summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorBrian Gaeke <gaeke@uiuc.edu>2004-08-04 07:28:51 +0000
committerBrian Gaeke <gaeke@uiuc.edu>2004-08-04 07:28:51 +0000
commit10b11920c93f917244621556598d09be53810d28 (patch)
treece9e22575a6333347be23bf89accc6c6421d11b7
parent7b0c84dcf59b6ac3a27843fd8162ab36928fba35 (diff)
downloadllvm-10b11920c93f917244621556598d09be53810d28.tar.gz
llvm-10b11920c93f917244621556598d09be53810d28.tar.bz2
llvm-10b11920c93f917244621556598d09be53810d28.tar.xz
All the SparcV9 BURG instruction selector pieces have been collected into the
new file SparcV9BurgISel.cpp, with exposed interfaces in SparcV9BurgISel.h. The InstrSelection directory is now dead. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@15468 91177308-0d34-0410-b5e6-96231b3b80d8
-rw-r--r--lib/Target/SparcV9/InstrSelection/InstrForest.cpp333
-rw-r--r--lib/Target/SparcV9/InstrSelection/InstrSelection.cpp413
-rw-r--r--lib/Target/SparcV9/InstrSelection/InstrSelectionSupport.cpp267
-rw-r--r--lib/Target/SparcV9/InstrSelection/Makefile14
-rw-r--r--lib/Target/SparcV9/Makefile2
-rw-r--r--lib/Target/SparcV9/SparcV9BurgISel.cpp (renamed from lib/Target/SparcV9/SparcV9InstrSelection.cpp)2378
-rw-r--r--lib/Target/SparcV9/SparcV9BurgISel.h56
-rw-r--r--lib/Target/SparcV9/SparcV9InstrInfo.cpp789
-rw-r--r--lib/Target/SparcV9/SparcV9InstrSelectionSupport.h321
9 files changed, 2051 insertions, 2522 deletions
diff --git a/lib/Target/SparcV9/InstrSelection/InstrForest.cpp b/lib/Target/SparcV9/InstrSelection/InstrForest.cpp
deleted file mode 100644
index ff9ebf27ec..0000000000
--- a/lib/Target/SparcV9/InstrSelection/InstrForest.cpp
+++ /dev/null
@@ -1,333 +0,0 @@
-//===-- InstrForest.cpp - Build instruction forest for inst selection -----===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// The key goal is to group instructions into a single
-// tree if one or more of them might be potentially combined into a single
-// complex instruction in the target machine.
-// Since this grouping is completely machine-independent, we do it as
-// aggressive as possible to exploit any possible target instructions.
-// In particular, we group two instructions O and I if:
-// (1) Instruction O computes an operand used by instruction I,
-// and (2) O and I are part of the same basic block,
-// and (3) O has only a single use, viz., I.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Constant.h"
-#include "llvm/Function.h"
-#include "llvm/Instructions.h"
-#include "llvm/Type.h"
-#include "llvm/CodeGen/InstrForest.h"
-#include "llvm/CodeGen/MachineInstr.h"
-#include "Support/STLExtras.h"
-#include "Config/alloca.h"
-#include <iostream>
-
-namespace llvm {
-
-//------------------------------------------------------------------------
-// class InstrTreeNode
-//------------------------------------------------------------------------
-
-void
-InstrTreeNode::dump(int dumpChildren, int indent) const {
- dumpNode(indent);
-
- if (dumpChildren) {
- if (LeftChild)
- LeftChild->dump(dumpChildren, indent+1);
- if (RightChild)
- RightChild->dump(dumpChildren, indent+1);
- }
-}
-
-
-InstructionNode::InstructionNode(Instruction* I)
- : InstrTreeNode(NTInstructionNode, I), codeIsFoldedIntoParent(false)
-{
- opLabel = I->getOpcode();
-
- // Distinguish special cases of some instructions such as Ret and Br
- //
- if (opLabel == Instruction::Ret && cast<ReturnInst>(I)->getReturnValue()) {
- opLabel = RetValueOp; // ret(value) operation
- }
- else if (opLabel ==Instruction::Br && !cast<BranchInst>(I)->isUnconditional())
- {
- opLabel = BrCondOp; // br(cond) operation
- } else if (opLabel >= Instruction::SetEQ && opLabel <= Instruction::SetGT) {
- opLabel = SetCCOp; // common label for all SetCC ops
- } else if (opLabel == Instruction::Alloca && I->getNumOperands() > 0) {
- opLabel = AllocaN; // Alloca(ptr, N) operation
- } else if (opLabel == Instruction::GetElementPtr &&
- cast<GetElementPtrInst>(I)->hasIndices()) {
- opLabel = opLabel + 100; // getElem with index vector
- } else if (opLabel == Instruction::Xor &&
- BinaryOperator::isNot(I)) {
- opLabel = (I->getType() == Type::BoolTy)? NotOp // boolean Not operator
- : BNotOp; // bitwise Not operator
- } else if (opLabel == Instruction::And || opLabel == Instruction::Or ||
- opLabel == Instruction::Xor) {
- // Distinguish bitwise operators from logical operators!
- if (I->getType() != Type::BoolTy)
- opLabel = opLabel + 100; // bitwise operator
- } else if (opLabel == Instruction::Cast) {
- const Type *ITy = I->getType();
- switch(ITy->getTypeID())
- {
- case Type::BoolTyID: opLabel = ToBoolTy; break;
- case Type::UByteTyID: opLabel = ToUByteTy; break;
- case Type::SByteTyID: opLabel = ToSByteTy; break;
- case Type::UShortTyID: opLabel = ToUShortTy; break;
- case Type::ShortTyID: opLabel = ToShortTy; break;
- case Type::UIntTyID: opLabel = ToUIntTy; break;
- case Type::IntTyID: opLabel = ToIntTy; break;
- case Type::ULongTyID: opLabel = ToULongTy; break;
- case Type::LongTyID: opLabel = ToLongTy; break;
- case Type::FloatTyID: opLabel = ToFloatTy; break;
- case Type::DoubleTyID: opLabel = ToDoubleTy; break;
- case Type::ArrayTyID: opLabel = ToArrayTy; break;
- case Type::PointerTyID: opLabel = ToPointerTy; break;
- default:
- // Just use `Cast' opcode otherwise. It's probably ignored.
- break;
- }
- }
-}
-
-
-void
-InstructionNode::dumpNode(int indent) const {
- for (int i=0; i < indent; i++)
- std::cerr << " ";
- std::cerr << getInstruction()->getOpcodeName()
- << " [label " << getOpLabel() << "]" << "\n";
-}
-
-void
-VRegListNode::dumpNode(int indent) const {
- for (int i=0; i < indent; i++)
- std::cerr << " ";
-
- std::cerr << "List" << "\n";
-}
-
-
-void
-VRegNode::dumpNode(int indent) const {
- for (int i=0; i < indent; i++)
- std::cerr << " ";
- std::cerr << "VReg " << *getValue() << "\n";
-}
-
-void
-ConstantNode::dumpNode(int indent) const {
- for (int i=0; i < indent; i++)
- std::cerr << " ";
- std::cerr << "Constant " << *getValue() << "\n";
-}
-
-void LabelNode::dumpNode(int indent) const {
- for (int i=0; i < indent; i++)
- std::cerr << " ";
-
- std::cerr << "Label " << *getValue() << "\n";
-}
-
-//------------------------------------------------------------------------
-// class InstrForest
-//
-// A forest of instruction trees, usually for a single method.
-//------------------------------------------------------------------------
-
-InstrForest::InstrForest(Function *F) {
- for (Function::iterator BB = F->begin(), FE = F->end(); BB != FE; ++BB) {
- for(BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
- buildTreeForInstruction(I);
- }
-}
-
-InstrForest::~InstrForest() {
- for_each(treeRoots.begin(), treeRoots.end(), deleter<InstructionNode>);
-}
-
-void InstrForest::dump() const {
- for (const_root_iterator I = roots_begin(); I != roots_end(); ++I)
- (*I)->dump(/*dumpChildren*/ 1, /*indent*/ 0);
-}
-
-inline void InstrForest::eraseRoot(InstructionNode* node) {
- for (RootSet::reverse_iterator RI=treeRoots.rbegin(), RE=treeRoots.rend();
- RI != RE; ++RI)
- if (*RI == node)
- treeRoots.erase(RI.base()-1);
-}
-
-inline void InstrForest::noteTreeNodeForInstr(Instruction *instr,
- InstructionNode *treeNode) {
- (*this)[instr] = treeNode;
- treeRoots.push_back(treeNode); // mark node as root of a new tree
-}
-
-
-inline void InstrForest::setLeftChild(InstrTreeNode *parent,
- InstrTreeNode *child) {
- parent->LeftChild = child;
- child->Parent = parent;
- if (InstructionNode* instrNode = dyn_cast<InstructionNode>(child))
- eraseRoot(instrNode); // no longer a tree root
-}
-
-inline void InstrForest::setRightChild(InstrTreeNode *parent,
- InstrTreeNode *child) {
- parent->RightChild = child;
- child->Parent = parent;
- if (InstructionNode* instrNode = dyn_cast<InstructionNode>(child))
- eraseRoot(instrNode); // no longer a tree root
-}
-
-
-InstructionNode* InstrForest::buildTreeForInstruction(Instruction *instr) {
- InstructionNode *treeNode = getTreeNodeForInstr(instr);
- if (treeNode) {
- // treeNode has already been constructed for this instruction
- assert(treeNode->getInstruction() == instr);
- return treeNode;
- }
-
- // Otherwise, create a new tree node for this instruction.
- //
- treeNode = new InstructionNode(instr);
- noteTreeNodeForInstr(instr, treeNode);
-
- if (instr->getOpcode() == Instruction::Call) {
- // Operands of call instruction
- return treeNode;
- }
-
- // If the instruction has more than 2 instruction operands,
- // then we need to create artificial list nodes to hold them.
- // (Note that we only count operands that get tree nodes, and not
- // others such as branch labels for a branch or switch instruction.)
- //
- // To do this efficiently, we'll walk all operands, build treeNodes
- // for all appropriate operands and save them in an array. We then
- // insert children at the end, creating list nodes where needed.
- // As a performance optimization, allocate a child array only
- // if a fixed array is too small.
- //
- int numChildren = 0;
- InstrTreeNode** childArray = new InstrTreeNode*[instr->getNumOperands()];
-
- //
- // Walk the operands of the instruction
- //
- for (Instruction::op_iterator O = instr->op_begin(); O!=instr->op_end(); ++O)
- {
- Value* operand = *O;
-
- // Check if the operand is a data value, not an branch label, type,
- // method or module. If the operand is an address type (i.e., label
- // or method) that is used in an non-branching operation, e.g., `add'.
- // that should be considered a data value.
-
- // Check latter condition here just to simplify the next IF.
- bool includeAddressOperand =
- (isa<BasicBlock>(operand) || isa<Function>(operand))
- && !instr->isTerminator();
-
- if (includeAddressOperand || isa<Instruction>(operand) ||
- isa<Constant>(operand) || isa<Argument>(operand))
- {
- // This operand is a data value
-
- // An instruction that computes the incoming value is added as a
- // child of the current instruction if:
- // the value has only a single use
- // AND both instructions are in the same basic block.
