/* * Copyright (c) 1991, 1992 Paul Kranenburg * Copyright (c) 1993 Branko Lankester * Copyright (c) 1993, 1994, 1995, 1996 Rick Sladkey * Copyright (c) 1996-1999 Wichert Akkerman * Copyright (c) 1999 IBM Deutschland Entwicklung GmbH, IBM Corporation * Linux for s390 port by D.J. Barrow * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * $Id$ */ #include "defs.h" #include #include #include #include #include #include #ifdef HAVE_SYS_REG_H # include # ifndef PTRACE_PEEKUSR # define PTRACE_PEEKUSR PTRACE_PEEKUSER # endif #elif defined(HAVE_LINUX_PTRACE_H) # undef PTRACE_SYSCALL # ifdef HAVE_STRUCT_IA64_FPREG # define ia64_fpreg XXX_ia64_fpreg # endif # ifdef HAVE_STRUCT_PT_ALL_USER_REGS # define pt_all_user_regs XXX_pt_all_user_regs # endif # include # undef ia64_fpreg # undef pt_all_user_regs #endif #if defined(SPARC64) # undef PTRACE_GETREGS # define PTRACE_GETREGS PTRACE_GETREGS64 # undef PTRACE_SETREGS # define PTRACE_SETREGS PTRACE_SETREGS64 #endif #if defined(IA64) # include # include #endif #ifndef ERESTARTSYS # define ERESTARTSYS 512 #endif # ifndef ERESTARTNOINTR # define ERESTARTNOINTR 513 #endif # ifndef ERESTARTNOHAND # define ERESTARTNOHAND 514 /* restart if no handler.. */ #endif # ifndef ENOIOCTLCMD # define ENOIOCTLCMD 515 /* No ioctl command */ #endif # ifndef ERESTART_RESTARTBLOCK # define ERESTART_RESTARTBLOCK 516 /* restart by calling sys_restart_syscall */ #endif #ifndef NSIG # warning: NSIG is not defined, using 32 # define NSIG 32 #endif #ifdef ARM /* Ugh. Is this really correct? ARM has no RT signals?! */ # undef NSIG # define NSIG 32 #endif #include "syscall.h" /* Define these shorthand notations to simplify the syscallent files. */ #define TD TRACE_DESC #define TF TRACE_FILE #define TI TRACE_IPC #define TN TRACE_NETWORK #define TP TRACE_PROCESS #define TS TRACE_SIGNAL #define NF SYSCALL_NEVER_FAILS #define MA MAX_ARGS static const struct sysent sysent0[] = { #include "syscallent.h" }; #if SUPPORTED_PERSONALITIES >= 2 static const struct sysent sysent1[] = { # include "syscallent1.h" }; #endif #if SUPPORTED_PERSONALITIES >= 3 static const struct sysent sysent2[] = { # include "syscallent2.h" }; #endif /* Now undef them since short defines cause wicked namespace pollution. */ #undef TD #undef TF #undef TI #undef TN #undef TP #undef TS #undef NF #undef MA /* * `ioctlent.h' may be generated from `ioctlent.raw' by the auxiliary * program `ioctlsort', such that the list is sorted by the `code' field. * This has the side-effect of resolving the _IO.. macros into * plain integers, eliminating the need to include here everything * in "/usr/include". */ static const char *const errnoent0[] = { #include "errnoent.h" }; static const char *const signalent0[] = { #include "signalent.h" }; static const struct ioctlent ioctlent0[] = { #include "ioctlent.h" }; enum { nsyscalls0 = ARRAY_SIZE(sysent0) }; enum { nerrnos0 = ARRAY_SIZE(errnoent0) }; enum { nsignals0 = ARRAY_SIZE(signalent0) }; enum { nioctlents0 = ARRAY_SIZE(ioctlent0) }; int qual_flags0[MAX_QUALS]; #if SUPPORTED_PERSONALITIES >= 2 static const char *const errnoent1[] = { # include "errnoent1.h" }; static const char *const signalent1[] = { # include "signalent1.h" }; static const struct ioctlent ioctlent1[] = { # include "ioctlent1.h" }; enum { nsyscalls1 = ARRAY_SIZE(sysent1) }; enum { nerrnos1 = ARRAY_SIZE(errnoent1) }; enum { nsignals1 = ARRAY_SIZE(signalent1) }; enum { nioctlents1 = ARRAY_SIZE(ioctlent1) }; int qual_flags1[MAX_QUALS]; #endif #if SUPPORTED_PERSONALITIES >= 3 static const char *const errnoent2[] = { # include "errnoent2.h" }; static const char *const signalent2[] = { # include "signalent2.h" }; static const struct ioctlent ioctlent2[] = { # include "ioctlent2.h" }; enum { nsyscalls2 = ARRAY_SIZE(sysent2) }; enum { nerrnos2 = ARRAY_SIZE(errnoent2) }; enum { nsignals2 = ARRAY_SIZE(signalent2) }; enum { nioctlents2 = ARRAY_SIZE(ioctlent2) }; int qual_flags2[MAX_QUALS]; #endif const struct sysent *sysent; const char *const *errnoent; const char *const *signalent; const struct ioctlent *ioctlent; unsigned nsyscalls; unsigned nerrnos; unsigned nsignals; unsigned nioctlents; int *qual_flags; int current_personality; #ifndef PERSONALITY0_WORDSIZE # define PERSONALITY0_WORDSIZE sizeof(long) #endif const int personality_wordsize[SUPPORTED_PERSONALITIES] = { PERSONALITY0_WORDSIZE, #if SUPPORTED_PERSONALITIES > 1 PERSONALITY1_WORDSIZE, #endif #if SUPPORTED_PERSONALITIES > 2 PERSONALITY2_WORDSIZE, #endif }; void set_personality(int personality) { switch (personality) { case 0: errnoent = errnoent0; nerrnos = nerrnos0; sysent = sysent0; nsyscalls = nsyscalls0; ioctlent = ioctlent0; nioctlents = nioctlents0; signalent = signalent0; nsignals = nsignals0; qual_flags = qual_flags0; break; #if SUPPORTED_PERSONALITIES >= 2 case 1: errnoent = errnoent1; nerrnos = nerrnos1; sysent = sysent1; nsyscalls = nsyscalls1; ioctlent = ioctlent1; nioctlents = nioctlents1; signalent = signalent1; nsignals = nsignals1; qual_flags = qual_flags1; break; #endif #if SUPPORTED_PERSONALITIES >= 3 case 2: errnoent = errnoent2; nerrnos = nerrnos2; sysent = sysent2; nsyscalls = nsyscalls2; ioctlent = ioctlent2; nioctlents = nioctlents2; signalent = signalent2; nsignals = nsignals2; qual_flags = qual_flags2; break; #endif } current_personality = personality; } #if SUPPORTED_PERSONALITIES > 1 static void update_personality(struct tcb *tcp, int personality) { if (personality == current_personality) return; set_personality(personality); if (personality == tcp->currpers) return; tcp->currpers = personality; # if defined(POWERPC64) || defined(X86_64) if (!qflag) { static const char *const names[] = {"64 bit", "32 bit"}; fprintf(stderr, "[ Process PID=%d runs in %s mode. ]\n", tcp->pid, names[personality]); } # endif } #endif