULL); if (errno) return -1; /* EABI syscall convention? */ if (scno != 0xef000000) { /* No, it's OABI */ if ((scno & 0x0ff00000) != 0x0f900000) { fprintf(stderr, "pid %d unknown syscall trap 0x%08lx\n", tcp->pid, scno); return -1; } /* Fixup the syscall number */ scno &= 0x000fffff; } else { scno_in_r7: scno = arm_regs.ARM_r7; } # else /* __ARM_EABI__ || !ENABLE_ARM_OABI */ scno = arm_regs.ARM_r7; # endif scno = shuffle_scno(scno); #elif defined(M68K) if (upeek(tcp->pid, 4*PT_ORIG_D0, &scno) < 0) return -1; #elif defined(LINUX_MIPSN32) unsigned long long regs[38]; if (ptrace(PTRACE_GETREGS, tcp->pid, NULL, (long) ®s) < 0) return -1; mips_a3 = regs[REG_A3]; mips_r2 = regs[REG_V0]; scno = mips_r2; if (!SCNO_IN_RANGE(scno)) { if (mips_a3 == 0 || mips_a3 == -1) { if (debug_flag) fprintf(stderr, "stray syscall exit: v0 = %ld\n", scno); return 0; } } #elif defined(MIPS) if (upeek(tcp->pid, REG_A3, &mips_a3) < 0) return -1; if (upeek(tcp->pid, REG_V0, &scno) < 0) return -1; if (!SCNO_IN_RANGE(scno)) { if (mips_a3 == 0 || mips_a3 == -1) { if (debug_flag) fprintf(stderr, "stray syscall exit: v0 = %ld\n", scno); return 0; } } #elif defined(ALPHA) if (upeek(tcp->pid, REG_A3, &alpha_a3) < 0) return -1; if (upeek(tcp->pid, REG_R0, &scno) < 0) return -1; /* * Do some sanity checks to figure out if it's * really a syscall entry */ if (!SCNO_IN_RANGE(scno)) { if (alpha_a3 == 0 || alpha_a3 == -1) { if (debug_flag) fprintf(stderr, "stray syscall exit: r0 = %ld\n", scno); return 0; } } #elif defined(SPARC) || defined(SPARC64) /* Disassemble the syscall trap. */ /* Retrieve the syscall trap instruction. */ unsigned long trap; errno = 0; # if defined(SPARC64) trap = ptrace(PTRACE_PEEKTEXT, tcp->pid, (char *)sparc_regs.tpc, 0); trap >>= 32; # else trap = ptrace(PTRACE_PEEKTEXT, tcp->pid, (char *)sparc_regs.pc, 0); # endif if (errno) return -1; /* Disassemble the trap to see what personality to use. */ switch (trap) { case 0x91d02010: /* Linux/SPARC syscall trap. */ update_personality(tcp, 0); break; case 0x91d0206d: /* Linux/SPARC64 syscall trap. */ update_personality(tcp, 2); break; case 0x91d02000: /* SunOS syscall trap. (pers 1) */ fprintf(stderr, "syscall: SunOS no support\n"); return -1; case 0x91d02008: /* Solaris 2.x syscall trap. (per 2) */ update_personality(tcp, 1); break; case 0x91d02009: /* NetBSD/FreeBSD syscall trap. */ fprintf(stderr, "syscall: NetBSD/FreeBSD not supported\n"); return -1; case 0x91d02027: /* Solaris 2.x gettimeofday */ update_personality(tcp, 1); break; default: # if defined(SPARC64) fprintf(stderr, "syscall: unknown syscall trap %08lx %016lx\n", trap, sparc_regs.tpc); # else fprintf(stderr, "syscall: unknown syscall trap %08lx %08lx\n", trap, sparc_regs.pc); # endif return -1; } /* Extract the system call number from the registers. */ if (trap == 0x91d02027) scno = 156; else scno = sparc_regs.u_regs[U_REG_G1]; if (scno == 0) { scno = sparc_regs.u_regs[U_REG_O0]; memmove(&sparc_regs.u_regs[U_REG_O0], &sparc_regs.u_regs[U_REG_O1], 7*sizeof(sparc_regs.u_regs[0])); } #elif defined(HPPA) if (upeek(tcp->pid, PT_GR20, &scno) < 0) return -1; #elif defined(SH) /* * In the new syscall ABI, the system call number is in R3. */ if (upeek(tcp->pid, 4*(REG_REG0+3), &scno) < 0) return -1; if (scno < 0) { /* Odd as it may seem, a glibc bug has been known to cause glibc to issue bogus negative syscall numbers. So for our purposes, make strace print what it *should* have been */ long correct_scno = (scno & 0xff); if (debug_flag) fprintf(stderr, "Detected glibc bug: bogus system call" " number = %ld, correcting to %ld\n", scno, correct_scno); scno = correct_scno; } #elif defined(SH64) if (upeek(tcp->pid, REG_SYSCALL, &scno) < 0) return -1; scno &= 0xFFFF; #elif defined(CRISV10) || defined(CRISV32) if (upeek(tcp->pid, 4*PT_R9, &scno) < 0) return -1; #elif defined(TILE) int currpers; scno = tile_regs.regs[10]; # ifdef __tilepro__ currpers = 1; # else # ifndef PT_FLAGS_COMPAT # define PT_FLAGS_COMPAT 0x10000 /* from Linux 3.8 on */ # endif if (tile_regs.flags & PT_FLAGS_COMPAT) currpers = 1; else currpers = 0; # endif update_personality(tcp, currpers); #elif defined(MICROBLAZE) if (upeek(tcp->pid, 0, &scno) < 0) return -1; #elif defined(OR1K) scno = or1k_regs.gpr[11]; #elif defined(METAG) scno = metag_regs.dx[0][1]; /* syscall number in D1Re0 (D1.0) */ #elif defined(XTENSA) if (upeek(tcp->pid, SYSCALL_NR, &scno) < 0) return -1; # elif defined(ARC) scno = arc_regs.scratch.r8; #endif tcp->scno = scno; if (SCNO_IS_VALID(tcp->scno)) { tcp->s_ent = &sysent[scno]; tcp->qual_flg = qual_flags[scno]; } else { static const struct_sysent unknown = { .nargs = MAX_ARGS, .sys_flags = 0, .sys_func = printargs, .sys_name = "unknown", /* not used */ }; tcp->s_ent = &unknown; tcp->qual_flg = UNDEFINED_SCNO | QUAL_RAW | DEFAULT_QUAL_FLAGS; } return 1; } /* Called at each syscall entry. * Returns: * 0: "ignore this ptrace stop", bail out of trace_syscall_entering() silently. * 1: ok, continue in trace_syscall_entering(). * other: error, trace_syscall_entering() should print error indicator * ("????" etc) and bail out. */ static int syscall_fixup_on_sysenter(struct tcb *tcp) { /* A common case of "not a syscall entry" is post-execve SIGTRAP */ #if defined(I386) if (i386_regs.eax != -ENOSYS) { if (debug_flag) fprintf(stderr, "not a syscall entry (eax = %ld)\n", i386_regs.eax); return 0; } #elif defined(X86_64) || defined(X32) { long rax; if (x86_io.iov_len == sizeof(i386_regs)) { /* Sign extend from 32 bits */ rax = (int32_t)i386_regs.eax; } else { /* Note: in X32 build, this truncates 64 to 32 bits */ rax = x86_64_regs.rax; } if (rax != -ENOSYS) { if (debug_flag) fprintf(stderr, "not a syscall entry (rax = %ld)\n", rax); return 0; } } #elif defined(M68K) /* TODO? Eliminate upeek's in arches below like we did in x86 */ if (upeek(tcp->pid, 4*PT_D0, &m68k_d0) < 0) return -1; if (m68k_d0 != -ENOSYS) { if (debug_flag) fprintf(stderr, "not a syscall entry (d0 = %ld)\n", m68k_d0); return 0; } #elif defined(IA64) if (upeek(tcp->pid, PT_R10, &ia64_r10) < 0) return -1; if (upeek(tcp->pid, PT_R8, &ia64_r8) < 0) return -1; if (ia64_ia32mode && ia64_r8 != -ENOSYS) { if (debug_flag) fprintf(stderr, "not a syscall entry (r8 = %ld)\n", ia64_r8); return 0; } #elif defined(CRISV10) || defined(CRISV32) if (upeek(tcp->pid, 4*PT_R10, &cris_r10) < 0) return -1; if (cris_r10 != -ENOSYS) { if (debug_flag) fprintf(stderr, "not a syscall entry (r10 = %ld)\n", cris_r10); return 0; } #elif defined(MICROBLAZE) if (upeek(tcp->pid, 3 * 4, µblaze_r3) < 0) return -1; if (microblaze_r3 != -ENOSYS) { if (debug_flag) fprintf(stderr, "not a syscall entry (r3 = %ld)\n", microblaze_r3); return 0; } #endif return 1; } static void internal_fork(struct tcb *tcp) { #if defined S390 || defined S390X || defined CRISV10 || defined CRISV32 # define ARG_FLAGS 1 #else # define ARG_FLAGS 0 #endif #ifndef CLONE_UNTRACED # define CLONE_UNTRACED 0x00800000 #endif if ((ptrace_setoptions & (PTRACE_O_TRACECLONE | PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORK)) == (PTRACE_O_TRACECLONE | PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORK)) return; if (!followfork) return; if (entering(tcp)) { /* * We won't see the new child if clone is called with * CLONE_UNTRACED, so we keep the same logic with that option * and don't trace it. */ if ((tcp->s_ent->sys_func == sys_clone) && (tcp->u_arg[ARG_FLAGS] & CLONE_UNTRACED) ) return; setbpt(tcp); } else { if (tcp->flags & TCB_BPTSET) clearbpt(tcp); } } #if defined(TCB_WAITEXECVE) static void internal_exec(struct tcb *tcp) { /* Maybe we have post-execve SIGTRAP suppressed? */ if (ptrace_setoptions & PTRACE_O_TRACEEXEC) return; /* yes, no need to do anything */ if (exiting(tcp) && syserror(tcp)) /* Error in execve, no post-execve SIGTRAP expected */ tcp->flags &= ~TCB_WAITEXECVE; else tcp->flags |= TCB_WAITEXECVE; } #endif static void syscall_fixup_for_fork_exec(struct tcb *tcp) { /* * We must always trace a few critical system calls in order to * correctly support following forks in the presence of tracing * qualifiers. */ int (*func)(); func = tcp->s_ent->sys_func; if ( sys_fork == func || sys_clone == func ) { internal_fork(tcp); return; } #if defined(TCB_WAITEXECVE) if ( sys_execve == func # if defined(SPARC) || defined(SPARC64) || sys_execv == func # endif ) { internal_exec(tcp); return; } #endif } /* Return -1 on error or 1 on success (never 0!) */ static int get_syscall_args(struct tcb *tcp) { int i, nargs; nargs = tcp->s_ent->nargs; #if defined(S390) || defined(S390X) for (i = 0; i < nargs; ++i) if (upeek(tcp->pid, i==0 ? PT_ORIGGPR2 : PT_GPR2 + i*sizeof(long), &tcp->u_arg[i]) < 0) return -1; #elif defined(ALPHA) for (i = 0; i < nargs; ++i) if (upeek(tcp->pid, REG_A0+i, &tcp->u_arg[i]) < 0) return -1; #elif defined(IA64) if (!ia64_ia32mode) { unsigned long *out0, cfm, sof, sol; long rbs_end; /* be backwards compatible with kernel < 2.4.4... */ # ifndef PT_RBS_END # define PT_RBS_END PT_AR_BSP # endif if (upeek(tcp->pid, PT_RBS_END, &rbs_end) < 0) return -1; if (upeek(tcp->pid, PT_CFM, (long *) &cfm) < 0) return -1; sof = (cfm >> 0) & 0x7f; sol = (cfm >> 7) & 0x7f; out0 = ia64_rse_skip_regs((unsigned long *) rbs_end, -sof + sol); for (i = 0; i < nargs; ++i) { if (umoven(tcp, (unsigned long) ia64_rse_skip_regs(out0, i), sizeof(long), (char *) &tcp->u_arg[i]) < 0) return -1; } } else { static const int argreg[MAX_ARGS] = { PT_R11 /* EBX = out0 */, PT_R9 /* ECX = out1 */, PT_R10 /* EDX = out2 */, PT_R14 /* ESI = out3 */, PT_R15 /* EDI = out4 */, PT_R13 /* EBP = out5 */}; for (i = 0; i < nargs; ++i) { if (upeek(tcp->pid, argreg[i], &tcp->u_arg[i]) < 0) return -1; /* truncate away IVE sign-extension */ tcp->u_arg[i] &= 0xffffffff; } } #elif defined(LINUX_MIPSN32) || defined(LINUX_MIPSN64) /* N32 and N64 both use up to six registers. */ unsigned long long regs[38]; if (ptrace(PTRACE_GETREGS, tcp->pid, NULL, (long) ®s) < 0) return -1; for (i = 0; i < nargs; ++i) { tcp->u_arg[i] = regs[REG_A0 + i]; # if defined(LINUX_MIPSN32) tcp->ext_arg[i] = regs[REG_A0 + i]; # endif } #elif defined(MIPS) if (nargs > 4) { long sp; if (upeek(tcp->pid, REG_SP, &sp) < 0) return -1; for (i = 0; i < 4; ++i) if (upeek(tcp->pid, REG_A0 + i, &tcp->u_arg[i]) < 0) return -1; umoven(tcp, sp + 16, (nargs - 4) * sizeof(tcp->u_arg[0]), (char *)(tcp->u_arg + 4)); } else { for (i = 0; i < nargs; ++i) if (upeek(tcp->pid, REG_A0 + i, &tcp->u_arg[i]) < 0) return -1; } #elif defined(POWERPC) (void)i; (void)nargs; tcp->u_arg[0] = ppc_regs.orig_gpr3; tcp->u_arg[1] = ppc_regs.gpr[4]; tcp->u_arg[2] = ppc_regs.gpr[5]; tcp->u_arg[3] = ppc_regs.gpr[6]; tcp->u_arg[4] = ppc_regs.gpr[7]; tcp->u_arg[5] = ppc_regs.gpr[8]; #elif defined(SPARC) || defined(SPARC64) for (i = 0; i < nargs; ++i) tcp->u_arg[i] = sparc_regs.u_regs[U_REG_O0 + i]; #elif defined(HPPA) for (i = 0; i < nargs; ++i) if (upeek(tcp->pid, PT_GR26-4*i, &tcp->u_arg[i]) < 0) return -1; #elif defined(ARM) || defined(AARCH64) # if defined(AARCH64) if (tcp->currpers == 1) for (i = 0; i < nargs; ++i) tcp->u_arg[i] = aarch64_regs.regs[i]; else # endif for (i = 0; i < nargs; ++i) tcp->u_arg[i] = arm_regs.uregs[i]; #elif defined(AVR32) (void)i; (void)nargs; tcp->u_arg[0] = avr32_regs.r12; tcp->u_arg[1] = avr32_regs.r11; tcp->u_arg[2] = avr32_regs.r10; tcp->u_arg[3] = avr32_regs.r9; tcp->u_arg[4] = avr32_regs.r5; tcp->u_arg[5] = avr32_regs.r3; #elif defined(BFIN) static const int argreg[MAX_ARGS] = { PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5 }; for (i = 0; i < nargs; ++i) if (upeek(tcp->pid, argreg[i], &tcp->u_arg[i]) < 0) return -1; #elif defined(SH) static const int syscall_regs[MAX_ARGS] = { 4 * (REG_REG0+4), 4 * (REG_REG0+5), 4 * (REG_REG0+6), 4 * (REG_REG0+7), 4 * (REG_REG0 ), 4 * (REG_REG0+1) }; for (i = 0; i < nargs; ++i) if (upeek(tcp->pid, syscall_regs[i], &tcp->u_arg[i]) < 0) return -1; #elif defined(SH64) int i; /* Registers used by SH5 Linux system calls for parameters */ static const int syscall_regs[MAX_ARGS] = { 2, 3, 4, 5, 6, 7 }; for (i = 0; i < nargs; ++i) if (upeek(tcp->pid, REG_GENERAL(syscall_regs[i]), &tcp->u_arg[i]) < 0) return -1; #elif