- // AND the current instruction is not a PHI (because the incoming
- // value is conceptually in a predecessor block,
- // even though it may be in the same static block)
- //
- // (Note that if the value has only a single use (viz., `instr'),
- // the def of the value can be safely moved just before instr
- // and therefore it is safe to combine these two instructions.)
- //
- // In all other cases, the virtual register holding the value
- // is used directly, i.e., made a child of the instruction node.
- //
- InstrTreeNode* opTreeNode;
- if (isa<Instruction>(operand) && operand->hasOneUse() &&
- cast<Instruction>(operand)->getParent() == instr->getParent() &&
- instr->getOpcode() != Instruction::PHI &&
- instr->getOpcode() != Instruction::Call)
- {
- // Recursively create a treeNode for it.
- opTreeNode = buildTreeForInstruction((Instruction*)operand);
- } else if (Constant *CPV = dyn_cast<Constant>(operand)) {
- if (isa<GlobalValue>(CPV))
- opTreeNode = new VRegNode(operand);
- else
- // Create a leaf node for a constant
- opTreeNode = new ConstantNode(CPV);
- } else {
- // Create a leaf node for the virtual register
- opTreeNode = new VRegNode(operand);
- }
-
- childArray[numChildren++] = opTreeNode;
- }
- }
-
- //--------------------------------------------------------------------
- // Add any selected operands as children in the tree.
- // Certain instructions can have more than 2 in some instances (viz.,
- // a CALL or a memory access -- LOAD, STORE, and GetElemPtr -- to an
- // array or struct). Make the operands of every such instruction into
- // a right-leaning binary tree with the operand nodes at the leaves
- // and VRegList nodes as internal nodes.
- //--------------------------------------------------------------------
-
- InstrTreeNode *parent = treeNode;
-
- if (numChildren > 2) {
- unsigned instrOpcode = treeNode->getInstruction()->getOpcode();
- assert(instrOpcode == Instruction::PHI ||
- instrOpcode == Instruction::Call ||
- instrOpcode == Instruction::Load ||
- instrOpcode == Instruction::Store ||
- instrOpcode == Instruction::GetElementPtr);
- }
-
- // Insert the first child as a direct child
- if (numChildren >= 1)
- setLeftChild(parent, childArray[0]);
-
- int n;
-
- // Create a list node for children 2 .. N-1, if any
- for (n = numChildren-1; n >= 2; n--) {
- // We have more than two children
- InstrTreeNode *listNode = new VRegListNode();
- setRightChild(parent, listNode);
- setLeftChild(listNode, childArray[numChildren - n]);
- parent = listNode;
- }
-
- // Now insert the last remaining child (if any).
- if (numChildren >= 2) {
- assert(n == 1);
- setRightChild(parent, childArray[numChildren - 1]);
- }
-
- delete [] childArray;
- return treeNode;
-}
-
-} // End llvm namespace
diff --git a/lib/Target/SparcV9/InstrSelection/InstrSelection.cpp b/lib/Target/SparcV9/InstrSelection/InstrSelection.cpp
deleted file mode 100644
index 210dac5788..0000000000
--- a/lib/Target/SparcV9/InstrSelection/InstrSelection.cpp
+++ /dev/null
@@ -1,413 +0,0 @@
-//===- InstrSelection.cpp - Machine Independent Inst Selection Driver -----===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// Machine-independent driver file for instruction selection. This file
-// constructs a forest of BURG instruction trees and then uses the
-// BURG-generated tree grammar (BURM) to find the optimal instruction sequences
-// for a given machine.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/CodeGen/InstrSelection.h"
-#include "llvm/Function.h"
-#include "llvm/Instructions.h"
-#include "llvm/Pass.h"
-#include "llvm/CodeGen/InstrForest.h"
-#include "llvm/CodeGen/IntrinsicLowering.h"
-#include "llvm/CodeGen/MachineCodeForInstruction.h"
-#include "llvm/CodeGen/MachineFunction.h"
-#include "llvm/Target/TargetMachine.h"
-#include "llvm/Support/CFG.h"
-#include "../SparcV9RegInfo.h"
-#include "Support/CommandLine.h"
-#include "Support/LeakDetector.h"
-#include <iostream>
-
-namespace llvm {
- std::vector<MachineInstr*>
- FixConstantOperandsForInstr(Instruction *I, MachineInstr *MI,
- TargetMachine &TM);
-}
-
-namespace {
- //===--------------------------------------------------------------------===//
- // SelectDebugLevel - Allow command line control over debugging.
- //
- enum SelectDebugLevel_t {
- Select_NoDebugInfo,
- Select_PrintMachineCode,
- Select_DebugInstTrees,
- Select_DebugBurgTrees,
- };
-
- // Enable Debug Options to be specified on the command line
- cl::opt<SelectDebugLevel_t>
- SelectDebugLevel("dselect", cl::Hidden,
- cl::desc("enable instruction selection debug information"),
- cl::values(
- clEnumValN(Select_NoDebugInfo, "n", "disable debug output"),
- clEnumValN(Select_PrintMachineCode, "y", "print generated machine code"),
- clEnumValN(Select_DebugInstTrees, "i",
- "print debugging info for instruction selection"),
- clEnumValN(Select_DebugBurgTrees, "b", "print burg trees"),
- clEnumValEnd));
-
-
- //===--------------------------------------------------------------------===//
- // InstructionSelection Pass
- //
- // This is the actual pass object that drives the instruction selection
- // process.
- //
- class InstructionSelection : public FunctionPass {
- TargetMachine &Target;
- void InsertCodeForPhis(Function &F);
- void InsertPhiElimInstructions(BasicBlock *BB,
- const std::vector<MachineInstr*>& CpVec);
- void SelectInstructionsForTree(InstrTreeNode* treeRoot, int goalnt);
- void PostprocessMachineCodeForTree(InstructionNode* instrNode,
- int ruleForNode, short* nts);
- public:
- InstructionSelection(TargetMachine &TM) : Target(TM) {}
-
- virtual void getAnalysisUsage(AnalysisUsage &AU) const {
- AU.setPreservesCFG();
- }
-
- bool runOnFunction(Function &F);
- virtual const char *getPassName() const { return "Instruction Selection"; }
- };
-}
-
-TmpInstruction::TmpInstruction(Value *s1, Value *s2, const std::string &name)
- : Instruction(s1->getType(), Instruction::UserOp1, name)
-{
- Operands.push_back(Use(s1, this)); // s1 must be non-null
- if (s2)
- Operands.push_back(Use(s2, this));
-
- // TmpInstructions should not be garbage checked.
- LeakDetector::removeGarbageObject(this);
-}
-
-TmpInstruction::TmpInstruction(MachineCodeForInstruction& mcfi,
- Value *s1, Value *s2, const std::string &name)
- : Instruction(s1->getType(), Instruction::UserOp1, name)
-{
- mcfi.addTemp(this);
-
- Operands.push_back(Use(s1, this)); // s1 must be non-null
- if (s2)
- Operands.push_back(Use(s2, this));
-
- // TmpInstructions should not be garbage checked.
- LeakDetector::removeGarbageObject(this);
-}
-
-// Constructor that requires the type of the temporary to be specified.
-// Both S1 and S2 may be NULL.
-TmpInstruction::TmpInstruction(MachineCodeForInstruction& mcfi,
- const Type *Ty, Value *s1, Value* s2,
- const std::string &name)
- : Instruction(Ty, Instruction::UserOp1, name)
-{
- mcfi.addTemp(this);
-
- if (s1)
- Operands.push_back(Use(s1, this));
- if (s2)
- Operands.push_back(Use(s2, this));
-
- // TmpInstructions should not be garbage checked.
- LeakDetector::removeGarbageObject(this);
-}
-
-bool InstructionSelection::runOnFunction(Function &F) {
- // First pass - Walk the function, lowering any calls to intrinsic functions
- // which the instruction selector cannot handle.
- for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
- for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
- if (CallInst *CI = dyn_cast<CallInst>(I++))
- if (Function *F = CI->getCalledFunction())
- switch (F->getIntrinsicID()) {
- case Intrinsic::not_intrinsic:
- case Intrinsic::vastart:
- case Intrinsic::vacopy:
- case Intrinsic::vaend:
- // We directly implement these intrinsics. Note that this knowledge
- // is incestuously entangled with the code in
- // SparcInstrSelection.cpp and must be updated when it is updated.
- // Since ALL of the code in this library is incestuously intertwined
- // with it already and sparc specific, we will live with this.
- break;
- default:
- // All other intrinsic calls we must lower.
- Instruction *Before = CI->getPrev();
- Target.getIntrinsicLowering().LowerIntrinsicCall(CI);
- if (Before) { // Move iterator to instruction after call
- I = Before; ++I;
- } else {
- I = BB->begin();
- }
- }
-
- // Build the instruction trees to be given as inputs to BURG.
- InstrForest instrForest(&F);
- if (SelectDebugLevel >= Select_DebugInstTrees) {
- std::cerr << "\n\n*** Input to instruction selection for function "
- << F.getName() << "\n\n" << F
- << "\n\n*** Instruction trees for function "
- << F.getName() << "\n\n";
- instrForest.dump();
- }
-
- // Invoke BURG instruction selection for each tree
- for (InstrForest::const_root_iterator RI = instrForest.roots_begin();
- RI != instrForest.roots_end(); ++RI) {
- InstructionNode* basicNode = *RI;
- assert(basicNode->parent() == NULL && "A `root' node has a parent?");
-
- // Invoke BURM to label each tree node with a state
- burm_label(basicNode);
- if (SelectDebugLevel >= Select_DebugBurgTrees) {
- printcover(basicNode, 1, 0);
- std::cerr << "\nCover cost == " << treecost(basicNode, 1, 0) <<"\n\n";
- printMatches(basicNode);
- }
-
- // Then recursively walk the tree to select instructions
- SelectInstructionsForTree(basicNode, /*goalnt*/1);
- }
-
- // Create the MachineBasicBlocks and add all of the MachineInstrs
- // defined in the MachineCodeForInstruction objects to the MachineBasicBlocks.
- MachineFunction &MF = MachineFunction::get(&F);
- std::map<const BasicBlock *, MachineBasicBlock *> MBBMap;
- for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
- MachineBasicBlock *MBB = new MachineBasicBlock(BI);
- MF.getBasicBlockList().push_back(MBB);
- MBBMap[BI] = MBB;
-
- for (BasicBlock::iterator II = BI->begin(); II != BI->end(); ++II) {
- MachineCodeForInstruction &mvec = MachineCodeForInstruction::get(II);
- MBB->insert(MBB->end(), mvec.begin(), mvec.end());
- }
- }
-
- // Initialize Machine-CFG for the function.
- for (MachineFunction::iterator i = MF.begin (), e = MF.end (); i != e; ++i) {
- MachineBasicBlock &MBB = *i;
- const BasicBlock *BB = MBB.getBasicBlock ();
- // for each successor S of BB, add MBBMap[S] as a successor of MBB.