static int qual_syscall(), qual_signal(), qual_fault(), qual_desc(); static const struct qual_options { int bitflag; const char *option_name; int (*qualify)(const char *, int, int); const char *argument_name; } qual_options[] = { { QUAL_TRACE, "trace", qual_syscall, "system call" }, { QUAL_TRACE, "t", qual_syscall, "system call" }, { QUAL_ABBREV, "abbrev", qual_syscall, "system call" }, { QUAL_ABBREV, "a", qual_syscall, "system call" }, { QUAL_VERBOSE, "verbose", qual_syscall, "system call" }, { QUAL_VERBOSE, "v", qual_syscall, "system call" }, { QUAL_RAW, "raw", qual_syscall, "system call" }, { QUAL_RAW, "x", qual_syscall, "system call" }, { QUAL_SIGNAL, "signal", qual_signal, "signal" }, { QUAL_SIGNAL, "signals", qual_signal, "signal" }, { QUAL_SIGNAL, "s", qual_signal, "signal" }, { QUAL_FAULT, "fault", qual_fault, "fault" }, { QUAL_FAULT, "faults", qual_fault, "fault" }, { QUAL_FAULT, "m", qual_fault, "fault" }, { QUAL_READ, "read", qual_desc, "descriptor" }, { QUAL_READ, "reads", qual_desc, "descriptor" }, { QUAL_READ, "r", qual_desc, "descriptor" }, { QUAL_WRITE, "write", qual_desc, "descriptor" }, { QUAL_WRITE, "writes", qual_desc, "descriptor" }, { QUAL_WRITE, "w", qual_desc, "descriptor" }, { 0, NULL, NULL, NULL }, }; static void qualify_one(int n, int bitflag, int not, int pers) { if (pers == 0 || pers < 0) { if (not) qual_flags0[n] &= ~bitflag; else qual_flags0[n] |= bitflag; } #if SUPPORTED_PERSONALITIES >= 2 if (pers == 1 || pers < 0) { if (not) qual_flags1[n] &= ~bitflag; else qual_flags1[n] |= bitflag; } #endif #if SUPPORTED_PERSONALITIES >= 3 if (pers == 2 || pers < 0) { if (not) qual_flags2[n] &= ~bitflag; else qual_flags2[n] |= bitflag; } #endif } static int qual_syscall(const char *s, int bitflag, int not) { int i; int rc = -1; if (isdigit((unsigned char)*s)) { int i = atoi(s); if (i < 0 || i >= MAX_QUALS) return -1; qualify_one(i, bitflag, not, -1); return 0; } for (i = 0; i < nsyscalls0; i++) if (strcmp(s, sysent0[i].sys_name) == 0) { qualify_one(i, bitflag, not, 0); rc = 0; } #if SUPPORTED_PERSONALITIES >= 2 for (i = 0; i < nsyscalls1; i++) if (strcmp(s, sysent1[i].sys_name) == 0) { qualify_one(i, bitflag, not, 1); rc = 0; } #endif #if SUPPORTED_PERSONALITIES >= 3 for (i = 0; i < nsyscalls2; i++) if (strcmp(s, sysent2[i].sys_name) == 0) { qualify_one(i, bitflag, not, 2); rc = 0; } #endif return rc; } static int qual_signal(const char *s, int bitflag, int not) { int i; char buf[32]; if (isdigit((unsigned char)*s)) { int signo = atoi(s); if (signo < 0 || signo >= MAX_QUALS) return -1; qualify_one(signo, bitflag, not, -1); return 0; } if (strlen(s) >= sizeof buf) return -1; strcpy(buf, s); s = buf; if (strncasecmp(s, "SIG", 3) == 0) s += 3; for (i = 0; i <= NSIG; i++) if (strcasecmp(s, signame(i) + 3) == 0) { qualify_one(i, bitflag, not, -1); return 0; } return -1; } static int qual_fault(const char *s, int bitflag, int not) { return -1; } static int qual_desc(const char *s, int bitflag, int not) { if (isdigit((unsigned char)*s)) { int desc = atoi(s); if (desc < 0 || desc >= MAX_QUALS) return -1; qualify_one(desc, bitflag, not, -1); return 0; } return -1; } static int lookup_class(const char *s) { if (strcmp(s, "file") == 0) return TRACE_FILE; if (strcmp(s, "ipc") == 0) return TRACE_IPC; if (strcmp(s, "network") == 0) return TRACE_NETWORK; if (strcmp(s, "process") == 0) return TRACE_PROCESS; if (strcmp(s, "signal") == 0) return TRACE_SIGNAL; if (strcmp(s, "desc") == 0) return TRACE_DESC; return -1; } void qualify(const char *s) { const struct qual_options *opt; int not; char *copy; const char *p; int i, n; opt = &qual_options[0]; for (i = 0; (p = qual_options[i].option_name); i++) { n = strlen(p); if (strncmp(s, p, n) == 0 && s[n] == '=') { opt = &qual_options[i]; s += n + 1; break; } } not = 0; if (*s == '!') { not = 1; s++; } if (strcmp(s, "none") == 0) { not = 1 - not; s = "all"; } if (strcmp(s, "all") == 0) { for (i = 0; i < MAX_QUALS; i++) { qualify_one(i, opt->bitflag, not, -1); } return; } for (i = 0; i < MAX_QUALS; i++) { qualify_one(i, opt->bitflag, !not, -1); } copy = strdup(s); if (!copy) die_out_of_memory(); for (p = strtok(copy, ","); p; p = strtok(NULL, ",")) { if (opt->bitflag == QUAL_TRACE && (n = lookup_class(p)) > 0) { for (i = 0; i < nsyscalls0; i++) if (sysent0[i].sys_flags & n) qualify_one(i, opt->bitflag, not, 0); #if SUPPORTED_PERSONALITIES >= 2 for (i = 0; i < nsyscalls1; i++) if (sysent1[i].sys_flags & n) qualify_one(i, opt->bitflag, not, 1); #endif #if SUPPORTED_PERSONALITIES >= 3 for (i = 0; i < nsyscalls2; i++) if (sysent2[i].sys_flags & n) qualify_one(i, opt->bitflag, not, 2); #endif continue; } if (opt->qualify(p, opt->bitflag, not)) { fprintf(stderr, "strace: invalid %s `%s'\n", opt->argument_name, p); exit(1); } } free(copy); return; } enum subcall_style { shift_style, deref_style, mask_style, door_style }; #if !(defined(ALPHA) || defined(MIPS) || defined(__ARM_EABI__)) static void decode_subcall(struct tcb *tcp, int subcall, int nsubcalls, enum subcall_style style) { unsigned long addr, mask; int i, n; int size = personality_wordsize[current_personality]; switch (style) { case shift_style: if (tcp->u_arg[0] < 0 || tcp->u_arg[0] >= nsubcalls) return; tcp->scno = subcall + tcp->u_arg[0]; tcp->u_nargs = n = sysent[tcp->scno].nargs; for (i = 0; i < n; i++) tcp->u_arg[i] = tcp->u_arg[i + 1]; break; case deref_style: if (tcp->u_arg[0] < 0 || tcp->u_arg[0] >= nsubcalls) return; tcp->scno = subcall + tcp->u_arg[0]; addr = tcp->u_arg[1]; tcp->u_nargs = n = sysent[tcp->scno].nargs; for (i = 0; i < n; i++) { if (size == sizeof(int)) { unsigned int arg; if (umove(tcp, addr, &arg) < 0) arg = 0; tcp->u_arg[i] = arg; } else if (size == sizeof(long)) { unsigned long arg; if (umove(tcp, addr, &arg) < 0) arg = 0; tcp->u_arg[i] = arg; } else