defined(I386) (void)i; (void)nargs; tcp->u_arg[0] = i386_regs.ebx; tcp->u_arg[1] = i386_regs.ecx; tcp->u_arg[2] = i386_regs.edx; tcp->u_arg[3] = i386_regs.esi; tcp->u_arg[4] = i386_regs.edi; tcp->u_arg[5] = i386_regs.ebp; #elif defined(X86_64) || defined(X32) (void)i; (void)nargs; if (x86_io.iov_len != sizeof(i386_regs)) { /* x86-64 or x32 ABI */ tcp->u_arg[0] = x86_64_regs.rdi; tcp->u_arg[1] = x86_64_regs.rsi; tcp->u_arg[2] = x86_64_regs.rdx; tcp->u_arg[3] = x86_64_regs.r10; tcp->u_arg[4] = x86_64_regs.r8; tcp->u_arg[5] = x86_64_regs.r9; # ifdef X32 tcp->ext_arg[0] = x86_64_regs.rdi; tcp->ext_arg[1] = x86_64_regs.rsi; tcp->ext_arg[2] = x86_64_regs.rdx; tcp->ext_arg[3] = x86_64_regs.r10; tcp->ext_arg[4] = x86_64_regs.r8; tcp->ext_arg[5] = x86_64_regs.r9; # endif } else { /* i386 ABI */ /* Zero-extend from 32 bits */ /* Use widen_to_long(tcp->u_arg[N]) in syscall handlers * if you need to use *sign-extended* parameter. */ tcp->u_arg[0] = (long)(uint32_t)i386_regs.ebx; tcp->u_arg[1] = (long)(uint32_t)i386_regs.ecx; tcp->u_arg[2] = (long)(uint32_t)i386_regs.edx; tcp->u_arg[3] = (long)(uint32_t)i386_regs.esi; tcp->u_arg[4] = (long)(uint32_t)i386_regs.edi; tcp->u_arg[5] = (long)(uint32_t)i386_regs.ebp; } #elif defined(MICROBLAZE) for (i = 0; i < nargs; ++i) if (upeek(tcp->pid, (5 + i) * 4, &tcp->u_arg[i]) < 0) return -1; #elif defined(CRISV10) || defined(CRISV32) static const int crisregs[MAX_ARGS] = { 4*PT_ORIG_R10, 4*PT_R11, 4*PT_R12, 4*PT_R13 , 4*PT_MOF, 4*PT_SRP }; for (i = 0; i < nargs; ++i) if (upeek(tcp->pid, crisregs[i], &tcp->u_arg[i]) < 0) return -1; #elif defined(TILE) for (i = 0; i < nargs; ++i) tcp->u_arg[i] = tile_regs.regs[i]; #elif defined(M68K) for (i = 0; i < nargs; ++i) if (upeek(tcp->pid, (i < 5 ? i : i + 2)*4, &tcp->u_arg[i]) < 0) return -1; #elif defined(OR1K) (void)nargs; for (i = 0; i < 6; ++i) tcp->u_arg[i] = or1k_regs.gpr[3 + i]; #elif defined(METAG) for (i = 0; i < nargs; i++) /* arguments go backwards from D1Ar1 (D1.3) */ tcp->u_arg[i] = ((unsigned long *)&metag_regs.dx[3][1])[-i]; #elif defined(XTENSA) /* arg0: a6, arg1: a3, arg2: a4, arg3: a5, arg4: a8, arg5: a9 */ static const int xtensaregs[MAX_ARGS] = { 6, 3, 4, 5, 8, 9 }; for (i = 0; i < nargs; ++i) if (upeek(tcp->pid, REG_A_BASE + xtensaregs[i], &tcp->u_arg[i]) < 0) return -1; # elif defined(ARC) long *arc_args = &arc_regs.scratch.r0; for (i = 0; i < nargs; ++i) tcp->u_arg[i] = *arc_args--; #else /* Other architecture (32bits specific) */ for (i = 0; i < nargs; ++i) if (upeek(tcp->pid, i*4, &tcp->u_arg[i]) < 0) return -1; #endif return 1; } static int trace_syscall_entering(struct tcb *tcp) { int res, scno_good; #if defined TCB_WAITEXECVE if (tcp->flags & TCB_WAITEXECVE) { /* This is the post-execve SIGTRAP. */ tcp->flags &= ~TCB_WAITEXECVE; return 0; } #endif scno_good = res = (get_regs_error ? -1 : get_scno(tcp)); if (res == 0) return res; if (res == 1) { res = syscall_fixup_on_sysenter(tcp); if (res == 0) return res; if (res == 1) res = get_syscall_args(tcp); } if (res != 1) { printleader(tcp); if (scno_good != 1) tprints("????" /* anti-trigraph gap */ "("); else if (tcp->qual_flg & UNDEFINED_SCNO) tprintf("%s(", undefined_scno_name(tcp)); else tprintf("%s(", tcp->s_ent->sys_name); /* * " " will be added later by the code which * detects ptrace errors. */ goto ret; } if ( sys_execve == tcp->s_ent->sys_func # if defined(SPARC) || defined(SPARC64) || sys_execv == tcp->s_ent->sys_func # endif ) { hide_log_until_execve = 0; } #if defined(SYS_socket_subcall) || defined(SYS_ipc_subcall) while (1) { # ifdef SYS_socket_subcall if (tcp->s_ent->sys_func == sys_socketcall) { decode_socket_subcall(tcp); break; } # endif # ifdef SYS_ipc_subcall if (tcp->s_ent->sys_func == sys_ipc) { decode_ipc_subcall(tcp); break; } # endif break; } #endif if (need_fork_exec_workarounds) syscall_fixup_for_fork_exec(tcp); if (!