- for (succ_const_iterator si = succ_begin(BB), se = succ_end(BB); si != se; ++si) {
- MachineBasicBlock *succMBB = MBBMap[*si];
- assert (succMBB && "Can't find MachineBasicBlock for this successor");
- MBB.addSuccessor (succMBB);
- }
- }
-
- // Insert phi elimination code
- InsertCodeForPhis(F);
-
- if (SelectDebugLevel >= Select_PrintMachineCode) {
- std::cerr << "\n*** Machine instructions after INSTRUCTION SELECTION\n";
- MachineFunction::get(&F).dump();
- }
-
- return true;
-}
-
-/// InsertCodeForPhis - This method inserts Phi elimination code for
-/// all Phi nodes in the given function. After this method is called,
-/// the Phi nodes still exist in the LLVM code, but copies are added to the
-/// machine code.
-///
-void InstructionSelection::InsertCodeForPhis(Function &F) {
- // Iterate over every Phi node PN in F:
- MachineFunction &MF = MachineFunction::get(&F);
- for (MachineFunction::iterator BB = MF.begin(); BB != MF.end(); ++BB) {
- for (BasicBlock::const_iterator IIt = BB->getBasicBlock()->begin();
- const PHINode *PN = dyn_cast<PHINode>(IIt); ++IIt) {
- // Create a new temporary register to hold the result of the Phi copy.
- // The leak detector shouldn't track these nodes. They are not garbage,
- // even though their parent field is never filled in.
- Value *PhiCpRes = new PHINode(PN->getType(), PN->getName() + ":PhiCp");
- LeakDetector::removeGarbageObject(PhiCpRes);
-
- // For each of PN's incoming values, insert a copy in the corresponding
- // predecessor block.
- MachineCodeForInstruction &MCforPN = MachineCodeForInstruction::get (PN);
- for (unsigned i = 0; i < PN->getNumIncomingValues(); ++i) {
- std::vector<MachineInstr*> mvec, CpVec;
- Target.getRegInfo()->cpValue2Value(PN->getIncomingValue(i),
- PhiCpRes, mvec);
- for (std::vector<MachineInstr*>::iterator MI=mvec.begin();
- MI != mvec.end(); ++MI) {
- std::vector<MachineInstr*> CpVec2 =
- FixConstantOperandsForInstr(const_cast<PHINode*>(PN), *MI, Target);
- CpVec2.push_back(*MI);
- CpVec.insert(CpVec.end(), CpVec2.begin(), CpVec2.end());
- }
- // Insert the copy instructions into the predecessor BB.
- InsertPhiElimInstructions(PN->getIncomingBlock(i), CpVec);
- MCforPN.insert (MCforPN.end (), CpVec.begin (), CpVec.end ());
- }
- // Insert a copy instruction from PhiCpRes to PN.
- std::vector<MachineInstr*> mvec;
- Target.getRegInfo()->cpValue2Value(PhiCpRes, const_cast<PHINode*>(PN),
- mvec);
- BB->insert(BB->begin(), mvec.begin(), mvec.end());
- MCforPN.insert (MCforPN.end (), mvec.begin (), mvec.end ());
- } // for each Phi Instr in BB
- } // for all BBs in function
-}
-
-/// InsertPhiElimInstructions - Inserts the instructions in CpVec into the
-/// MachineBasicBlock corresponding to BB, just before its terminator
-/// instruction. This is used by InsertCodeForPhis() to insert copies, above.
-///
-void
-InstructionSelection::InsertPhiElimInstructions(BasicBlock *BB,
- const std::vector<MachineInstr*>& CpVec)
-{
- Instruction *TermInst = (Instruction*)BB->getTerminator();
- MachineCodeForInstruction &MC4Term = MachineCodeForInstruction::get(TermInst);
- MachineInstr *FirstMIOfTerm = MC4Term.front();
- assert (FirstMIOfTerm && "No Machine Instrs for terminator");
-
- MachineBasicBlock *MBB = FirstMIOfTerm->getParent();
- assert(MBB && "Machine BB for predecessor's terminator not found");
- MachineBasicBlock::iterator MCIt = FirstMIOfTerm;
- assert(MCIt != MBB->end() && "Start inst of terminator not found");
-
- // insert the copy instructions just before the first machine instruction
- // generated for the terminator
- MBB->insert(MCIt, CpVec.begin(), CpVec.end());
-}
-
-
-//---------------------------------------------------------------------------
-// Function SelectInstructionsForTree
-//
-// Recursively walk the tree to select instructions.
-// Do this top-down so that child instructions can exploit decisions
-// made at the child instructions.
-//
-// E.g., if br(setle(reg,const)) decides the constant is 0 and uses
-// a branch-on-integer-register instruction, then the setle node
-// can use that information to avoid generating the SUBcc instruction.
-//
-// Note that this cannot be done bottom-up because setle must do this
-// only if it is a child of the branch (otherwise, the result of setle
-// may be used by multiple instructions).
-//---------------------------------------------------------------------------
-
-void
-InstructionSelection::SelectInstructionsForTree(InstrTreeNode* treeRoot,
- int goalnt)
-{
- // Get the rule that matches this node.
- //
- int ruleForNode = burm_rule(treeRoot->state, goalnt);
-
- if (ruleForNode == 0) {
- std::cerr << "Could not match instruction tree for instr selection\n";
- abort();
- }
-
- // Get this rule's non-terminals and the corresponding child nodes (if any)
- //
- short *nts = burm_nts[ruleForNode];
-
- // First, select instructions for the current node and rule.
- // (If this is a list node, not an instruction, then skip this step).
- // This function is specific to the target architecture.
- //
- if (treeRoot->opLabel != VRegListOp) {
- std::vector<MachineInstr*> minstrVec;
-
- InstructionNode* instrNode = (InstructionNode*)treeRoot;
- assert(instrNode->getNodeType() == InstrTreeNode::NTInstructionNode);
-
- GetInstructionsByRule(instrNode, ruleForNode, nts, Target, minstrVec);
-
- MachineCodeForInstruction &mvec =
- MachineCodeForInstruction::get(instrNode->getInstruction());
- mvec.insert(mvec.end(), minstrVec.begin(), minstrVec.end());
- }
-
- // Then, recursively compile the child nodes, if any.
- //
- if (nts[0]) {
- // i.e., there is at least one kid
- InstrTreeNode* kids[2];
- int currentRule = ruleForNode;
- burm_kids(treeRoot, currentRule, kids);
-
- // First skip over any chain rules so that we don't visit
- // the current node again.
- //
- while (ThisIsAChainRule(currentRule)) {
- currentRule = burm_rule(treeRoot->state, nts[0]);
- nts = burm_nts[currentRule];
- burm_kids(treeRoot, currentRule, kids);
- }
-
- // Now we have the first non-chain rule so we have found
- // the actual child nodes. Recursively compile them.
- //
- for (unsigned i = 0; nts[i]; i++) {
- assert(i < 2);
- InstrTreeNode::InstrTreeNodeType nodeType = kids[i]->getNodeType();
- if (nodeType == InstrTreeNode::NTVRegListNode ||
- nodeType == InstrTreeNode::NTInstructionNode)
- SelectInstructionsForTree(kids[i], nts[i]);
- }
- }
-
- // Finally, do any post-processing on this node after its children
- // have been translated
- //
- if (treeRoot->opLabel != VRegListOp)
- PostprocessMachineCodeForTree((InstructionNode*)treeRoot, ruleForNode, nts);
-}
-
-//---------------------------------------------------------------------------
-// Function PostprocessMachineCodeForTree
-//
-// Apply any final cleanups to machine code for the root of a subtree
-// after selection for all its children has been completed.
-//
-void
-InstructionSelection::PostprocessMachineCodeForTree(InstructionNode* instrNode,
- int ruleForNode,
- short* nts)
-{
- // Fix up any constant operands in the machine instructions to either
- // use an immediate field or to load the constant into a register
- // Walk backwards and use direct indexes to allow insertion before current
- //
- Instruction* vmInstr = instrNode->getInstruction();
- MachineCodeForInstruction &mvec = MachineCodeForInstruction::get(vmInstr);
- for (unsigned i = mvec.size(); i != 0; --i) {
- std::vector<MachineInstr*> loadConstVec =
- FixConstantOperandsForInstr(vmInstr, mvec[i-1], Target);
-
- mvec.insert(mvec.begin()+i-1, loadConstVec.begin(), loadConstVec.end());
- }
-}
-
-
-//===----------------------------------------------------------------------===//
-// createInstructionSelectionPass - Public entrypoint for instruction selection
-// and this file as a whole...
-//
-FunctionPass *llvm::createInstructionSelectionPass(TargetMachine &TM) {
- return new InstructionSelection(TM);
-}
diff --git a/lib/Target/SparcV9/InstrSelection/InstrSelectionSupport.cpp b/lib/Target/SparcV9/InstrSelection/InstrSelectionSupport.cpp
deleted file mode 100644
index b79f2f794c..0000000000
--- a/lib/Target/SparcV9/InstrSelection/InstrSelectionSupport.cpp
+++ /dev/null
@@ -1,267 +0,0 @@
-//===-- InstrSelectionSupport.cpp -----------------------------------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// Target-independent instruction selection code. See SparcInstrSelection.cpp
-// for usage.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/CodeGen/InstrSelection.h"
-#include "../MachineInstrAnnot.h"
-#include "llvm/CodeGen/MachineCodeForInstruction.h"
-#include "llvm/CodeGen/InstrForest.h"
-#include "llvm/Target/TargetMachine.h"
-#include "../SparcV9RegInfo.h"
-#include "llvm/Target/TargetInstrInfo.h"
-#include "llvm/Constants.h"
-#include "llvm/BasicBlock.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/GlobalValue.h"
-#include "../SparcV9InstrSelectionSupport.h"
-
-namespace llvm {
-
-// Generate code to load the constant into a TmpInstruction (virtual reg) and
-// returns the virtual register.
-//
-static TmpInstruction*
-InsertCodeToLoadConstant(Function *F,
- Value* opValue,
- Instruction* vmInstr,
- std::vector<MachineInstr*>& loadConstVec,
- TargetMachine& target)
-{
- // Create a tmp virtual register to hold the constant.
- MachineCodeForInstruction &mcfi = MachineCodeForInstruction::get(vmInstr);
- TmpInstruction* tmpReg = new TmpInstruction(mcfi, opValue);
-
- CreateCodeToLoadConst(target, F, opValue, tmpReg, loadConstVec, mcfi);
-
- // Record the mapping from the tmp VM instruction to machine instruction.
- // Do this for all machine instructions that were not mapped to any
- // other temp values created by
- // tmpReg->addMachineInstruction(loadConstVec.back());
-
- return tmpReg;
-}
-
-
-MachineOperand::MachineOperandType
-ChooseRegOrImmed(int64_t intValue,
- bool isSigned,
- MachineOpCode opCode,
- const TargetMachine& target,
- bool canUseImmed,
- unsigned int& getMachineRegNum,
- int64_t& getImmedValue)
-{
- MachineOperand::MachineOperandType opType=MachineOperand::MO_VirtualRegister;
- getMachineRegNum = 0;
- getImmedValue = 0;
-
- if (canUseImmed &&
- target.getInstrInfo()->constantFitsInImmedField(opCode, intValue)) {
- opType = isSigned? MachineOperand::MO_SignExtendedImmed
- : MachineOperand::MO_UnextendedImmed;
- getImmedValue = intValue;
- } else if (intValue == 0 &&
- target.getRegInfo()->getZeroRegNum() != (unsigned)-1) {
- opType = MachineOperand::MO_MachineRegister;
- getMachineRegNum = target.getRegInfo()->getZeroRegNum();
- }
-
- return opType;
-}
-
-
-MachineOperand::MachineOperandType
-ChooseRegOrImmed(Value* val,
- MachineOpCode opCode,
- const TargetMachine& target,
- bool canUseImmed,
- unsigned int& getMachineRegNum,
- int64_t& getImmedValue)
-{
- getMachineRegNum = 0;
- getImmedValue = 0;
-
- // To use reg or immed, constant needs to be integer, bool, or a NULL pointer
- // TargetInstrInfo::ConvertConstantToIntType() does the right conversions:
- bool isValidConstant;
- uint64_t valueToUse =
- ConvertConstantToIntType(target, val, val->getType(), isValidConstant);
- if (! isValidConstant)
- return MachineOperand::MO_VirtualRegister;
-
- // Now check if the constant value fits in the IMMED field.