abort(); addr += size; } break; case mask_style: mask = (tcp->u_arg[0] >> 8) & 0xff; for (i = 0; mask; i++) mask >>= 1; if (i >= nsubcalls) return; tcp->u_arg[0] &= 0xff; tcp->scno = subcall + i; tcp->u_nargs = sysent[tcp->scno].nargs; break; case door_style: /* * Oh, yuck. The call code is the *sixth* argument. * (don't you mean the *last* argument? - JH) */ if (tcp->u_arg[5] < 0 || tcp->u_arg[5] >= nsubcalls) return; tcp->scno = subcall + tcp->u_arg[5]; tcp->u_nargs = sysent[tcp->scno].nargs; break; } } #endif int printargs(struct tcb *tcp) { if (entering(tcp)) { int i; for (i = 0; i < tcp->u_nargs; i++) tprintf("%s%#lx", i ? ", " : "", tcp->u_arg[i]); } return 0; } long getrval2(struct tcb *tcp) { long val = -1; #if defined(SPARC) || defined(SPARC64) struct pt_regs regs; if (ptrace(PTRACE_GETREGS, tcp->pid, (char *)®s, 0) < 0) return -1; val = regs.u_regs[U_REG_O1]; #elif defined(SH) if (upeek(tcp, 4*(REG_REG0+1), &val) < 0) return -1; #elif defined(IA64) if (upeek(tcp, PT_R9, &val) < 0) return -1; #endif return val; } int is_restart_error(struct tcb *tcp) { switch (tcp->u_error) { case ERESTARTSYS: case ERESTARTNOINTR: case ERESTARTNOHAND: case ERESTART_RESTARTBLOCK: return 1; default: break; } return 0; } #if defined(I386) struct pt_regs i386_regs; #elif defined(X86_64) /* * On 32 bits, pt_regs and user_regs_struct are the same, * but on 64 bits, user_regs_struct has six more fields: * fs_base, gs_base, ds, es, fs, gs. * PTRACE_GETREGS fills them too, so struct pt_regs would overflow. */ static struct user_regs_struct x86_64_regs; #elif defined(IA64) long r8, r10, psr; /* TODO: make static? */ long ia32 = 0; /* not static */ #elif defined(POWERPC) static long result; #elif defined(M68K) static long d0; #elif defined(BFIN) static long r0; #elif defined(ARM) static struct pt_regs regs; #elif defined(ALPHA) static long r0; static long a3; #elif defined(AVR32) static struct pt_regs regs; #elif defined(SPARC) || defined(SPARC64) static struct pt_regs regs; static unsigned long trap; #elif defined(LINUX_MIPSN32) static long long a3; static long long r2; #elif defined(MIPS) static long a3; static long r2; #elif defined(S390) || defined(S390X) static long gpr2; static long pc; static long syscall_mode; #elif defined(HPPA) static long r28; #elif defined(SH) static long r0; #elif defined(SH64) static long r9; #elif defined(CRISV10) || defined(CRISV32) static long r10; #elif defined(MICROBLAZE) static long r3; #endif /* Returns: * 0: "ignore this ptrace stop", bail out of trace_syscall() silently. * 1: ok, continue in trace_syscall(). * other: error, trace_syscall() should print error indicator * ("????" etc) and bail out. */ static int get_scno(struct tcb *tcp) { long scno = 0; #if defined(S390) || defined(S390X) if (upeek(tcp, PT_GPR2, &syscall_mode) < 0) return -1; if (syscall_mode != -ENOSYS) { /* * Since kernel version 2.5.44 the scno gets passed in gpr2. */ scno = syscall_mode; } else { /* * Old style of "passing" the scno via the SVC instruction. */ long opcode, offset_reg, tmp; void *svc_addr; static const int gpr_offset[16] = { PT_GPR0, PT_GPR1, PT_ORIGGPR2, PT_GPR3, PT_GPR4, PT_GPR5, PT_GPR6, PT_GPR7, PT_GPR8, PT_GPR9, PT_GPR10, PT_GPR11, PT_GPR12, PT_GPR13, PT_GPR14, PT_GPR15 }; if (upeek(tcp, PT_PSWADDR, &pc) < 0) return -1; errno = 0; opcode = ptrace(PTRACE_PEEKTEXT, tcp->pid, (char *)(pc-sizeof(long)), 0); if (errno) { perror("peektext(pc-oneword)"); return -1; } /* * We have to check if the SVC got executed directly or via an * EXECUTE instruction. In case of EXECUTE it is necessary to do * instruction decoding to derive the system call number. * Unfortunately the opcode sizes of EXECUTE and SVC are differently, * so that this doesn't work if a SVC opcode is part of an EXECUTE * opcode. Since there is no way to find out the opcode size this * is the best we can do... */ if ((opcode & 0xff00) == 0x0a00) { /* SVC opcode */ scno = opcode & 0xff; } else { /* SVC got executed by EXECUTE instruction */ /* * Do instruction decoding of EXECUTE. If you really want to * understand this, read the Principles of Operations. */ svc_addr = (void *) (opcode & 0xfff); tmp = 0; offset_reg = (opcode & 0x000f0000) >> 16; if (offset_reg && (upeek(tcp, gpr_offset[offset_reg], &tmp) < 0)) return -1; svc_addr += tmp; tmp = 0; offset_reg = (opcode & 0x0000f000) >> 12; if (offset_reg && (upeek(tcp, gpr_offset[offset_reg], &tmp) < 0)) return -1; svc_addr += tmp; scno = ptrace(PTRACE_PEEKTEXT, tcp->pid, svc_addr, 0); if (errno) return -1; # if defined(S390X) scno >>= 48; # else scno >>= 16; # endif tmp = 0; offset_reg = (opcode & 0x00f00000) >> 20; if (offset_reg && (upeek(tcp, gpr_offset[offset_reg], &tmp) < 0)) return -1; scno = (scno | tmp) & 0xff; } } #elif defined(POWERPC) if (upeek(tcp, sizeof(unsigned long)*PT_R0, &scno) < 0) return -1; # ifdef POWERPC64 /* TODO: speed up strace by not doing this at every syscall. * We only need to do it after execve. */ int currpers; long val; int pid = tcp->pid; /* Check for 64/32 bit mode. */ if (upeek(tcp, sizeof(unsigned long)*PT_MSR, &val) < 0) return -1; /* SF is bit 0 of MSR */ if (val < 0) currpers = 0; else currpers = 1; update_personality(tcp, currpers); # endif #elif defined(AVR32) /* Read complete register set in one go. */ if (ptrace(PTRACE_GETREGS, tcp->pid, NULL, ®s) < 0) return -1; scno = regs.r8; #elif defined(BFIN) if (upeek(tcp, PT_ORIG_P0, &scno)) return -1; #elif defined(I386) if (ptrace(PTRACE_GETREGS, tcp->pid, NULL, (long) &i386_regs) < 0) return -1; scno = i386_regs.orig_eax; #elif defined(X86_64) int currpers; if (ptrace(PTRACE_GETREGS, tcp->pid, NULL, (long) &x86_64_regs) < 0) return -1; scno = x86_64_regs.orig_rax; /* Check CS register value. On x86-64 linux it is: * 0x33 for long mode (64 bit) * 