(tcp->qual_flg & QUAL_TRACE) || (tracing_paths && !pathtrace_match(tcp)) ) { tcp->flags |= TCB_INSYSCALL | TCB_FILTERED; return 0; } tcp->flags &= ~TCB_FILTERED; if (cflag == CFLAG_ONLY_STATS || hide_log_until_execve) { res = 0; goto ret; } printleader(tcp); if (tcp->qual_flg & UNDEFINED_SCNO) tprintf("%s(", undefined_scno_name(tcp)); else tprintf("%s(", tcp->s_ent->sys_name); if ((tcp->qual_flg & QUAL_RAW) && tcp->s_ent->sys_func != sys_exit) res = printargs(tcp); else res = tcp->s_ent->sys_func(tcp); fflush(tcp->outf); ret: tcp->flags |= TCB_INSYSCALL; /* Measure the entrance time as late as possible to avoid errors. */ if (Tflag || cflag) gettimeofday(&tcp->etime, NULL); return res; } /* Returns: * 1: ok, continue in trace_syscall_exiting(). * -1: error, trace_syscall_exiting() should print error indicator * ("????" etc) and bail out. */ static int get_syscall_result(struct tcb *tcp) { #if defined(S390) || defined(S390X) if (upeek(tcp->pid, PT_GPR2, &s390_gpr2) < 0) return -1; #elif defined(POWERPC) /* already done by get_regs */ #elif defined(AVR32) /* already done by get_regs */ #elif defined(BFIN) if (upeek(tcp->pid, PT_R0, &bfin_r0) < 0) return -1; #elif defined(I386) /* already done by get_regs */ #elif defined(X86_64) || defined(X32) /* already done by get_regs */ #elif defined(IA64) # define IA64_PSR_IS ((long)1 << 34) long psr; if (upeek(tcp->pid, PT_CR_IPSR, &psr) >= 0) ia64_ia32mode = ((psr & IA64_PSR_IS) != 0); if (upeek(tcp->pid, PT_R8, &ia64_r8) < 0) return -1; if (upeek(tcp->pid, PT_R10, &ia64_r10) < 0) return -1; #elif defined(ARM) /* already done by get_regs */ #elif defined(AARCH64) /* register reading already done by get_regs */ /* Used to do this, but we did it on syscall entry already: */ /* We are in 64-bit mode (personality 1) if register struct is aarch64_regs, * else it's personality 0. */ /*update_personality(tcp, aarch64_io.iov_len == sizeof(aarch64_regs));*/ #elif defined(M68K) if (upeek(tcp->pid, 4*PT_D0, &m68k_d0) < 0) return -1; #elif defined(LINUX_MIPSN32) unsigned long long regs[38]; if (ptrace(PTRACE_GETREGS, tcp->pid, NULL, (long) ®s) < 0) return -1; mips_a3 = regs[REG_A3]; mips_r2 = regs[REG_V0]; #elif defined(MIPS) if (upeek(tcp->pid, REG_A3, &mips_a3) < 0) return -1; if (upeek(tcp->pid, REG_V0, &mips_r2) < 0) return -1; #elif defined(ALPHA) if (upeek(tcp->pid, REG_A3, &alpha_a3) < 0) return -1; if (upeek(tcp->pid, REG_R0, &alpha_r0) < 0) return -1; #elif defined(SPARC) || defined(SPARC64) /* already done by get_regs */ #elif defined(HPPA) if (upeek(tcp->pid, PT_GR28, &hppa_r28) < 0) return -1; #elif defined(SH) /* new syscall ABI returns result in R0 */ if (upeek(tcp->pid, 4*REG_REG0, (long *)&sh_r0) < 0) return -1; #elif defined(SH64) /* ABI defines result returned in r9 */ if (upeek(tcp->pid, REG_GENERAL(9), (long *)&sh64_r9) < 0) return -1; #elif defined(CRISV10) || defined(CRISV32) if (upeek(tcp->pid, 4*PT_R10, &cris_r10) < 0) return -1; #elif defined(TILE) /* already done by get_regs */ #elif defined(MICROBLAZE) if (upeek(tcp->pid, 3 * 4, µblaze_r3) < 0) return -1; #elif defined(OR1K) /* already done by get_regs */ #elif defined(METAG) /* already done by get_regs */ #elif defined(XTENSA) if (upeek(tcp->pid, REG_A_BASE + 2, &xtensa_a2) < 0) return -1; #elif defined(ARC) /* already done by get_regs */ #endif return 1; } /* Called at each syscall exit */ static void syscall_fixup_on_sysexit(struct tcb *tcp) { #if defined(S390) || defined(S390X) if ((tcp->flags & TCB_WAITEXECVE) && (s390_gpr2 == -ENOSYS || s390_gpr2 == tcp->scno)) { /* * Return from execve. * Fake a return value of zero. We leave the TCB_WAITEXECVE * flag set for the post-execve SIGTRAP to see and reset. */ s390_gpr2 = 0; } #endif } /* * Check the syscall return value register value for whether it is * a negated errno code indicating an error, or a success return value. */ static inline int is_negated_errno(unsigned long int val) { unsigned long int max = -(long int) nerrnos; #if SUPPORTED_PERSONALITIES > 1 && SIZEOF_LONG > 4 if (current_wordsize < sizeof(val)) { val = (unsigned int) val; max = (unsigned int) max; } #endif return val > max; } #if defined(X32) static inline int is_negated_errno_x32(unsigned long long val) { unsigned long long max = -(long