- //
- return ChooseRegOrImmed((int64_t) valueToUse, val->getType()->isSigned(),
- opCode, target, canUseImmed,
- getMachineRegNum, getImmedValue);
-}
-
-//---------------------------------------------------------------------------
-// Function: FixConstantOperandsForInstr
-//
-// Purpose:
-// Special handling for constant operands of a machine instruction
-// -- if the constant is 0, use the hardwired 0 register, if any;
-// -- if the constant fits in the IMMEDIATE field, use that field;
-// -- else create instructions to put the constant into a register, either
-// directly or by loading explicitly from the constant pool.
-//
-// In the first 2 cases, the operand of `minstr' is modified in place.
-// Returns a vector of machine instructions generated for operands that
-// fall under case 3; these must be inserted before `minstr'.
-//---------------------------------------------------------------------------
-
-std::vector<MachineInstr*>
-FixConstantOperandsForInstr(Instruction* vmInstr,
- MachineInstr* minstr,
- TargetMachine& target)
-{
- std::vector<MachineInstr*> MVec;
-
- MachineOpCode opCode = minstr->getOpcode();
- const TargetInstrInfo& instrInfo = *target.getInstrInfo();
- int resultPos = instrInfo.getResultPos(opCode);
- int immedPos = instrInfo.getImmedConstantPos(opCode);
-
- Function *F = vmInstr->getParent()->getParent();
-
- for (unsigned op=0; op < minstr->getNumOperands(); op++)
- {
- const MachineOperand& mop = minstr->getOperand(op);
-
- // Skip the result position, preallocated machine registers, or operands
- // that cannot be constants (CC regs or PC-relative displacements)
- if (resultPos == (int)op ||
- mop.getType() == MachineOperand::MO_MachineRegister ||
- mop.getType() == MachineOperand::MO_CCRegister ||
- mop.getType() == MachineOperand::MO_PCRelativeDisp)
- continue;
-
- bool constantThatMustBeLoaded = false;
- unsigned int machineRegNum = 0;
- int64_t immedValue = 0;
- Value* opValue = NULL;
- MachineOperand::MachineOperandType opType =
- MachineOperand::MO_VirtualRegister;
-
- // Operand may be a virtual register or a compile-time constant
- if (mop.getType() == MachineOperand::MO_VirtualRegister) {
- assert(mop.getVRegValue() != NULL);
- opValue = mop.getVRegValue();
- if (Constant *opConst = dyn_cast<Constant>(opValue))
- if (!isa<GlobalValue>(opConst)) {
- opType = ChooseRegOrImmed(opConst, opCode, target,
- (immedPos == (int)op), machineRegNum,
- immedValue);
- if (opType == MachineOperand::MO_VirtualRegister)
- constantThatMustBeLoaded = true;
- }
- } else {
- //
- // If the operand is from the constant pool, don't try to change it.
- //
- if (mop.getType() == MachineOperand::MO_ConstantPoolIndex) {
- continue;
- }
- assert(mop.isImmediate());
- bool isSigned = mop.getType() == MachineOperand::MO_SignExtendedImmed;
-
- // Bit-selection flags indicate an instruction that is extracting
- // bits from its operand so ignore this even if it is a big constant.
- if (mop.isHiBits32() || mop.isLoBits32() ||
- mop.isHiBits64() || mop.isLoBits64())
- continue;
-
- opType = ChooseRegOrImmed(mop.getImmedValue(), isSigned,
- opCode, target, (immedPos == (int)op),
- machineRegNum, immedValue);
-
- if (opType == MachineOperand::MO_SignExtendedImmed ||
- opType == MachineOperand::MO_UnextendedImmed) {
- // The optype is an immediate value
- // This means we need to change the opcode, e.g. ADDr -> ADDi
- unsigned newOpcode = convertOpcodeFromRegToImm(opCode);
- minstr->setOpcode(newOpcode);
- }
-
- if (opType == mop.getType())
- continue; // no change: this is the most common case
-
- if (opType == MachineOperand::MO_VirtualRegister) {
- constantThatMustBeLoaded = true;
- opValue = isSigned
- ? (Value*)ConstantSInt::get(Type::LongTy, immedValue)
- : (Value*)ConstantUInt::get(Type::ULongTy,(uint64_t)immedValue);
- }
- }
-
- if (opType == MachineOperand::MO_MachineRegister)
- minstr->SetMachineOperandReg(op, machineRegNum);
- else if (opType == MachineOperand::MO_SignExtendedImmed ||
- opType == MachineOperand::MO_UnextendedImmed) {
- minstr->SetMachineOperandConst(op, opType, immedValue);
- // The optype is or has become an immediate
- // This means we need to change the opcode, e.g. ADDr -> ADDi
- unsigned newOpcode = convertOpcodeFromRegToImm(opCode);
- minstr->setOpcode(newOpcode);
- } else if (constantThatMustBeLoaded ||
- (opValue && isa<GlobalValue>(opValue)))
- { // opValue is a constant that must be explicitly loaded into a reg
- assert(opValue);
- TmpInstruction* tmpReg = InsertCodeToLoadConstant(F, opValue, vmInstr,
- MVec, target);
- minstr->SetMachineOperandVal(op, MachineOperand::MO_VirtualRegister,
- tmpReg);
- }
- }
-
- // Also, check for implicit operands used by the machine instruction
- // (no need to check those defined since they cannot be constants).
- // These include:
- // -- arguments to a Call
- // -- return value of a Return
- // Any such operand that is a constant value needs to be fixed also.
- // The current instructions with implicit refs (viz., Call and Return)
- // have no immediate fields, so the constant always needs to be loaded
- // into a register.
- //
- bool isCall = instrInfo.isCall(opCode);
- unsigned lastCallArgNum = 0; // unused if not a call
- CallArgsDescriptor* argDesc = NULL; // unused if not a call
- if (isCall)
- argDesc = CallArgsDescriptor::get(minstr);
-
- for (unsigned i=0, N=minstr->getNumImplicitRefs(); i < N; ++i)
- if (isa<Constant>(minstr->getImplicitRef(i)))
- {
- Value* oldVal = minstr->getImplicitRef(i);
- TmpInstruction* tmpReg =
- InsertCodeToLoadConstant(F, oldVal, vmInstr, MVec, target);
- minstr->setImplicitRef(i, tmpReg);
-
- if (isCall) {
- // find and replace the argument in the CallArgsDescriptor
- unsigned i=lastCallArgNum;
- while (argDesc->getArgInfo(i).getArgVal() != oldVal)
- ++i;
- assert(i < argDesc->getNumArgs() &&
- "Constant operands to a call *must* be in the arg list");
- lastCallArgNum = i;
- argDesc->getArgInfo(i).replaceArgVal(tmpReg);
- }
- }
-
- return MVec;
-}
-
-} // End llvm namespace
diff --git a/lib/Target/SparcV9/InstrSelection/Makefile b/lib/Target/SparcV9/InstrSelection/Makefile
deleted file mode 100644
index 7e807cec42..0000000000
--- a/lib/Target/SparcV9/InstrSelection/Makefile
+++ /dev/null
@@ -1,14 +0,0 @@
-##===- Target/Sparc/InstrSelection/Makefile ----------------*- Makefile -*-===##
-#
-# The LLVM Compiler Infrastructure
-#
-# This file was developed by the LLVM research group and is distributed under
-# the University of Illinois Open Source License. See LICENSE.TXT for details.
-#
-##===----------------------------------------------------------------------===##
-
-LEVEL = ../../../..
-DIRS =
-LIBRARYNAME = sparcv9select
-
-include $(LEVEL)/Makefile.common
diff --git a/lib/Target/SparcV9/Makefile b/lib/Target/SparcV9/Makefile
index 195a1bce52..4b96a64679 100644
--- a/lib/Target/SparcV9/Makefile
+++ b/lib/Target/SparcV9/Makefile
@@ -8,7 +8,7 @@
##===----------------------------------------------------------------------===##
LEVEL = ../../..
LIBRARYNAME = sparcv9
-DIRS = InstrSelection RegAlloc LiveVar
+DIRS = RegAlloc LiveVar
ExtraSource = SparcV9.burm.cpp
diff --git a/lib/Target/SparcV9/SparcV9InstrSelection.cpp b/lib/Target/SparcV9/SparcV9BurgISel.cpp
index 0dd02c04a0..0f15ad9fbd 100644
--- a/lib/Target/SparcV9/SparcV9InstrSelection.cpp
+++ b/lib/Target/SparcV9/SparcV9BurgISel.cpp
@@ -1,4 +1,4 @@
-//===-- SparcV9InstrSelection.cpp -----------------------------------------===//
+//===- SparcV9BurgISel.cpp - SparcV9 BURG-based Instruction Selector ------===//
//
// The LLVM Compiler Infrastructure
//
@@ -7,32 +7,1551 @@
//
//===----------------------------------------------------------------------===//
//
-// BURS instruction selection for SPARC V9 architecture.
-//
+// SparcV9 BURG-based instruction selector. It uses the SSA graph to
+// construct a forest of BURG instruction trees (class InstrForest) and then
+// uses the BURG-generated tree grammar (BURM) to find the optimal instruction
+// sequences for the SparcV9.