0x23 for compatibility mode (32 bit) */ switch (x86_64_regs.cs) { case 0x23: currpers = 1; break; case 0x33: currpers = 0; break; default: fprintf(stderr, "Unknown value CS=0x%08X while " "detecting personality of process " "PID=%d\n", (int)x86_64_regs.cs, tcp->pid); currpers = current_personality; break; } # if 0 /* This version analyzes the opcode of a syscall instruction. * (int 0x80 on i386 vs. syscall on x86-64) * It works, but is too complicated. */ unsigned long val, rip, i; rip = x86_64_regs.rip; /* sizeof(syscall) == sizeof(int 0x80) == 2 */ rip -= 2; errno = 0; call = ptrace(PTRACE_PEEKTEXT, tcp->pid, (char *)rip, (char *)0); if (errno) fprintf(stderr, "ptrace_peektext failed: %s\n", strerror(errno)); switch (call & 0xffff) { /* x86-64: syscall = 0x0f 0x05 */ case 0x050f: currpers = 0; break; /* i386: int 0x80 = 0xcd 0x80 */ case 0x80cd: currpers = 1; break; default: currpers = current_personality; fprintf(stderr, "Unknown syscall opcode (0x%04X) while " "detecting personality of process " "PID=%d\n", (int)call, tcp->pid); break; } # endif update_personality(tcp, currpers); #elif defined(IA64) # define IA64_PSR_IS ((long)1 << 34) if (upeek(tcp, PT_CR_IPSR, &psr) >= 0) ia32 = (psr & IA64_PSR_IS) != 0; if (ia32) { if (upeek(tcp, PT_R1, &scno) < 0) return -1; } else { if (upeek(tcp, PT_R15, &scno) < 0) return -1; } #elif defined(ARM) /* Read complete register set in one go. */ if (ptrace(PTRACE_GETREGS, tcp->pid, NULL, (void *)®s) == -1) return -1; /* * We only need to grab the syscall number on syscall entry. */ if (regs.ARM_ip == 0) { /* * Note: we only deal with only 32-bit CPUs here. */ if (regs.ARM_cpsr & 0x20) { /* * Get the Thumb-mode system call number */ scno = regs.ARM_r7; } else { /* * Get the ARM-mode system call number */ errno = 0; scno = ptrace(PTRACE_PEEKTEXT, tcp->pid, (void *)(regs.ARM_pc - 4), NULL); if (errno) return -1; /* Handle the EABI syscall convention. We do not bother converting structures between the two ABIs, but basic functionality should work even if strace and the traced program have different ABIs. */ if (scno == 0xef000000) { scno = regs.ARM_r7; } else { if ((scno & 0x0ff00000) != 0x0f900000) { fprintf(stderr, "syscall: unknown syscall trap 0x%08lx\n", scno); return -1; } /* * Fixup the syscall number */ scno &= 0x000fffff; } } if (scno & 0x0f0000) { /* * Handle ARM specific syscall */ update_personality(tcp, 1); scno &= 0x0000ffff; } else update_personality(tcp, 0); } else { fprintf(stderr, "pid %d stray syscall entry\n", tcp->pid); tcp->flags |= TCB_INSYSCALL; } #elif defined(M68K) if (upeek(tcp, 4*PT_ORIG_D0, &scno) < 0) return -1; #elif defined(LINUX_MIPSN32) unsigned long long regs[38]; if (ptrace(PTRACE_GETREGS, tcp->pid, NULL, (long) ®s) < 0) return -1; a3 = regs[REG_A3]; r2 = regs[REG_V0]; scno = r2; if (!SCNO_IN_RANGE(scno)) { if (a3 == 0 || a3 == -1) { if (debug) fprintf(stderr, "stray syscall exit: v0 = %ld\n", scno); return 0; } } #elif defined(MIPS) if (upeek(tcp, REG_A3, &a3) < 0) return -1; if (upeek(tcp, REG_V0, &scno) < 0) return -1; if (!SCNO_IN_RANGE(scno)) { if (a3 == 0 || a3 == -1) { if (debug) fprintf(stderr, "stray syscall exit: v0 = %ld\n", scno); return 0; } } #elif defined(ALPHA) if (upeek(tcp, REG_A3, &a3) < 0) return -1; if (upeek(tcp, REG_R0, &scno) < 0) return -1; /* * Do some sanity checks to figure out if it's * really a syscall entry */ if (!SCNO_IN_RANGE(scno)) { if (a3 == 0 || a3 == -1) { if (debug) fprintf(stderr, "stray syscall exit: r0 = %ld\n", scno); return 0; } } #elif defined(SPARC) || defined(SPARC64) /* Everything we need is in the current register set. */ if (ptrace(PTRACE_GETREGS, tcp->pid, (char *)®s, 0) < 0) return -1; /* Disassemble the syscall trap. */ /* Retrieve the syscall trap instruction. */ errno = 0; # if defined(SPARC64) trap = ptrace(PTRACE_PEEKTEXT, tcp->pid, (char *)regs.tpc, 0); trap >>= 32; # else trap = ptrace(PTRACE_PEEKTEXT, tcp->pid, (char *)regs.pc, 0); # endif if (errno) return -1; /* Disassemble the trap to see what personality to use. */ switch (trap) { case 0x91d02010: /* Linux/SPARC syscall trap. */ update_personality(tcp, 0); break; case 0x91d0206d: /* Linux/SPARC64 syscall trap. */ update_personality(tcp, 2); break; case 0x91d02000: /* SunOS syscall trap. (pers 1) */ fprintf(stderr, "syscall: SunOS no support\n"); return -1; case 0x91d02008: /* Solaris 2.x syscall trap. (per 2) */ update_personality(tcp, 1); break; case 0x91d02009: /* NetBSD/FreeBSD syscall trap. */ fprintf(stderr, "syscall: NetBSD/FreeBSD not supported\n"); return -1; case 0x91d02027: /* Solaris 2.x gettimeofday */ update_personality(tcp, 1); break; default: # if defined(SPARC64) fprintf(stderr, "syscall: unknown syscall trap %08lx %016lx\n", trap, regs.tpc); # else fprintf(stderr, "syscall: unknown syscall trap %08lx %08lx\n", trap, regs.pc); # endif return -1; } /* Extract the system call number from the registers. */ if (trap == 0x91d02027) scno = 156; else scno = regs.u_regs[U_REG_G1]; if (scno == 0) { scno = regs.u_regs[U_REG_O0]; memmove(®s.u_regs[U_REG_O0], ®s.u_regs[U_REG_O1], 7*sizeof(regs.u_regs[0])); } #elif defined(HPPA) if (upeek(tcp, PT_GR20, &scno) < 0) return -1; #elif defined(SH) /* * In the new syscall ABI, the system call number is in R3. */ if (upeek(tcp, 4*(REG_REG0+3), &scno) < 0) return -1; if (scno < 0) { /* Odd as it may seem, a glibc bug has been known to cause glibc to issue bogus negative syscall numbers. So for our purposes, make strace print what it *should* have been */ long correct_scno = (scno & 0xff); if (debug) fprintf(stderr, "Detected glibc bug: bogus system call" " number = %ld, correcting to %ld\n", scno, correct_scno); scno = correct_scno; } #elif defined(SH64) if (upeek(tcp, REG_SYSCALL, &scno) < 0) return -1; scno &= 0xFFFF; #elif