long) nerrnos; /* * current_wordsize is 4 even in personality 0 (native X32) * but truncation _must not_ be done in it. * can't check current_wordsize here! */ if (current_personality != 0) { val = (uint32_t) val; max = (uint32_t) max; } return val > max; } #endif /* Returns: * 1: ok, continue in trace_syscall_exiting(). * -1: error, trace_syscall_exiting() should print error indicator * ("????" etc) and bail out. */ static void get_error(struct tcb *tcp) { int u_error = 0; int check_errno = 1; if (tcp->s_ent->sys_flags & SYSCALL_NEVER_FAILS) { check_errno = 0; } #if defined(S390) || defined(S390X) if (check_errno && is_negated_errno(s390_gpr2)) { tcp->u_rval = -1; u_error = -s390_gpr2; } else { tcp->u_rval = s390_gpr2; } #elif defined(I386) if (check_errno && is_negated_errno(i386_regs.eax)) { tcp->u_rval = -1; u_error = -i386_regs.eax; } else { tcp->u_rval = i386_regs.eax; } #elif defined(X86_64) long rax; if (x86_io.iov_len == sizeof(i386_regs)) { /* Sign extend from 32 bits */ rax = (int32_t)i386_regs.eax; } else { rax = x86_64_regs.rax; } if (check_errno && is_negated_errno(rax)) { tcp->u_rval = -1; u_error = -rax; } else { tcp->u_rval = rax; } #elif defined(X32) /* In X32, return value is 64-bit (llseek uses one). * Using merely "long rax" would not work. */ long long rax; if (x86_io.iov_len == sizeof(i386_regs)) { /* Sign extend from 32 bits */ rax = (int32_t)i386_regs.eax; } else { rax = x86_64_regs.rax; } /* Careful: is_negated_errno() works only on longs */ if (check_errno && is_negated_errno_x32(rax)) { tcp->u_rval = -1; u_error = -rax; } else { tcp->u_rval = rax; /* truncating */ tcp->u_lrval = rax; } #elif defined(IA64) if (ia64_ia32mode) { int err; err = (int)ia64_r8; if (check_errno && is_negated_errno(err)) { tcp->u_rval = -1; u_error = -err; } else { tcp->u_rval = err; } } else { if (check_errno && ia64_r10) { tcp->u_rval = -1; u_error = ia64_r8; } else { tcp->u_rval = ia64_r8; } } #elif defined(MIPS) if (check_errno && mips_a3) { tcp->u_rval = -1; u_error = mips_r2; } else { tcp->u_rval = mips_r2; # if defined(LINUX_MIPSN32) tcp->u_lrval = mips_r2; # endif } #elif defined(POWERPC) if (check_errno && (ppc_regs.ccr & 0x10000000)) { tcp->u_rval = -1; u_error = ppc_regs.gpr[3]; } else { tcp->u_rval = ppc_regs.gpr[3]; } #elif defined(M68K) if (check_errno && is_negated_errno(m68k_d0)) { tcp->u_rval = -1; u_error = -m68k_d0; } else { tcp->u_rval = m68k_d0; } #elif defined(ARM) || defined(AARCH64) # if defined(AARCH64) if (tcp->currpers == 1) { if (check_errno && is_negated_errno(aarch64_regs.regs[0])) { tcp->u_rval = -1; u_error = -aarch64_regs.regs[0]; } else { tcp->u_rval = aarch64_regs.regs[0]; } } else # endif { if (check_errno && is_negated_errno(arm_regs.ARM_r0)) { tcp->u_rval = -1; u_error = -arm_regs.ARM_r0; } else { tcp->u_rval = arm_regs.ARM_r0; } } #elif defined(AVR32) if (check_errno && avr32_regs.r12 && (unsigned) -avr32_regs.r12 < nerrnos) { tcp->u_rval = -1; u_error = -avr32_regs.r12; } else { tcp->u_rval = avr32_regs.r12; } #elif defined(BFIN) if (check_errno && is_negated_errno(bfin_r0)) { tcp->u_rval = -1; u_error = -bfin_r0; } else { tcp->u_rval = bfin_r0; } #elif defined(ALPHA) if (check_errno && alpha_a3) { tcp->u_rval = -1; u_error = alpha_r0; } else { tcp->u_rval = alpha_r0; } #elif defined(SPARC) if (check_errno && sparc_regs.psr & PSR_C) { tcp->u_rval = -1; u_error = sparc_regs.u_regs[U_REG_O0]; } else { tcp->u_rval = sparc_regs.u_regs[U_REG_O0]; } #elif defined(SPARC64) if (check_errno && sparc_regs.tstate & 0x1100000000UL) { tcp->u_rval = -1; u_error = sparc_regs.u_regs[U_REG_O0]; } else { tcp->u_rval = sparc_regs.u_regs[U_REG_O0]; } #elif defined(HPPA) if (check_errno && is_negated_errno(hppa_r28)) { tcp->u_rval = -1; u_error = -hppa_r28; } else { tcp->u_rval = hppa_r28; } #elif defined(SH) if (check_errno && is_negated_errno(sh_r0)) { tcp->u_rval = -1; u_error = -sh_r0; } else { tcp->u_rval = sh_r0; } #elif defined(SH64) if (check_errno && is_negated_errno(sh64_r9)) { tcp->u_rval = -1; u_error = -sh64_r9; } else { tcp->u_rval = sh64_r9; } #elif defined(METAG) /* result pointer in D0Re0 (D0.0) */ if (check_errno && is_negated_errno(metag_regs.dx[0][0])) { tcp->u_rval = -1; u_error = -metag_regs.dx[0][0]; } else { tcp->u_rval = metag_regs.dx[0][0]; } #elif defined(CRISV10) || defined(CRISV32) if (check_errno && cris_r10 && (unsigned) -cris_r10 < nerrnos) { tcp->u_rval = -1; u_error = -cris_r10; } else { tcp->u_rval = cris_r10; } #elif defined(TILE) /* * The standard tile calling convention returns the value (or negative * errno) in r0, and zero (or positive errno) in r1. * Until at least kernel 3.8, however, the r1 value is not reflected * in ptregs at this point, so we use r0 here. */ if (check_errno && is_negated_errno(tile_regs.regs[0])) { tcp->u_rval = -1; u_error = -tile_regs.regs[0]; } else { tcp->u_rval = tile_regs.regs[0]; } #elif defined(MICROBLAZE) if (check_errno && is_negated_errno(microblaze_r3)) { tcp->u_rval = -1; u_error = -microblaze_r3; } else { tcp->u_rval = microblaze_r3; } #elif defined(OR1K) if (check_errno && is_negated_errno(or1k_regs.gpr[11])) { tcp->u_rval = -1; u_error = -or1k_regs.gpr[11]; } else { tcp->u_rval = or1k_regs.gpr[11]; } #elif defined(XTENSA) if (check_errno && is_negated_errno(xtensa_a2)) { tcp->u_rval = -1; u_error = -xtensa_a2; } else { tcp->u_rval = xtensa_a2; } #elif defined(ARC) if (check_errno && is_negated_errno(arc_regs.scratch.r0)) { tcp->u_rval = -1; u_error = -arc_regs.scratch.r0; } else { tcp->u_rval = arc_regs.scratch.r0; } #endif tcp->u_error = u_error; } static void dumpio(struct tcb *tcp) { int (*func)(); if (syserror(tcp)) return; if ((unsigned long) tcp->u_arg[0] >= num_quals) return; func = tcp->s_ent->sys_func; if (func == printargs) return; if (qual_flags[tcp->u_arg[0]] & QUAL_READ) { if (func == sys_read || func == sys_pread || func == sys_recv || func == sys_recvfrom) dumpstr(tcp, tcp->u_arg[1], tcp->u_rval); else if (func == sys_readv) dumpiov(tcp, tcp->u_arg[2], tcp->u_arg[1]); return; } if (qual_flags[tcp->u_arg[0]] & QUAL_WRITE) { if (func == sys_write || func == sys_pwrite || func == sys_send || func == sys_sendto) dumpstr(tcp, tcp->u_arg[1], tcp->u_arg[2]); else if (func == sys_writev) dumpiov(tcp, tcp->u_arg[2], tcp->u_arg[1]); return; } } static int trace_syscall_exiting(struct tcb *tcp) { int sys_res; struct timeval tv; int res; long u_error; /* Measure the exit time as early as possible to avoid errors. */ if (Tflag || cflag) gettimeofday(&tv, NULL); #if SUPPORTED_PERSONALITIES > 1 update_personality(tcp, tcp->currpers); #endif res = (get_regs_error ? -1 : get_syscall_result(tcp)); if (res == 1) { syscall_fixup_on_sysexit(tcp); /* never fails */ get_error(tcp); /* never fails */ if (need_fork_exec_workarounds) syscall_fixup_for_fork_exec(tcp); if (filtered(tcp) || hide_log_until_execve) goto ret; } if (cflag) { struct timeval t = tv; count_syscall(tcp, &t); if (cflag == CFLAG_ONLY_STATS) { goto ret; } } /* If not in -ff mode, and printing_tcp != tcp, * then the log currently does not end with output * of _our syscall entry_, but with something else. * We need to say which syscall's return is this. * * Forced reprinting via TCB_REPRINT is used only by * "strace -ff -oLOG test/threaded_execve" corner case. * It's the only case when -ff mode needs reprinting. */ if ((followfork < 2 && printing_tcp != tcp) || (tcp->flags & TCB_REPRINT)) { tcp->flags &= ~TCB_REPRINT; printleader(tcp); if (tcp->qual_flg & UNDEFINED_SCNO) tprintf("<... %s resumed> ", undefined_scno_name(tcp)); else tprintf("<... %s resumed> ", tcp->s_ent->sys_name); } printing_tcp = tcp; if (res != 1) { /* There was error in one of prior ptrace ops */ tprints(") "); tabto(); tprints("= ? \n"); line_ended(); tcp->flags &= ~TCB_INSYSCALL; return res; } sys_res = 0; if (tcp->qual_flg & QUAL_RAW) { /* sys_res = printargs(tcp); - but it's nop on sysexit */ } else { /* FIXME: not_failing_only (IOW, option -z) is broken: * failure of syscall is known only after syscall return. * Thus we end up with something like this on, say, ENOENT: * open("doesnt_exist", O_RDONLY * {next syscall decode} * whereas the intended result is that open(...) line * is not shown at all. */ if (not_failing_only && tcp->u_error) goto ret; /* ignore failed syscalls */ sys_res = tcp->s_ent->sys_func(tcp); } tprints(") "); tabto(); u_error = tcp->u_error; if (tcp->qual_flg & QUAL_RAW) { if (u_error) tprintf("= -1 (errno %ld)", u_error); else tprintf("= %#lx", tcp->u_rval); } else if (!