+//
//===----------------------------------------------------------------------===//
+#include "MachineInstrAnnot.h"
+#include "SparcV9BurgISel.h"
+#include "SparcV9InstrForest.h"
+#include "SparcV9Internals.h"
+#include "SparcV9TmpInstr.h"
+#include "llvm/CodeGen/IntrinsicLowering.h"
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionInfo.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
+#include "llvm/GlobalValue.h"
#include "llvm/Instructions.h"
#include "llvm/Intrinsics.h"
#include "llvm/Module.h"
-#include "llvm/CodeGen/InstrForest.h"
-#include "llvm/CodeGen/InstrSelection.h"
-#include "llvm/CodeGen/MachineCodeForInstruction.h"
-#include "llvm/CodeGen/MachineFunction.h"
-#include "llvm/CodeGen/MachineFunctionInfo.h"
-#include "llvm/CodeGen/MachineInstrBuilder.h"
-#include "MachineInstrAnnot.h"
-#include "SparcV9InstrSelectionSupport.h"
-#include "SparcV9Internals.h"
-#include "SparcV9RegClassInfo.h"
-#include "SparcV9RegInfo.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/CFG.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Type.h"
+#include "Config/alloca.h"
+#include "Support/CommandLine.h"
+#include "Support/LeakDetector.h"
#include "Support/MathExtras.h"
+#include "Support/STLExtras.h"
+#include "Support/hash_map"
#include <algorithm>
#include <cmath>
+#include <iostream>
+using namespace llvm;
+
+//==------------------------------------------------------------------------==//
+// InstrForest (V9ISel BURG instruction trees) implementation
+//==------------------------------------------------------------------------==//
namespace llvm {
+class InstructionNode : public InstrTreeNode {
+ bool codeIsFoldedIntoParent;
+
+public:
+ InstructionNode(Instruction *_instr);
+
+ Instruction *getInstruction() const {
+ assert(treeNodeType == NTInstructionNode);
+ return cast<Instruction>(val);
+ }
+
+ void markFoldedIntoParent() { codeIsFoldedIntoParent = true; }
+ bool isFoldedIntoParent() { return codeIsFoldedIntoParent; }
+
+ // Methods to support type inquiry through isa, cast, and dyn_cast:
+ static inline bool classof(const InstructionNode *N) { return true; }
+ static inline bool classof(const InstrTreeNode *N) {
+ return N->getNodeType() == InstrTreeNode::NTInstructionNode;
+ }
+
+protected:
+ virtual void dumpNode(int indent) const;
+};
+
+class VRegListNode : public InstrTreeNode {
+public:
+ VRegListNode() : InstrTreeNode(NTVRegListNode, 0) { opLabel = VRegListOp; }
+ // Methods to support type inquiry through isa, cast, and dyn_cast:
+ static inline bool classof(const VRegListNode *N) { return true; }
+ static inline bool classof(const InstrTreeNode *N) {
+ return N->getNodeType() == InstrTreeNode::NTVRegListNode;
+ }
+protected:
+ virtual void dumpNode(int indent) const;
+};
+
+class VRegNode : public InstrTreeNode {
+public:
+ VRegNode(Value* _val) : InstrTreeNode(NTVRegNode, _val) {
+ opLabel = VRegNodeOp;
+ }
+ // Methods to support type inquiry through isa, cast, and dyn_cast:
+ static inline bool classof(const VRegNode *N) { return true; }
+ static inline bool classof(const InstrTreeNode *N) {
+ return N->getNodeType() == InstrTreeNode::NTVRegNode;
+ }
+protected:
+ virtual void dumpNode(int indent) const;
+};
+
+class ConstantNode : public InstrTreeNode {
+public:
+ ConstantNode(Constant *constVal)
+ : InstrTreeNode(NTConstNode, (Value*)constVal) {
+ opLabel = ConstantNodeOp;
+ }
+ Constant *getConstVal() const { return (Constant*) val;}
+ // Methods to support type inquiry through isa, cast, and dyn_cast:
+ static inline bool classof(const ConstantNode *N) { return true; }
+ static inline bool classof(const InstrTreeNode *N) {
+ return N->getNodeType() == InstrTreeNode::NTConstNode;
+ }
+protected:
+ virtual void dumpNode(int indent) const;
+};
+
+class LabelNode : public InstrTreeNode {
+public:
+ LabelNode(BasicBlock* BB) : InstrTreeNode(NTLabelNode, (Value*)BB) {
+ opLabel = LabelNodeOp;
+ }
+ BasicBlock *getBasicBlock() const { return (BasicBlock*)val;}
+ // Methods to support type inquiry through isa, cast, and dyn_cast:
+ static inline bool classof(const LabelNode *N) { return true; }
+ static inline bool classof(const InstrTreeNode *N) {
+ return N->getNodeType() == InstrTreeNode::NTLabelNode;
+ }
+protected:
+ virtual void dumpNode(int indent) const;
+};
+
+/// InstrForest - A forest of instruction trees for a single function.
+/// The goal of InstrForest is to group instructions into a single
+/// tree if one or more of them might be potentially combined into a
+/// single complex instruction in the target machine. We group two
+/// instructions O and I if: (1) Instruction O computes an operand used
+/// by instruction I, and (2) O and I are part of the same basic block,
+/// and (3) O has only a single use, viz., I.
+///
+class InstrForest : private hash_map<const Instruction *, InstructionNode*> {
+public:
+ // Use a vector for the root set to get a deterministic iterator
+ // for stable code generation. Even though we need to erase nodes
+ // during forest construction, a vector should still be efficient
+ // because the elements to erase are nearly always near the end.
+ typedef std::vector<InstructionNode*> RootSet;
+ typedef RootSet:: iterator root_iterator;
+ typedef RootSet::const_iterator const_root_iterator;
+
+private:
+ RootSet treeRoots;
+
+public:
+ /*ctor*/ InstrForest (Function *F);
+ /*dtor*/ ~InstrForest ();
+
+ /// getTreeNodeForInstr - Returns the tree node for an Instruction.
+ ///
+ inline InstructionNode *getTreeNodeForInstr(Instruction* instr) {
+ return (*this)[instr];
+ }
+
+ /// Iterators for the root nodes for all the trees.
+ ///
+ const_root_iterator roots_begin() const { return treeRoots.begin(); }
+ root_iterator roots_begin() { return treeRoots.begin(); }
+ const_root_iterator roots_end () const { return treeRoots.end(); }
+ root_iterator roots_end () { return treeRoots.end(); }
+
+ void dump() const;
+
+private:
+ // Methods used to build the instruction forest.
+ void eraseRoot (InstructionNode* node);
+ void setLeftChild (InstrTreeNode* parent, InstrTreeNode* child);
+ void setRightChild(InstrTreeNode* parent, InstrTreeNode* child);
+ void setParent (InstrTreeNode* child, InstrTreeNode* parent);
+ void noteTreeNodeForInstr(Instruction* instr, InstructionNode* treeNode);
+ InstructionNode* buildTreeForInstruction(Instruction* instr);
+};
+
+void InstrTreeNode::dump(int dumpChildren, int indent) const {
+ dumpNode(indent);
+
+ if (dumpChildren) {
+ if (LeftChild)
+ LeftChild->dump(dumpChildren, indent+1);
+ if (RightChild)
+ RightChild->dump(dumpChildren, indent+1);
+ }
+}
+
+InstructionNode::InstructionNode(Instruction* I)
+ : InstrTreeNode(NTInstructionNode, I), codeIsFoldedIntoParent(false) {
+ opLabel = I->getOpcode();
+
+ // Distinguish special cases of some instructions such as Ret and Br
+ //
+ if (opLabel == Instruction::Ret && cast<ReturnInst>(I)->getReturnValue()) {
+ opLabel = RetValueOp; // ret(value) operation
+ }
+ else if (opLabel ==Instruction::Br && !cast<BranchInst>(I)->isUnconditional())
+ {
+ opLabel = BrCondOp; // br(cond) operation
+ } else if (opLabel >= Instruction::SetEQ && opLabel <= Instruction::SetGT) {
+ opLabel = SetCCOp; // common label for all SetCC ops
+ } else if (opLabel == Instruction::Alloca && I->getNumOperands() > 0) {
+ opLabel = AllocaN; // Alloca(ptr, N) operation
+ } else if (opLabel == Instruction::GetElementPtr &&
+ cast<GetElementPtrInst>(I)->hasIndices()) {
+ opLabel = opLabel + 100; // getElem with index vector
+ } else if (opLabel == Instruction::Xor &&
+ BinaryOperator::isNot(I)) {
+ opLabel = (I->getType() == Type::BoolTy)? NotOp // boolean Not operator
+ : BNotOp; // bitwise Not operator
+ } else if (opLabel == Instruction::And || opLabel == Instruction::Or ||
+ opLabel == Instruction::Xor) {
+ // Distinguish bitwise operators from logical operators!
+ if (I->getType() != Type::BoolTy)
+ opLabel = opLabel + 100; // bitwise operator
+ } else if (opLabel == Instruction::Cast) {
+ const Type *ITy = I->getType();
+ switch(ITy->getTypeID())
+ {
+ case Type::BoolTyID: opLabel = ToBoolTy; break;
+ case Type::UByteTyID: opLabel = ToUByteTy; break;
+ case Type::SByteTyID: opLabel = ToSByteTy; break;
+ case Type::UShortTyID: opLabel = ToUShortTy; break;
+ case Type::ShortTyID: opLabel = ToShortTy; break;
+ case Type::UIntTyID: opLabel = ToUIntTy; break;
+ case Type::IntTyID: opLabel = ToIntTy; break;
+ case Type::ULongTyID: opLabel = ToULongTy; break;
+ case Type::LongTyID: opLabel = ToLongTy; break;
+ case Type::FloatTyID: opLabel = ToFloatTy; break;
+ case Type::DoubleTyID: opLabel = ToDoubleTy; break;
+ case Type::ArrayTyID: opLabel = ToArrayTy; break;
+ case Type::PointerTyID: opLabel = ToPointerTy; break;
+ default:
+ // Just use `Cast' opcode otherwise. It's probably ignored.
+ break;
+ }
+ }
+}
+
+void InstructionNode::dumpNode(int indent) const {
+ for (int i=0; i < indent; i++)
+ std::cerr << " ";
+ std::cerr << getInstruction()->getOpcodeName()
+ << " [label " << getOpLabel() << "]" << "\n";
+}
+
+void VRegListNode::dumpNode(int indent) const {
+ for (int i=0; i < indent; i++)
+ std::cerr << " ";
+
+ std::cerr << "List" << "\n";
+}
+
+void VRegNode::dumpNode(int indent) const {
+ for (int i=0; i < indent; i++)
+ std::cerr << " ";
+ std::cerr << "VReg " << *getValue() << "\n";
+}
+
+void ConstantNode::dumpNode(int indent) const {
+ for (int i=0; i < indent; i++)
+ std::cerr << " ";
+ std::cerr << "Constant " << *getValue() << "\n";
+}
+
+void LabelNode::dumpNode(int indent) const {
+ for (int i=0; i < indent; i++)
+ std::cerr << " ";
+
+ std::cerr << "Label " << *getValue() << "\n";
+}
+
+/// InstrForest ctor - Create a forest of instruction trees for a
+/// single function.
+///
+InstrForest::InstrForest(Function *F) {
+ for (Function::iterator BB = F->begin(), FE = F->end(); BB != FE; ++BB) {
+ for(BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
+ buildTreeForInstruction(I);
+ }
+}
+
+InstrForest::~InstrForest() {
+ for_each(treeRoots.begin(), treeRoots.end(), deleter<InstructionNode>);
+}
+
+void InstrForest::dump() const {
+ for (const_root_iterator I = roots_begin(); I != roots_end(); ++I)
+ (*I)->dump(/*dumpChildren*/ 1, /*indent*/ 0);
+}
+
+inline void InstrForest::eraseRoot(InstructionNode* node) {
+ for (RootSet::reverse_iterator RI=treeRoots.rbegin(), RE=treeRoots.rend();
+ RI != RE; ++RI)
+ if (*RI == node)
+ treeRoots.erase(RI.base()-1);
+}
+
+inline void InstrForest::noteTreeNodeForInstr(Instruction *instr,
+ InstructionNode *treeNode) {
+ (*this)[instr] = treeNode;
+ treeRoots.push_back(treeNode); // mark node as root of a new tree
+}
+
+inline void InstrForest::setLeftChild(InstrTreeNode *parent,
+ InstrTreeNode *child) {
+ parent->LeftChild = child;
+ child->Parent = parent;
+ if (InstructionNode* instrNode = dyn_cast<InstructionNode>(child))
+ eraseRoot(instrNode); // no longer a tree root
+}
+
+inline void InstrForest::setRightChild(InstrTreeNode *parent,
+ InstrTreeNode *child) {
+ parent->RightChild = child;
+ child->Parent = parent;
+ if (InstructionNode* instrNode = dyn_cast<InstructionNode>(child))
+ eraseRoot(instrNode); // no longer a tree root
+}
+
+InstructionNode* InstrForest::buildTreeForInstruction(Instruction *instr) {
+ InstructionNode *treeNode = getTreeNodeForInstr(instr);
+ if (treeNode) {
+ // treeNode has already been constructed for this instruction
+ assert(treeNode->getInstruction() == instr);
+ return treeNode;
+ }
+
+ // Otherwise, create a new tree node for this instruction.