defined(CRISV10) || defined(CRISV32) if (upeek(tcp, 4*PT_R9, &scno) < 0) return -1; #elif defined(TILE) if (upeek(tcp, PTREGS_OFFSET_REG(10), &scno) < 0) return -1; #elif defined(MICROBLAZE) if (upeek(tcp, 0, &scno) < 0) return -1; #endif #if defined(SH) /* new syscall ABI returns result in R0 */ if (upeek(tcp, 4*REG_REG0, (long *)&r0) < 0) return -1; #elif defined(SH64) /* ABI defines result returned in r9 */ if (upeek(tcp, REG_GENERAL(9), (long *)&r9) < 0) return -1; #endif tcp->scno = scno; return 1; } /* Called at each syscall entry. * Returns: * 0: "ignore this ptrace stop", bail out of trace_syscall() silently. * 1: ok, continue in trace_syscall(). * other: error, trace_syscall() should print error indicator * ("????" etc) and bail out. */ static int syscall_fixup_on_sysenter(struct tcb *tcp) { /* A common case of "not a syscall entry" is post-execve SIGTRAP */ #if defined(I386) if (i386_regs.eax != -ENOSYS) { if (debug) fprintf(stderr, "not a syscall entry (eax = %ld)\n", i386_regs.eax); return 0; } #elif defined(X86_64) { long rax = x86_64_regs.rax; if (current_personality == 1) rax = (int)rax; /* sign extend from 32 bits */ if (rax != -ENOSYS) { if (debug) fprintf(stderr, "not a syscall entry (rax = %ld)\n", rax); return 0; } } #elif defined(S390) || defined(S390X) /* TODO: we already fetched PT_GPR2 in get_scno * and stored it in syscall_mode, reuse it here * instead of re-fetching? */ if (upeek(tcp, PT_GPR2, &gpr2) < 0) return -1; if (syscall_mode != -ENOSYS) syscall_mode = tcp->scno; if (gpr2 != syscall_mode) { if (debug) fprintf(stderr, "not a syscall entry (gpr2 = %ld)\n", gpr2); return 0; } #elif defined(M68K) /* TODO? Eliminate upeek's in arches below like we did in x86 */ if (upeek(tcp, 4*PT_D0, &d0) < 0) return -1; if (d0 != -ENOSYS) { if (debug) fprintf(stderr, "not a syscall entry (d0 = %ld)\n", d0); return 0; } #elif defined(IA64) if (upeek(tcp, PT_R10, &r10) < 0) return -1; if (upeek(tcp, PT_R8, &r8) < 0) return -1; if (ia32 && r8 != -ENOSYS) { if (debug) fprintf(stderr, "not a syscall entry (r8 = %ld)\n", r8); return 0; } #elif defined(CRISV10) || defined(CRISV32) if (upeek(tcp, 4*PT_R10, &r10) < 0) return -1; if (r10 != -ENOSYS) { if (debug) fprintf(stderr, "not a syscall entry (r10 = %ld)\n", r10); return 0; } #elif defined(MICROBLAZE) if (upeek(tcp, 3 * 4, &r3) < 0) return -1; if (r3 != -ENOSYS) { if (debug) fprintf(stderr, "not a syscall entry (r3 = %ld)\n", r3); return 0; } #endif return 1; } static int internal_syscall(struct tcb *tcp) { /* * We must always trace a few critical system calls in order to * correctly support following forks in the presence of tracing * qualifiers. */ int (*func)(); if (!SCNO_IN_RANGE(tcp->scno)) return 0; func = sysent[tcp->scno].sys_func; if ( sys_fork == func || sys_vfork == func || sys_clone == func ) return internal_fork(tcp); #if defined(TCB_WAITEXECVE) if ( sys_execve == func # if defined(SPARC) || defined(SPARC64) || sys_execv == func # endif ) return internal_exec(tcp); #endif return 0; } static int syscall_enter(struct tcb *tcp) { int i, nargs; if (SCNO_IN_RANGE(tcp->scno)) nargs = tcp->u_nargs = sysent[tcp->scno].nargs; else nargs = tcp->u_nargs = MAX_ARGS; #if defined(S390) || defined(S390X) for (i = 0; i < nargs; ++i) if (upeek(tcp, i==0 ? PT_ORIGGPR2 : PT_GPR2 + i*sizeof(long), &tcp->u_arg[i]) < 0) return -1; #elif defined(ALPHA) for (i = 0; i < nargs; ++i) if (upeek(tcp, REG_A0+i, &tcp->u_arg[i]) < 0) return -1; #elif defined(IA64) if (!ia32) { unsigned long *out0, cfm, sof, sol; long rbs_end; /* be backwards compatible with kernel < 2.4.4... */ # ifndef PT_RBS_END # define PT_RBS_END PT_AR_BSP # endif if (upeek(tcp, PT_RBS_END, &rbs_end) < 0) return -1; if (upeek(tcp, PT_CFM, (long *) &cfm) < 0) return -1; sof = (cfm >> 0) & 0x7f; sol = (cfm >> 7) & 0x7f; out0 = ia64_rse_skip_regs((unsigned long *) rbs_end, -sof + sol); for (i = 0; i < nargs; ++i) { if (umoven(tcp, (unsigned long) ia64_rse_skip_regs(out0, i), sizeof(long), (char *) &tcp->u_arg[i]) < 0) return -1; } } else { static const int argreg[MAX_ARGS] = { PT_R11 /* EBX = out0 */, PT_R9 /* ECX = out1 */, PT_R10 /* EDX = out2 */, PT_R14 /* ESI = out3 */, PT_R15 /* EDI = out4 */, PT_R13 /* EBP = out5 */}; for (i = 0; i < nargs; ++i) { if (upeek(tcp, argreg[i], &tcp->u_arg[i]) < 0) return -1; /* truncate away IVE sign-extension */ tcp->u_arg[i] &= 0xffffffff; } } #elif defined(LINUX_MIPSN32) || defined(LINUX_MIPSN64) /* N32 and N64 both use up to six registers. */ unsigned long long regs[38]; if (ptrace(PTRACE_GETREGS, tcp->pid, NULL, (long) ®s) < 0) return -1; for (i = 0; i < nargs; ++i) { tcp->u_arg[i] = regs[REG_A0 + i]; # if defined(LINUX_MIPSN32) tcp->ext_arg[i] = regs[REG_A0 + i]; # endif } #elif defined(MIPS) if (nargs > 4) { long sp; if (upeek(tcp, REG_SP, &sp) < 0) return -1; for (i = 0; i < 4; ++i) if (upeek(tcp, REG_A0 + i, &tcp->u_arg[i]) < 0) return -1; umoven(tcp, sp + 16, (nargs - 4) * sizeof(tcp->u_arg[0]), (char *)(tcp->u_arg + 4)); } else { for (i = 0; i < nargs; ++i) if (upeek(tcp, REG_A0 + i, &tcp->u_arg[i]) < 0) return -1; } #elif defined(POWERPC) # ifndef PT_ORIG_R3 # define PT_ORIG_R3 34 # endif for (i = 0; i < nargs; ++i) { if (upeek(tcp, (i==0) ? (sizeof(unsigned long) * PT_ORIG_R3) : ((i+PT_R3) * sizeof(unsigned long)), &tcp->u_arg[i]) < 0) return -1; } #elif defined(SPARC) || defined(SPARC64) for (i = 0; i < nargs; ++i) tcp->u_arg[i] = regs.u_regs[U_REG_O0 + i]; #elif defined(HPPA) for (i = 0; i < nargs; ++i) if (upeek(tcp, PT_GR26-4*i, &tcp->u_arg[i]) < 0) return -1; #elif defined(ARM) for (i = 0; i < nargs; ++i) tcp->u_arg[i] = regs.uregs[i]; #elif defined(AVR32) (void)i; (void)nargs; tcp->u_arg[0] = regs.r12; tcp->u_arg[1] = regs.r11; tcp->u_arg[2] = regs.r10; tcp->u_arg[3] = regs.r9; tcp->u_arg[4] = regs.r5; tcp->u_arg[5] = regs.r3; #elif