(sys_res & RVAL_NONE) && u_error) { switch (u_error) { /* Blocked signals do not interrupt any syscalls. * In this case syscalls don't return ERESTARTfoo codes. * * Deadly signals set to SIG_DFL interrupt syscalls * and kill the process regardless of which of the codes below * is returned by the interrupted syscall. * In some cases, kernel forces a kernel-generated deadly * signal to be unblocked and set to SIG_DFL (and thus cause * death) if it is blocked or SIG_IGNed: for example, SIGSEGV * or SIGILL. (The alternative is to leave process spinning * forever on the faulty instruction - not useful). * * SIG_IGNed signals and non-deadly signals set to SIG_DFL * (for example, SIGCHLD, SIGWINCH) interrupt syscalls, * but kernel will always restart them. */ case ERESTARTSYS: /* Most common type of signal-interrupted syscall exit code. * The system call will be restarted with the same arguments * if SA_RESTART is set; otherwise, it will fail with EINTR. */ tprints("= ? ERESTARTSYS (To be restarted if SA_RESTART is set)"); break; case ERESTARTNOINTR: /* Rare. For example, fork() returns this if interrupted. * SA_RESTART is ignored (assumed set): the restart is unconditional. */ tprints("= ? ERESTARTNOINTR (To be restarted)"); break; case ERESTARTNOHAND: /* pause(), rt_sigsuspend() etc use this code. * SA_RESTART is ignored (assumed not set): * syscall won't restart (will return EINTR instead) * even after signal with SA_RESTART set. However, * after SIG_IGN or SIG_DFL signal it will restart * (thus the name "restart only if has no handler"). */ tprints("= ? ERESTARTNOHAND (To be restarted if no handler)"); break; case ERESTART_RESTARTBLOCK: /* Syscalls like nanosleep(), poll() which can't be * restarted with their original arguments use this * code. Kernel will execute restart_syscall() instead, * which changes arguments before restarting syscall. * SA_RESTART is ignored (assumed not set) similarly * to ERESTARTNOHAND. (Kernel can't honor SA_RESTART * since restart data is saved in "restart block" * in task struct, and if signal handler uses a syscall * which in turn saves another such restart block, * old data is lost and restart becomes impossible) */ tprints("= ? ERESTART_RESTARTBLOCK (Interrupted by signal)"); break; default: if (u_error < 0) tprintf("= -1 E??? (errno %ld)", u_error); else if (u_error < nerrnos) tprintf("= -1 %s (%s)", errnoent[u_error], strerror(u_error)); else tprintf("= -1 ERRNO_%ld (%s)", u_error, strerror(u_error)); break; } if ((sys_res & RVAL_STR) && tcp->auxstr) tprintf(" (%s)", tcp->auxstr); } else { if (sys_res & RVAL_NONE) tprints("= ?"); else { switch (sys_res & RVAL_MASK) { case RVAL_HEX: tprintf("= %#lx", tcp->u_rval); break; case RVAL_OCTAL: tprintf("= %#lo", tcp->u_rval); break; case RVAL_UDECIMAL: tprintf("= %lu", tcp->u_rval); break; case RVAL_DECIMAL: tprintf("= %ld", tcp->u_rval); break; #if defined(LINUX_MIPSN32) || defined(X32) /* case RVAL_LHEX: tprintf("= %#llx", tcp->u_lrval); break; case RVAL_LOCTAL: tprintf("= %#llo", tcp->u_lrval); break; */ case RVAL_LUDECIMAL: tprintf("= %llu", tcp->u_lrval); break; /* case RVAL_LDECIMAL: tprintf("= %lld", tcp->u_lrval); break; */ #endif default: fprintf(stderr, "invalid rval format\n"); break; } } if ((sys_res & RVAL_STR) && tcp->auxstr) tprintf(" (%s)", tcp->auxstr); } if (Tflag) { tv_sub(&tv, &tv, &tcp->etime); tprintf(" <%ld.%06ld>", (long) tv.tv_sec, (long) tv.tv_usec); } tprints("\n"); dumpio(tcp); line_ended(); ret: tcp->flags &= ~TCB_INSYSCALL; return 0; } int trace_syscall(struct tcb *tcp) { return exiting(tcp) ? trace_syscall_exiting(tcp) : trace_syscall_entering(tcp); }