+ treeNode = new InstructionNode(instr);
+ noteTreeNodeForInstr(instr, treeNode);
+
+ if (instr->getOpcode() == Instruction::Call) {
+ // Operands of call instruction
+ return treeNode;
+ }
+
+ // If the instruction has more than 2 instruction operands,
+ // then we need to create artificial list nodes to hold them.
+ // (Note that we only count operands that get tree nodes, and not
+ // others such as branch labels for a branch or switch instruction.)
+ // To do this efficiently, we'll walk all operands, build treeNodes
+ // for all appropriate operands and save them in an array. We then
+ // insert children at the end, creating list nodes where needed.
+ // As a performance optimization, allocate a child array only
+ // if a fixed array is too small.
+ int numChildren = 0;
+ InstrTreeNode** childArray = new InstrTreeNode*[instr->getNumOperands()];
+
+ // Walk the operands of the instruction
+ for (Instruction::op_iterator O = instr->op_begin(); O!=instr->op_end();
+ ++O) {
+ Value* operand = *O;
+
+ // Check if the operand is a data value, not an branch label, type,
+ // method or module. If the operand is an address type (i.e., label
+ // or method) that is used in an non-branching operation, e.g., `add'.
+ // that should be considered a data value.
+ // Check latter condition here just to simplify the next IF.
+ bool includeAddressOperand =
+ (isa<BasicBlock>(operand) || isa<Function>(operand))
+ && !instr->isTerminator();
+
+ if (includeAddressOperand || isa<Instruction>(operand) ||
+ isa<Constant>(operand) || isa<Argument>(operand)) {
+ // This operand is a data value.
+ // An instruction that computes the incoming value is added as a
+ // child of the current instruction if:
+ // the value has only a single use
+ // AND both instructions are in the same basic block.
+ // AND the current instruction is not a PHI (because the incoming
+ // value is conceptually in a predecessor block,
+ // even though it may be in the same static block)
+ // (Note that if the value has only a single use (viz., `instr'),
+ // the def of the value can be safely moved just before instr
+ // and therefore it is safe to combine these two instructions.)
+ // In all other cases, the virtual register holding the value
+ // is used directly, i.e., made a child of the instruction node.
+ InstrTreeNode* opTreeNode;
+ if (isa<Instruction>(operand) && operand->hasOneUse() &&
+ cast<Instruction>(operand)->getParent() == instr->getParent() &&
+ instr->getOpcode() != Instruction::PHI &&
+ instr->getOpcode() != Instruction::Call) {
+ // Recursively create a treeNode for it.
+ opTreeNode = buildTreeForInstruction((Instruction*)operand);
+ } else if (Constant *CPV = dyn_cast<Constant>(operand)) {
+ if (isa<GlobalValue>(CPV))
+ opTreeNode = new VRegNode(operand);
+ else
+ // Create a leaf node for a constant
+ opTreeNode = new ConstantNode(CPV);
+ } else {
+ // Create a leaf node for the virtual register
+ opTreeNode = new VRegNode(operand);
+ }
+
+ childArray[numChildren++] = opTreeNode;
+ }
+ }
+
+ // Add any selected operands as children in the tree.
+ // Certain instructions can have more than 2 in some instances (viz.,
+ // a CALL or a memory access -- LOAD, STORE, and GetElemPtr -- to an
+ // array or struct). Make the operands of every such instruction into
+ // a right-leaning binary tree with the operand nodes at the leaves
+ // and VRegList nodes as internal nodes.
+ InstrTreeNode *parent = treeNode;
+
+ if (numChildren > 2) {
+ unsigned instrOpcode = treeNode->getInstruction()->getOpcode();
+ assert(instrOpcode == Instruction::PHI ||
+ instrOpcode == Instruction::Call ||
+ instrOpcode == Instruction::Load ||
+ instrOpcode == Instruction::Store ||
+ instrOpcode == Instruction::GetElementPtr);
+ }
+
+ // Insert the first child as a direct child
+ if (numChildren >= 1)
+ setLeftChild(parent, childArray[0]);
+
+ int n;
+
+ // Create a list node for children 2 .. N-1, if any
+ for (n = numChildren-1; n >= 2; n--) {
+ // We have more than two children
+ InstrTreeNode *listNode = new VRegListNode();
+ setRightChild(parent, listNode);
+ setLeftChild(listNode, childArray[numChildren - n]);
+ parent = listNode;
+ }
+
+ // Now insert the last remaining child (if any).
+ if (numChildren >= 2) {
+ assert(n == 1);
+ setRightChild(parent, childArray[numChildren - 1]);
+ }
+
+ delete [] childArray;
+ return treeNode;
+}
+//==------------------------------------------------------------------------==//
+// V9ISel Command-line options and declarations
+//==------------------------------------------------------------------------==//
+
+namespace {
+ /// Allow the user to select the amount of debugging information printed
+ /// out by V9ISel.
+ ///
+ enum SelectDebugLevel_t {
+ Select_NoDebugInfo,
+ Select_PrintMachineCode,
+ Select_DebugInstTrees,
+ Select_DebugBurgTrees,
+ };
+ cl::opt<SelectDebugLevel_t>
+ SelectDebugLevel("dselect", cl::Hidden,
+ cl::desc("enable instruction selection debug information"),
+ cl::values(
+ clEnumValN(Select_NoDebugInfo, "n", "disable debug output"),
+ clEnumValN(Select_PrintMachineCode, "y", "print generated machine code"),
+ clEnumValN(Select_DebugInstTrees, "i",
+ "print debugging info for instruction selection"),
+ clEnumValN(Select_DebugBurgTrees, "b", "print burg trees"),
+ clEnumValEnd));
+
+
+ /// V9ISel - This is the FunctionPass that drives the instruction selection
+ /// process on the SparcV9 target.
+ ///
+ class V9ISel : public FunctionPass {
+ TargetMachine &Target;
+ void InsertCodeForPhis(Function &F);
+ void InsertPhiElimInstructions(BasicBlock *BB,
+ const std::vector<MachineInstr*>& CpVec);
+ void SelectInstructionsForTree(InstrTreeNode* treeRoot, int goalnt);
+ void PostprocessMachineCodeForTree(InstructionNode* instrNode,
+ int ruleForNode, short* nts);
+ public:
+ V9ISel(TargetMachine &TM) : Target(TM) {}
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesCFG();
+ }
+
+ bool runOnFunction(Function &F);
+ virtual const char *getPassName() const {
+ return "SparcV9 BURG Instruction Selector";
+ }
+ };
+}
+
+
+//==------------------------------------------------------------------------==//
+// Various V9ISel helper functions
+//==------------------------------------------------------------------------==//
+
+static const uint32_t MAXLO = (1 << 10) - 1; // set bits set by %lo(*)
+static const uint32_t MAXSIMM = (1 << 12) - 1; // set bits in simm13 field of OR
+
+/// ConvertConstantToIntType - Function to get the value of an integral
+/// constant in the form that must be put into the machine register. The
+/// specified constant is interpreted as (i.e., converted if necessary to) the
+/// specified destination type. The result is always returned as an uint64_t,
+/// since the representation of int64_t and uint64_t are identical. The
+/// argument can be any known const. isValidConstant is set to true if a valid
+/// constant was found.
+///
+uint64_t ConvertConstantToIntType(const TargetMachine &target, const Value *V,
+ const Type *destType, bool &isValidConstant) {
+ isValidConstant = false;
+ uint64_t C = 0;
+
+ if (! destType->isIntegral() && ! isa<PointerType>(destType))
+ return C;
+
+ if (! isa<Constant>(V) || isa<GlobalValue>(V))
+ return C;
+
+ // GlobalValue: no conversions needed: get value and return it
+ if (const GlobalValue* GV = dyn_cast<GlobalValue>(V)) {
+ isValidConstant = true; // may be overwritten by recursive call
+ return ConvertConstantToIntType(target, GV, destType, isValidConstant);
+ }
+
+ // ConstantBool: no conversions needed: get value and return it
+ if (const ConstantBool *CB = dyn_cast<ConstantBool>(V)) {
+ isValidConstant = true;
+ return (uint64_t) CB->getValue();
+ }
+
+ // ConstantPointerNull: it's really just a big, shiny version of zero.
+ if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(V)) {
+ isValidConstant = true;
+ return 0;
+ }
+
+ // For other types of constants, some conversion may be needed.
+ // First, extract the constant operand according to its own type
+ if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
+ switch(CE->getOpcode()) {
+ case Instruction::Cast: // recursively get the value as cast
+ C = ConvertConstantToIntType(target, CE->getOperand(0), CE->getType(),
+ isValidConstant);
+ break;
+ default: // not simplifying other ConstantExprs
+ break;
+ }
+ else if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
+ isValidConstant = true;
+ C = CI->getRawValue();
+ } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
+ isValidConstant = true;
+ double fC = CFP->getValue();
+ C = (destType->isSigned()? (uint64_t) (int64_t) fC
+ : (uint64_t) fC);
+ }
+
+ // Now if a valid value was found, convert it to destType.
+ if (isValidConstant) {
+ unsigned opSize = target.getTargetData().getTypeSize(V->getType());
+ unsigned destSize = target.getTargetData().getTypeSize(destType);
+ uint64_t maskHi = (destSize < 8)? (1U << 8*destSize) - 1 : ~0;
+ assert(opSize <= 8 && destSize <= 8 && ">8-byte int type unexpected");
+
+ if (destType->isSigned()) {
+ if (opSize > destSize) // operand is larger than dest:
+ C = C & maskHi; // mask high bits
+
+ if (opSize > destSize ||
+ (opSize == destSize && ! V->getType()->isSigned()))
+ if (C & (1U << (8*destSize - 1)))
+ C = C | ~maskHi; // sign-extend from destSize to 64 bits
+ }
+ else {
+ if (opSize > destSize || (V->getType()->isSigned() && destSize < 8)) {
+ // operand is larger than dest,
+ // OR both are equal but smaller than the full register size
+ // AND operand is signed, so it may have extra sign bits:
+ // mask high bits
+ C = C & maskHi;
+ }
+ }
+ }
+
+ return C;
+}
+
+/// CreateSETUWConst - Copy a 32-bit unsigned constant into the register
+/// `dest', using SETHI, OR in the worst case. This function correctly emulates
+/// the SETUW pseudo-op for SPARC v9 (if argument isSigned == false). The
+/// isSigned=true case is used to implement SETSW without duplicating code. It
+/// optimizes some common cases:
+/// (1) Small value that fits in simm13 field of OR: don't need SETHI.