defined(BFIN) static const int argreg[MAX_ARGS] = { PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5 }; for (i = 0; i < nargs; ++i) if (upeek(tcp, argreg[i], &tcp->u_arg[i]) < 0) return -1; #elif defined(SH) static const int syscall_regs[MAX_ARGS] = { 4 * (REG_REG0+4), 4 * (REG_REG0+5), 4 * (REG_REG0+6), 4 * (REG_REG0+7), 4 * (REG_REG0 ), 4 * (REG_REG0+1) }; for (i = 0; i < nargs; ++i) if (upeek(tcp, syscall_regs[i], &tcp->u_arg[i]) < 0) return -1; #elif defined(SH64) int i; /* Registers used by SH5 Linux system calls for parameters */ static const int syscall_regs[MAX_ARGS] = { 2, 3, 4, 5, 6, 7 }; for (i = 0; i < nargs; ++i) if (upeek(tcp, REG_GENERAL(syscall_regs[i]), &tcp->u_arg[i]) < 0) return -1; #elif defined(X86_64) (void)i; (void)nargs; if (current_personality == 0) { /* x86-64 ABI */ tcp->u_arg[0] = x86_64_regs.rdi; tcp->u_arg[1] = x86_64_regs.rsi; tcp->u_arg[2] = x86_64_regs.rdx; tcp->u_arg[3] = x86_64_regs.r10; tcp->u_arg[4] = x86_64_regs.r8; tcp->u_arg[5] = x86_64_regs.r9; } else { /* i386 ABI */ /* Sign-extend lower 32 bits */ tcp->u_arg[0] = (long)(int)x86_64_regs.rbx; tcp->u_arg[1] = (long)(int)x86_64_regs.rcx; tcp->u_arg[2] = (long)(int)x86_64_regs.rdx; tcp->u_arg[3] = (long)(int)x86_64_regs.rsi; tcp->u_arg[4] = (long)(int)x86_64_regs.rdi; tcp->u_arg[5] = (long)(int)x86_64_regs.rbp; } #elif defined(MICROBLAZE) for (i = 0; i < nargs; ++i) if (upeek(tcp, (5 + i) * 4, &tcp->u_arg[i]) < 0) return -1; #elif defined(CRISV10) || defined(CRISV32) static const int crisregs[MAX_ARGS] = { 4*PT_ORIG_R10, 4*PT_R11, 4*PT_R12, 4*PT_R13 , 4*PT_MOF, 4*PT_SRP }; for (i = 0; i < nargs; ++i) if (upeek(tcp, crisregs[i], &tcp->u_arg[i]) < 0) return -1; #elif defined(TILE) for (i = 0; i < nargs; ++i) if (upeek(tcp, PTREGS_OFFSET_REG(i), &tcp->u_arg[i]) < 0) return -1; #elif defined(M68K) for (i = 0; i < nargs; ++i) if (upeek(tcp, (i < 5 ? i : i + 2)*4, &tcp->u_arg[i]) < 0) return -1; #elif defined(I386) (void)i; (void)nargs; tcp->u_arg[0] = i386_regs.ebx; tcp->u_arg[1] = i386_regs.ecx; tcp->u_arg[2] = i386_regs.edx; tcp->u_arg[3] = i386_regs.esi; tcp->u_arg[4] = i386_regs.edi; tcp->u_arg[5] = i386_regs.ebp; #else /* Other architecture (32bits specific) */ for (i = 0; i < nargs; ++i) if (upeek(tcp, i*4, &tcp->u_arg[i]) < 0) return -1; #endif return 1; } static int trace_syscall_entering(struct tcb *tcp) { int res, scno_good; #if defined TCB_WAITEXECVE if (tcp->flags & TCB_WAITEXECVE) { /* This is the post-execve SIGTRAP. */ tcp->flags &= ~TCB_WAITEXECVE; return 0; } #endif scno_good = res = get_scno(tcp); if (res == 0) return res; if (res == 1) res = syscall_fixup_on_sysenter(tcp); if (res == 0) return res; if (res == 1) res = syscall_enter(tcp); if (res == 0) return res; if (res != 1) { printleader(tcp); tcp->flags &= ~TCB_REPRINT; if (scno_good != 1) tprintf("????" /* anti-trigraph gap */ "("); else if (!SCNO_IN_RANGE(tcp->scno)) tprintf("syscall_%lu(", tcp->scno); else tprintf("%s(", sysent[tcp->scno].sys_name); /* * " " will be added later by the code which * detects ptrace errors. */ goto ret; } #if defined(SYS_socket_subcall) || defined(SYS_ipc_subcall) while (SCNO_IN_RANGE(tcp->scno)) { # ifdef SYS_socket_subcall if (sysent[tcp->scno].sys_func == sys_socketcall) { decode_subcall(tcp, SYS_socket_subcall, SYS_socket_nsubcalls, deref_style); break; } # endif # ifdef SYS_ipc_subcall if (sysent[tcp->scno].sys_func == sys_ipc) { decode_subcall(tcp, SYS_ipc_subcall, SYS_ipc_nsubcalls, shift_style); break; } # endif break; } #endif /* SYS_socket_subcall || SYS_ipc_subcall */ internal_syscall(tcp); if ((SCNO_IN_RANGE(tcp->scno) && !(qual_flags[tcp->scno] & QUAL_TRACE)) || (tracing_paths && !pathtrace_match(tcp))) { tcp->flags |= TCB_INSYSCALL | TCB_FILTERED; return 0; } tcp->flags &= ~TCB_FILTERED; if (cflag == CFLAG_ONLY_STATS) { res = 0; goto ret; } printleader(tcp); tcp->flags &= ~TCB_REPRINT; if (!SCNO_IN_RANGE(tcp->scno)) tprintf("syscall_%lu(", tcp->scno); else tprintf("%s(", sysent[tcp->scno].sys_name); if (!SCNO_IN_RANGE(tcp->scno) || ((qual_flags[tcp->scno] & QUAL_RAW) && sysent[tcp->scno].sys_func != sys_exit)) res = printargs(tcp); else res = (*sysent[tcp->scno].sys_func)(tcp); if (fflush(tcp->outf) == EOF) return -1; ret: tcp->flags |= TCB_INSYSCALL; /* Measure the entrance time as late as possible to avoid errors. */ if (dtime || cflag) gettimeofday(&tcp->etime, NULL); return res; } /* Returns: * 0: "ignore this ptrace stop", bail out of trace_syscall() silently. * 1: ok, continue in trace_syscall(). * other: error, trace_syscall() should print error indicator * ("????" etc) and bail out. */ static int get_syscall_result(struct tcb *tcp) { #if defined(S390) || defined(S390X) if (upeek(tcp, PT_GPR2, &gpr2) < 0) return -1; #elif defined(POWERPC) # define SO_MASK 0x10000000 { long flags; if (upeek(tcp, sizeof(unsigned long)*PT_CCR, &flags) < 0) return -1; if (upeek(tcp, sizeof(unsigned long)*PT_R3, &result) < 0) return -1; if (flags & SO_MASK) result = -result; } #elif defined(AVR32) /* Read complete register set in one go. */ if (ptrace(PTRACE_GETREGS, tcp->pid, NULL, ®s) < 0) return -1; #elif defined(BFIN) if (upeek(tcp, PT_R0, &r0) < 0) return -1; #elif defined(I386) if (ptrace(PTRACE_GETREGS, tcp->pid, NULL, (long) &i386_regs) < 0) return -1; #elif defined(X86_64) if (ptrace(PTRACE_GETREGS, tcp->pid, NULL, (long) &x86_64_regs) < 0) return -1; #elif defined(IA64) # define IA64_PSR_IS ((long)1 << 34) if (upeek(tcp, PT_CR_IPSR, &psr) >= 0) ia32 = (psr & IA64_PSR_IS) != 0; if (upeek(tcp, PT_R8, &r8) < 0) return -1; if (upeek(tcp, PT_R10, &r10) < 0) return -1; #elif defined(ARM) /* Read complete register set in one go. */ if (ptrace(PTRACE_GETREGS, tcp->pid, NULL, (void *)®s) == -1) return -1; #elif defined(M68K) if (upeek(tcp, 