+/// (2) isSigned = true and C is a small negative signed value, i.e.,
+/// high bits are 1, and the remaining bits fit in simm13(OR).
+static inline void
+CreateSETUWConst(const TargetMachine& target, uint32_t C,
+ Instruction* dest, std::vector<MachineInstr*>& mvec,
+ bool isSigned = false) {
+ MachineInstr *miSETHI = NULL, *miOR = NULL;
+
+ // In order to get efficient code, we should not generate the SETHI if
+ // all high bits are 1 (i.e., this is a small signed value that fits in
+ // the simm13 field of OR). So we check for and handle that case specially.
+ // NOTE: The value C = 0x80000000 is bad: sC < 0 *and* -sC < 0.
+ // In fact, sC == -sC, so we have to check for this explicitly.
+ int32_t sC = (int32_t) C;
+ bool smallNegValue =isSigned && sC < 0 && sC != -sC && -sC < (int32_t)MAXSIMM;
+
+ // Set the high 22 bits in dest if non-zero and simm13 field of OR not enough
+ if (!smallNegValue && (C & ~MAXLO) && C > MAXSIMM) {
+ miSETHI = BuildMI(V9::SETHI, 2).addZImm(C).addRegDef(dest);
+ miSETHI->getOperand(0).markHi32();
+ mvec.push_back(miSETHI);
+ }
+
+ // Set the low 10 or 12 bits in dest. This is necessary if no SETHI
+ // was generated, or if the low 10 bits are non-zero.
+ if (miSETHI==NULL || C & MAXLO) {
+ if (miSETHI) {
+ // unsigned value with high-order bits set using SETHI
+ miOR = BuildMI(V9::ORi,3).addReg(dest).addZImm(C).addRegDef(dest);
+ miOR->getOperand(1).markLo32();
+ } else {
+ // unsigned or small signed value that fits in simm13 field of OR
+ assert(smallNegValue || (C & ~MAXSIMM) == 0);
+ miOR = BuildMI(V9::ORi, 3).addMReg(target.getRegInfo()->getZeroRegNum())
+ .addSImm(sC).addRegDef(dest);
+ }
+ mvec.push_back(miOR);
+ }
+
+ assert((miSETHI || miOR) && "Oops, no code was generated!");
+}
+
+/// CreateSETSWConst - Set a 32-bit signed constant in the register `dest',
+/// with sign-extension to 64 bits. This uses SETHI, OR, SRA in the worst case.
+/// This function correctly emulates the SETSW pseudo-op for SPARC v9. It
+/// optimizes the same cases as SETUWConst, plus:
+/// (1) SRA is not needed for positive or small negative values.
+///
+static inline void
+CreateSETSWConst(const TargetMachine& target, int32_t C,
+ Instruction* dest, std::vector<MachineInstr*>& mvec) {
+ // Set the low 32 bits of dest
+ CreateSETUWConst(target, (uint32_t) C, dest, mvec, /*isSigned*/true);
+
+ // Sign-extend to the high 32 bits if needed.
+ // NOTE: The value C = 0x80000000 is bad: -C == C and so -C is < MAXSIMM
+ if (C < 0 && (C == -C || -C > (int32_t) MAXSIMM))
+ mvec.push_back(BuildMI(V9::SRAi5,3).addReg(dest).addZImm(0).addRegDef(dest));
+}
+
+/// CreateSETXConst - Set a 64-bit signed or unsigned constant in the
+/// register `dest'. Use SETUWConst for each 32 bit word, plus a
+/// left-shift-by-32 in between. This function correctly emulates the SETX
+/// pseudo-op for SPARC v9. It optimizes the same cases as SETUWConst for each
+/// 32 bit word.
+///
+static inline void
+CreateSETXConst(const TargetMachine& target, uint64_t C,
+ Instruction* tmpReg, Instruction* dest,
+ std::vector<MachineInstr*>& mvec) {
+ assert(C > (unsigned int) ~0 && "Use SETUW/SETSW for 32-bit values!");
+
+ MachineInstr* MI;
+
+ // Code to set the upper 32 bits of the value in register `tmpReg'
+ CreateSETUWConst(target, (C >> 32), tmpReg, mvec);
+
+ // Shift tmpReg left by 32 bits
+ mvec.push_back(BuildMI(V9::SLLXi6, 3).addReg(tmpReg).addZImm(32)
+ .addRegDef(tmpReg));
+
+ // Code to set the low 32 bits of the value in register `dest'
+ CreateSETUWConst(target, C, dest, mvec);
+
+ // dest = OR(tmpReg, dest)
+ mvec.push_back(BuildMI(V9::ORr,3).addReg(dest).addReg(tmpReg).addRegDef(dest));
+}
+
+/// CreateSETUWLabel - Set a 32-bit constant (given by a symbolic label) in
+/// the register `dest'.
+///
+static inline void
+CreateSETUWLabel(const TargetMachine& target, Value* val,
+ Instruction* dest, std::vector<MachineInstr*>& mvec) {
+ MachineInstr* MI;
+
+ // Set the high 22 bits in dest
+ MI = BuildMI(V9::SETHI, 2).addReg(val).addRegDef(dest);
+ MI->getOperand(0).markHi32();
+ mvec.push_back(MI);
+
+ // Set the low 10 bits in dest
+ MI = BuildMI(V9::ORr, 3).addReg(dest).addReg(val).addRegDef(dest);
+ MI->getOperand(1).markLo32();
+ mvec.push_back(MI);
+}
+
+/// CreateSETXLabel - Set a 64-bit constant (given by a symbolic label) in the
+/// register `dest'.
+///
+static inline void
+CreateSETXLabel(const TargetMachine& target, Value* val, Instruction* tmpReg,
+ Instruction* dest, std::vector<MachineInstr*>& mvec) {
+ assert(isa<Constant>(val) &&
+ "I only know about constant values and global addresses");
+
+ MachineInstr* MI;
+
+ MI = BuildMI(V9::SETHI, 2).addPCDisp(val).addRegDef(tmpReg);
+ MI->getOperand(0).markHi64();
+ mvec.push_back(MI);
+
+ MI = BuildMI(V9::ORi, 3).addReg(tmpReg).addPCDisp(val).addRegDef(tmpReg);
+ MI->getOperand(1).markLo64();
+ mvec.push_back(MI);
+
+ mvec.push_back(BuildMI(V9::SLLXi6, 3).addReg(tmpReg).addZImm(32)
+ .addRegDef(tmpReg));
+ MI = BuildMI(V9::SETHI, 2).addPCDisp(val).addRegDef(dest);
+ MI->getOperand(0).markHi32();
+ mvec.push_back(MI);
+
+ MI = BuildMI(V9::ORr, 3).addReg(dest).addReg(tmpReg).addRegDef(dest);
+ mvec.push_back(MI);
+
+ MI = BuildMI(V9::ORi, 3).addReg(dest).addPCDisp(val).addRegDef(dest);
+ MI->getOperand(1).markLo32();
+ mvec.push_back(MI);
+}
+
+/// CreateUIntSetInstruction - Create code to Set an unsigned constant in the
+/// register `dest'. Uses CreateSETUWConst, CreateSETSWConst or CreateSETXConst
+/// as needed. CreateSETSWConst is an optimization for the case that the
+/// unsigned value has all ones in the 33 high bits (so that sign-extension sets
+/// them all).
+///
+static inline void
+CreateUIntSetInstruction(const TargetMachine& target,
+ uint64_t C, Instruction* dest,
+ std::vector<MachineInstr*>& mvec,
+ MachineCodeForInstruction& mcfi) {
+ static const uint64_t lo32 = (uint32_t) ~0;
+ if (C <= lo32) // High 32 bits are 0. Set low 32 bits.
+ CreateSETUWConst(target, (uint32_t) C, dest, mvec);
+ else if ((C & ~lo32) == ~lo32 && (C & (1U << 31))) {
+ // All high 33 (not 32) bits are 1s: sign-extension will take care
+ // of high 32 bits, so use the sequence for signed int
+ CreateSETSWConst(target, (int32_t) C, dest, mvec);
+ } else if (C > lo32) {
+ // C does not fit in 32 bits
+ TmpInstruction* tmpReg = new TmpInstruction(mcfi, Type::IntTy);
+ CreateSETXConst(target, C, tmpReg, dest, mvec);
+ }
+}
+
+/// CreateIntSetInstruction - Create code to Set a signed constant in the
+/// register `dest'. Really the same as CreateUIntSetInstruction.
+///
+static inline void
+CreateIntSetInstruction(const TargetMachine& target,
+ int64_t C, Instruction* dest,
+ std::vector<MachineInstr*>& mvec,
+ MachineCodeForInstruction& mcfi) {
+ CreateUIntSetInstruction(target, (uint64_t) C, dest, mvec, mcfi);
+}
+
+/// MaxConstantsTableTy - Table mapping LLVM opcodes to the max. immediate
+/// constant usable for that operation in the SparcV9 backend. Used by
+/// ConstantMayNotFitInImmedField().
+///
+struct MaxConstantsTableTy {
+ // Entry == 0 ==> no immediate constant field exists at all.
+ // Entry > 0 ==> abs(immediate constant) <= Entry
+ std::vector<int> tbl;
+
+ int getMaxConstantForInstr (unsigned llvmOpCode);
+ MaxConstantsTableTy ();
+ unsigned size() const { return tbl.size (); }
+ int &operator[] (unsigned index) { return tbl[index]; }
+};
+
+int MaxConstantsTableTy::getMaxConstantForInstr(unsigned llvmOpCode) {
+ int modelOpCode = -1;
+
+ if (llvmOpCode >= Instruction::BinaryOpsBegin &&
+ llvmOpCode < Instruction::BinaryOpsEnd)
+ modelOpCode = V9::ADDi;
+ else
+ switch(llvmOpCode) {
+ case Instruction::Ret: modelOpCode = V9::JMPLCALLi; break;
+
+ case Instruction::Malloc:
+ case Instruction::Alloca:
+ case Instruction::GetElementPtr:
+ case Instruction::PHI:
+ case Instruction::Cast:
+ case Instruction::Call: modelOpCode = V9::ADDi; break;
+
+ case Instruction::Shl:
+ case Instruction::Shr: modelOpCode = V9::SLLXi6; break;
+
+ default: break;
+ };
+
+ return (modelOpCode < 0)? 0: SparcV9MachineInstrDesc[modelOpCode].maxImmedConst;
+}
+
+MaxConstantsTableTy::MaxConstantsTableTy () : tbl (Instruction::OtherOpsEnd) {
+ unsigned op;
+ assert(tbl.size() == Instruction::OtherOpsEnd &&
+ "assignments below will be illegal!");
+ for (op = Instruction::TermOpsBegin; op < Instruction::TermOpsEnd; ++op)
+ tbl[op] = getMaxConstantForInstr(op);
+ for (op = Instruction::BinaryOpsBegin; op < Instruction::BinaryOpsEnd; ++op)
+ tbl[op] = getMaxConstantForInstr(op);
+ for (op = Instruction::MemoryOpsBegin; op < Instruction::MemoryOpsEnd; ++op)
+ tbl[op] = getMaxConstantForInstr(op);
+ for (op = Instruction::OtherOpsBegin; op < Instruction::OtherOpsEnd; ++op)
+ tbl[op] = getMaxConstantForInstr(op);
+}
+
+bool ConstantMayNotFitInImmedField(const Constant* CV, const Instruction* I) {
+ // The one and only MaxConstantsTable, used only by this function.