4*PT_D0, &d0) < 0) return -1; #elif defined(LINUX_MIPSN32) unsigned long long regs[38]; if (ptrace(PTRACE_GETREGS, tcp->pid, NULL, (long) ®s) < 0) return -1; a3 = regs[REG_A3]; r2 = regs[REG_V0]; #elif defined(MIPS) if (upeek(tcp, REG_A3, &a3) < 0) return -1; if (upeek(tcp, REG_V0, &r2) < 0) return -1; #elif defined(ALPHA) if (upeek(tcp, REG_A3, &a3) < 0) return -1; if (upeek(tcp, REG_R0, &r0) < 0) return -1; #elif defined(SPARC) || defined(SPARC64) /* Everything we need is in the current register set. */ if (ptrace(PTRACE_GETREGS, tcp->pid, (char *)®s, 0) < 0) return -1; #elif defined(HPPA) if (upeek(tcp, PT_GR28, &r28) < 0) return -1; #elif defined(SH) #elif defined(SH64) #elif defined(CRISV10) || defined(CRISV32) if (upeek(tcp, 4*PT_R10, &r10) < 0) return -1; #elif defined(TILE) #elif defined(MICROBLAZE) if (upeek(tcp, 3 * 4, &r3) < 0) return -1; #endif #if defined(SH) /* new syscall ABI returns result in R0 */ if (upeek(tcp, 4*REG_REG0, (long *)&r0) < 0) return -1; #elif defined(SH64) /* ABI defines result returned in r9 */ if (upeek(tcp, REG_GENERAL(9), (long *)&r9) < 0) return -1; #endif return 1; } /* Called at each syscall exit. * Returns: * 0: "ignore this ptrace stop", bail out of trace_syscall() silently. * 1: ok, continue in trace_syscall(). * other: error, trace_syscall() should print error indicator * ("????" etc) and bail out. */ static int syscall_fixup_on_sysexit(struct tcb *tcp) { #if defined(S390) || defined(S390X) if (syscall_mode != -ENOSYS) syscall_mode = tcp->scno; if ((tcp->flags & TCB_WAITEXECVE) && (gpr2 == -ENOSYS || gpr2 == tcp->scno)) { /* * Return from execve. * Fake a return value of zero. We leave the TCB_WAITEXECVE * flag set for the post-execve SIGTRAP to see and reset. */ gpr2 = 0; } #endif return 1; } /* * Check the syscall return value register value for whether it is * a negated errno code indicating an error, or a success return value. */ static inline int is_negated_errno(unsigned long int val) { unsigned long int max = -(long int) nerrnos; #if SUPPORTED_PERSONALITIES > 1 if (personality_wordsize[current_personality] < sizeof(val)) { val = (unsigned int) val; max = (unsigned int) max; } #endif return val > max; } static int get_error(struct tcb *tcp) { int u_error = 0; int check_errno = 1; if (SCNO_IN_RANGE(tcp->scno) && sysent[tcp->scno].sys_flags & SYSCALL_NEVER_FAILS) { check_errno = 0; } #if defined(S390) || defined(S390X) if (check_errno && is_negated_errno(gpr2)) { tcp->u_rval = -1; u_error = -gpr2; } else { tcp->u_rval = gpr2; } #elif defined(I386) if (check_errno && is_negated_errno(i386_regs.eax)) { tcp->u_rval = -1; u_error = -i386_regs.eax; } else { tcp->u_rval = i386_regs.eax; } #elif defined(X86_64) if (check_errno && is_negated_errno(x86_64_regs.rax)) { tcp->u_rval = -1; u_error = -x86_64_regs.rax; } else { tcp->u_rval = x86_64_regs.rax; } #elif defined(IA64) if (ia32) { int err; err = (int)r8; if (check_errno && is_negated_errno(err)) { tcp->u_rval = -1; u_error = -err; } else { tcp->u_rval = err; } } else { if (check_errno && r10) { tcp->u_rval = -1; u_error = r8; } else { tcp->u_rval = r8; } } #elif defined(MIPS) if (check_errno && a3) { tcp->u_rval = -1; u_error = r2; } else { tcp->u_rval = r2; } #elif defined(POWERPC) if (check_errno && is_negated_errno(result)) { tcp->u_rval = -1; u_error = -result; } else { tcp->u_rval = result; } #elif defined(M68K) if (check_errno && is_negated_errno(d0)) { tcp->u_rval = -1; u_error = -d0; } else { tcp->u_rval = d0; } #elif defined(ARM) if (check_errno && is_negated_errno(regs.ARM_r0)) { tcp->u_rval = -1; u_error = -regs.ARM_r0; } else { tcp->u_rval = regs.ARM_r0; } #elif defined(AVR32) if (check_errno && regs.r12 && (unsigned) -regs.r12 < nerrnos) { tcp->u_rval = -1; u_error = -regs.r12; } else { tcp->u_rval = regs.r12; } #elif defined(BFIN) if (check_errno && is_negated_errno(r0)) { tcp->u_rval = -1; u_error = -r0; } else { tcp->u_rval = r0; } #elif defined(ALPHA) if (check_errno && a3) { tcp->u_rval = -1; u_error = r0; } else { tcp->u_rval = r0; } #elif defined(SPARC) if (check_errno && regs.psr & PSR_C) { tcp->u_rval = -1; u_error = regs.u_regs[U_REG_O0]; } else { tcp->u_rval = regs.u_regs[U_REG_O0]; } #elif defined(SPARC64) if (check_errno && regs.tstate & 0x1100000000UL) { tcp->u_rval = -1; u_error = regs.u_regs[U_REG_O0]; } else { tcp->u_rval = regs.u_regs[U_REG_O0]; } #elif defined(HPPA) if (check_errno && is_negated_errno(r28)) { tcp->u_rval = -1; u_error = -r28; } else { tcp->u_rval = r28; } #elif defined(SH) if (check_errno && is_negated_errno(r0)) { tcp->u_rval = -1; u_error = -r0; } else { tcp->u_rval = r0; } #elif defined(SH64) if (check_errno && is_negated_errno(r9)) { tcp->u_rval = -1; u_error = -r9; } else { tcp->u_rval = r9; } #elif defined(CRISV10) || defined(CRISV32) if (check_errno && r10 && (unsigned) -r10 < nerrnos) { tcp->u_rval = -1; u_error = -r10; } else { tcp->u_rval = r10; } #elif defined(TILE) long rval; if (upeek(tcp, PTREGS_OFFSET_REG(0), &rval) < 0) return -1; if (check_errno && rval < 0 && rval > -nerrnos) { tcp->u_rval = -1; u_error = -rval; } else { tcp->u_rval = rval; } #elif defined(MICROBLAZE) if (check_errno && is_negated_errno(r3)) { tcp->u_rval = -1; u_error = -r3; } else { tcp->u_rval = r3; } #endif tcp->u_error = u_error; return 1; } static void dumpio(struct tcb *tcp) { if (syserror(tcp)) return; if (tcp->u_arg[0] < 0 || tcp->u_arg[0] >= MAX_QUALS) return; if (!SCNO_IN_RANGE(tcp->scno)) return; if (sysent[tcp->scno].sys_func == printargs) return; if (qual_flags[tcp->u_arg[0]] & QUAL_READ) { if (sysent[tcp->scno].sys_func == sys_read || sysent[tcp->scno].sys_func == sys_pread || sysent[tcp->scno].sys_func == sys_recv || sysent[tcp->scno].sys_func == sys_recvfrom) dumpstr(tcp, tcp->u_arg[1], tcp->u_rval); else if (sysent[tcp->scno].sys_func == sys_readv) dumpiov(tcp, tcp->u_arg[2], tcp->u_arg[1]); return; } if (qual_flags[tcp->u_arg[0]] & QUAL_WRITE) { if (sysent[tcp->scno].sys_func == sys_write || sysent[tcp->scno].sys_func == sys_pwrite || sysent[tcp->scno].sys_func == sys_send || sysent[tcp->scno].sys_func == sys_sendto) dumpstr(tcp, tcp->u_arg[1], tcp->u_arg[2]); else if (sysent[tcp->scno].sys_func == sys_writev) dumpiov(tcp, tcp->u_arg[2], tcp->u_arg[1]); return; } } static int trace_syscall_exiting(struct tcb *tcp) { int sys_res; struct timeval tv; int res; long u_error; /* Measure the exit time as early as possible to avoid errors. */ if (dtime || cflag) gettimeofday(&tv, NULL); #if SUPPORTED_PERSONALITIES > 1 update_personality(tcp, tcp->currpers); #endif res = get_syscall_result(tcp); if (res == 0) return res; if (res == 1) res = syscall_fixup_on_sysexit(tcp); if (res == 0) return res; if (res == 1) res = get_error(tcp); if (res == 0) return res; if (res == 1) internal_syscall(tcp); if (res == 1 && filtered(tcp)) { goto ret; } if (tcp->flags & TCB_REPRINT) { printleader(tcp); if (!SCNO_IN_RANGE(tcp->scno)) tprintf("<... syscall_%lu resumed> ", tcp->scno); else tprintf("<... %s resumed> ", sysent[tcp->scno].sys_name); } if (cflag) { struct timeval t = tv; count_syscall(tcp, &t); if (cflag == CFLAG_ONLY_STATS) { goto ret; } } if (res != 1) { tprints(") "); tabto(); tprints("= ? \n"); printing_tcp = NULL; tcp->flags &= ~TCB_INSYSCALL; return res; } if (!SCNO_IN_RANGE(tcp->scno) || (qual_flags[tcp->scno] & QUAL_RAW)) sys_res = printargs(tcp); else { /* FIXME: not_failing_only (IOW, option -z) is broken: * failure of syscall is known only after syscall return. * Thus we end up with something like this on, say, ENOENT: * open("doesnt_exist", O_RDONLY * {next syscall decode} * whereas the intended result is that open(...) line * is not shown at all. */ if (not_failing_only && tcp->u_error) goto ret; /* ignore failed syscalls */ sys_res = (*sysent[tcp->scno].sys_func)(tcp); } tprints(") "); tabto(); u_error = tcp->u_error; if (!SCNO_IN_RANGE(tcp->scno) || qual_flags[tcp->scno] & QUAL_RAW) { if (u_error) tprintf("= -1 (errno %ld)", u_error); else tprintf("= %#lx", tcp->u_rval); } else if (!(sys_res & RVAL_NONE) && u_error) { switch (u_error) { /* Blocked signals do not interrupt any syscalls. * In this case syscalls don't return ERESTARTfoo codes. * * Deadly signals set to SIG_DFL interrupt syscalls * and kill the process regardless of which of the codes below * is returned by the interrupted syscall. * In some cases, kernel forces a kernel-generated deadly * signal to be unblocked and set to SIG_DFL (and thus cause * death) if it is blocked or SIG_IGNed: for example, SIGSEGV * or SIGILL. (The alternative is to leave process spinning * forever on the faulty instruction - not useful). * * SIG_IGNed signals and non-deadly signals set to SIG_DFL * (for example, SIGCHLD, SIGWINCH) interrupt syscalls, * but kernel will always restart them. */ case ERESTARTSYS: /* Most common type of signal-interrupted syscall exit code. * The system call will be restarted with the same arguments * if SA_RESTART is set; otherwise, it will fail with EINTR. */ tprints("= ? ERESTARTSYS (To be restarted if SA_RESTART is set)"); break; case ERESTARTNOINTR: /* Rare. For example, fork() returns this if interrupted. * SA_RESTART is ignored (assumed set): the restart is unconditional. */ tprints("= ? ERESTARTNOINTR (To be restarted)"); break; case ERESTARTNOHAND: /* pause(), rt_sigsuspend() etc use this code. * SA_RESTART is ignored (assumed not set): * syscall won't restart (will return EINTR instead) * even after signal with SA_RESTART set. * However, after SIG_IGN or SIG_DFL signal it will. */ tprints("= ? ERESTARTNOHAND (Interrupted by signal)"); break; case ERESTART_RESTARTBLOCK: /* Syscalls like nanosleep(), poll() which can't be * restarted with their original arguments use this * code. Kernel will execute restart_syscall() instead, * which changes arguments before restarting syscall. * SA_RESTART is ignored (assumed not set) similarly * to ERESTARTNOHAND. (Kernel can't honor SA_RESTART * since restart data is saved in "restart block" * in task struct, and if signal handler uses a syscall * which in turn saves another such restart block, * old data is lost and restart becomes impossible) */ tprints("= ? ERESTART_RESTARTBLOCK (Interrupted by signal)"); break; default: if (u_error < 0) tprintf("= -1 E??? (errno %ld)", u_error); else if (u_error < nerrnos) tprintf("= -1 %s (%s)", errnoent[u_error], strerror(u_error)); else tprintf("= -1 ERRNO_%ld (%s)", u_error, strerror(u_error)); break; } if ((sys_res & RVAL_STR) && tcp->auxstr) tprintf(" (%s)", tcp->auxstr); } else { if (sys_res & RVAL_NONE) tprints("= ?"); else { switch (sys_res & RVAL_MASK) { case RVAL_HEX: tprintf("= %#lx", tcp->u_rval); break; case RVAL_OCTAL: tprintf("= %#lo", tcp->u_rval); break; case RVAL_UDECIMAL: tprintf("= %lu", tcp->u_rval); break; case RVAL_DECIMAL: tprintf("= %ld", tcp->u_rval); break; #ifdef HAVE_LONG_LONG case RVAL_LHEX: tprintf("= %#llx", tcp->u_lrval); break; case RVAL_LOCTAL: tprintf("= %#llo", tcp->u_lrval); break; case RVAL_LUDECIMAL: tprintf("= %llu", tcp->u_lrval); break; case RVAL_LDECIMAL: tprintf("= %lld", tcp->u_lrval); break; #endif default: fprintf(stderr, "invalid rval format\n"); break; } } if ((sys_res & RVAL_STR) && tcp->auxstr) tprintf(" (%s)", tcp->auxstr); } if (dtime) { tv_sub(&tv, &tv, &tcp->etime); tprintf(" <%ld.%06ld>", (long) tv.tv_sec, (long) tv.tv_usec); } tprints("\n"); printing_tcp = NULL; dumpio(tcp); if (fflush(tcp->outf) == EOF) return -1; ret: tcp->flags &= ~TCB_INSYSCALL; return 0; } int trace_syscall(struct tcb *tcp) { return exiting(tcp) ? trace_syscall_exiting(tcp) : trace_syscall_entering(tcp); }