+ static MaxConstantsTableTy MaxConstantsTable;
+
+ if (I->getOpcode() >= MaxConstantsTable.size()) // user-defined op (or bug!)
+ return true;
+
+ if (isa<ConstantPointerNull>(CV)) // can always use %g0
+ return false;
+
+ if (isa<SwitchInst>(I)) // Switch instructions will be lowered!
+ return false;
+
+ if (const ConstantInt* CI = dyn_cast<ConstantInt>(CV))
+ return labs((int64_t)CI->getRawValue()) > MaxConstantsTable[I->getOpcode()];
+
+ if (isa<ConstantBool>(CV))
+ return 1 > MaxConstantsTable[I->getOpcode()];
+
+ return true;
+}
+
+/// ChooseLoadInstruction - Return the appropriate load instruction opcode
+/// based on the given LLVM value type.
+///
+static inline MachineOpCode ChooseLoadInstruction(const Type *DestTy) {
+ switch (DestTy->getTypeID()) {
+ case Type::BoolTyID:
+ case Type::UByteTyID: return V9::LDUBr;
+ case Type::SByteTyID: return V9::LDSBr;
+ case Type::UShortTyID: return V9::LDUHr;
+ case Type::ShortTyID: return V9::LDSHr;
+ case Type::UIntTyID: return V9::LDUWr;
+ case Type::IntTyID: return V9::LDSWr;
+ case Type::PointerTyID:
+ case Type::ULongTyID:
+ case Type::LongTyID: return V9::LDXr;
+ case Type::FloatTyID: return V9::LDFr;
+ case Type::DoubleTyID: return V9::LDDFr;
+ default: assert(0 && "Invalid type for Load instruction");
+ }
+ return 0;
+}
+
+/// ChooseStoreInstruction - Return the appropriate store instruction opcode
+/// based on the given LLVM value type.
+///
+static inline MachineOpCode ChooseStoreInstruction(const Type *DestTy) {
+ switch (DestTy->getTypeID()) {
+ case Type::BoolTyID:
+ case Type::UByteTyID:
+ case Type::SByteTyID: return V9::STBr;
+ case Type::UShortTyID:
+ case Type::ShortTyID: return V9::STHr;
+ case Type::UIntTyID:
+ case Type::IntTyID: return V9::STWr;
+ case Type::PointerTyID:
+ case Type::ULongTyID:
+ case Type::LongTyID: return V9::STXr;
+ case Type::FloatTyID: return V9::STFr;
+ case Type::DoubleTyID: return V9::STDFr;
+ default: assert(0 && "Invalid type for Store instruction");
+ }
+ return 0;
+}
+
+static inline MachineOpCode ChooseAddInstructionByType(const Type* resultType) {
+ MachineOpCode opCode = V9::INVALID_OPCODE;
+ if (resultType->isIntegral() || isa<PointerType>(resultType)
+ || isa<FunctionType>(resultType) || resultType == Type::LabelTy) {
+ opCode = V9::ADDr;
+ } else
+ switch(resultType->getTypeID()) {
+ case Type::FloatTyID: opCode = V9::FADDS; break;
+ case Type::DoubleTyID: opCode = V9::FADDD; break;
+ default: assert(0 && "Invalid type for ADD instruction"); break;
+ }
+
+ return opCode;
+}
+
+/// convertOpcodeFromRegToImm - Because the SparcV9 instruction selector likes
+/// to re-write operands to instructions, making them change from a Value*
+/// (virtual register) to a Constant* (making an immediate field), we need to
+/// change the opcode from a register-based instruction to an immediate-based
+/// instruction, hence this mapping.
+///
+static unsigned convertOpcodeFromRegToImm(unsigned Opcode) {
+ switch (Opcode) {
+ /* arithmetic */
+ case V9::ADDr: return V9::ADDi;
+ case V9::ADDccr: return V9::ADDcci;
+ case V9::ADDCr: return V9::ADDCi;
+ case V9::ADDCccr: return V9::ADDCcci;
+ case V9::SUBr: return V9::SUBi;
+ case V9::SUBccr: return V9::SUBcci;
+ case V9::SUBCr: return V9::SUBCi;
+ case V9::SUBCccr: return V9::SUBCcci;
+ case V9::MULXr: return V9::MULXi;
+ case V9::SDIVXr: return V9::SDIVXi;
+ case V9::UDIVXr: return V9::UDIVXi;
+
+ /* logical */
+ case V9::ANDr: return V9::ANDi;
+ case V9::ANDccr: return V9::ANDcci;
+ case V9::ANDNr: return V9::ANDNi;
+ case V9::ANDNccr: return V9::ANDNcci;
+ case V9::ORr: return V9::ORi;
+ case V9::ORccr: return V9::ORcci;
+ case V9::ORNr: return V9::ORNi;
+ case V9::ORNccr: return V9::ORNcci;
+ case V9::XORr: return V9::XORi;
+ case V9::XORccr: return V9::XORcci;
+ case V9::XNORr: return V9::XNORi;
+ case V9::XNORccr: return V9::XNORcci;
+
+ /* shift */
+ case V9::SLLr5: return V9::SLLi5;
+ case V9::SRLr5: return V9::SRLi5;
+ case V9::SRAr5: return V9::SRAi5;
+ case V9::SLLXr6: return V9::SLLXi6;
+ case V9::SRLXr6: return V9::SRLXi6;
+ case V9::SRAXr6: return V9::SRAXi6;
+
+ /* Conditional move on int comparison with zero */
+ case V9::MOVRZr: return V9::MOVRZi;
+ case V9::MOVRLEZr: return V9::MOVRLEZi;
+ case V9::MOVRLZr: return V9::MOVRLZi;
+ case V9::MOVRNZr: return V9::MOVRNZi;
+ case V9::MOVRGZr: return V9::MOVRGZi;
+ case V9::MOVRGEZr: return V9::MOVRGEZi;
+
+
+ /* Conditional move on int condition code */
+ case V9::MOVAr: return V9::MOVAi;
+ case V9::MOVNr: return V9::MOVNi;
+ case V9::MOVNEr: return V9::MOVNEi;
+ case V9::MOVEr: return V9::MOVEi;
+ case V9::MOVGr: return V9::MOVGi;
+ case V9::MOVLEr: return V9::MOVLEi;
+ case V9::MOVGEr: return V9::MOVGEi;
+ case V9::MOVLr: return V9::MOVLi;
+ case V9::MOVGUr: return V9::MOVGUi;
+ case V9::MOVLEUr: return V9::MOVLEUi;
+ case V9::MOVCCr: return V9::MOVCCi;
+ case V9::MOVCSr: return V9::MOVCSi;
+ case V9::MOVPOSr: return V9::MOVPOSi;
+ case V9::MOVNEGr: return V9::MOVNEGi;
+ case V9::MOVVCr: return V9::MOVVCi;
+ case V9::MOVVSr: return V9::MOVVSi;
+
+ /* Conditional move of int reg on fp condition code */
+ case V9::MOVFAr: return V9::MOVFAi;
+ case V9::MOVFNr: return V9::MOVFNi;
+ case V9::MOVFUr: return V9::MOVFUi;
+ case V9::MOVFGr: return V9::MOVFGi;
+ case V9::MOVFUGr: return V9::MOVFUGi;
+ case V9::MOVFLr: return V9::MOVFLi;
+ case V9::MOVFULr: return V9::MOVFULi;
+ case V9::MOVFLGr: return V9::MOVFLGi;
+ case V9::MOVFNEr: return V9::MOVFNEi;
+ case V9::MOVFEr: return V9::MOVFEi;
+ case V9::MOVFUEr: return V9::MOVFUEi;
+ case V9::MOVFGEr: return V9::MOVFGEi;
+ case V9::MOVFUGEr: return V9::MOVFUGEi;
+ case V9::MOVFLEr: return V9::MOVFLEi;
+ case V9::MOVFULEr: return V9::MOVFULEi;
+ case V9::MOVFOr: return V9::MOVFOi;
+
+ /* load */
+ case V9::LDSBr: return V9::LDSBi;
+ case V9::LDSHr: return V9::LDSHi;
+ case V9::LDSWr: return V9::LDSWi;
+ case V9::LDUBr: return V9::LDUBi;
+ case V9::LDUHr: return V9::LDUHi;
+ case V9::LDUWr: return V9::LDUWi;
+ case V9::LDXr: return V9::LDXi;
+ case V9::LDFr: return V9::LDFi;
+ case V9::LDDFr: return V9::LDDFi;
+ case V9::LDQFr: return V9::LDQFi;
+ case V9::LDFSRr: return V9::LDFSRi;
+ case V9::LDXFSRr: return V9::LDXFSRi;
+
+ /* store */
+ case V9::STBr: return V9::STBi;
+ case V9::STHr: return V9::STHi;
+ case V9::STWr: return V9::STWi;
+ case V9::STXr: return V9::STXi;
+ case V9::STFr: return V9::STFi;
+ case V9::STDFr: return V9::STDFi;
+ case V9::STFSRr: return V9::STFSRi;
+ case V9::STXFSRr: return V9::STXFSRi;
+
+ /* jump & return */
+ case V9::JMPLCALLr: return V9::JMPLCALLi;
+ case V9::JMPLRETr: return V9::JMPLRETi;
+
+ /* save and restore */
+ case V9::SAVEr: return V9::SAVEi;
+ case V9::RESTOREr: return V9::RESTOREi;
+
+ default:
+ // It's already in correct format
+ // Or, it's just not handled yet, but an assert() would break LLC
+#if 0
+ std::cerr << "Unhandled opcode in convertOpcodeFromRegToImm(): " << Opcode
+ << "\n";
+#endif
+ return Opcode;
+ }
+}
+
+/// CreateCodeToLoadConst - Create an instruction sequence to put the
+/// constant `val' into the virtual register `dest'. `val' may be a Constant or
+/// a GlobalValue, viz., the constant address of a global variable or function.
+/// The generated instructions are returned in `mvec'. Any temp. registers
+/// (TmpInstruction) created are recorded in mcfi. Any stack space required is
+/// allocated via MachineFunction.
+///
+void CreateCodeToLoadConst(const TargetMachine& target, Function* F,
+ Value* val, Instruction* dest,
+ std::vector<MachineInstr*>& mvec,
+ MachineCodeForInstruction& mcfi) {
+ assert(isa<Constant>(val) &&
+ "I only know about constant values and global addresses");
+
+ // Use a "set" instruction for known constants or symbolic constants (labels)
+ // that can go in an integer reg.
+ // We have to use a "load" instruction for all other constants,
+ // in particular, floating point constants.
+ const Type* valType = val->getType();
+
+ if (isa<GlobalValue>(val)) {
+ TmpInstruction* tmpReg =
+ new TmpInstruction(mcfi, PointerType::get(val->getType()), val);
+ CreateSETXLabel(target, val, tmpReg, dest, mvec);
+ return;
+ }
+
+ bool isValid;
+ uint64_t C = ConvertConstantToIntType(target, val, dest->getType(), isValid);
+ if (isValid) {
+ if (dest->getType()->isSigned())
+ CreateUIntSetInstruction(target, C, dest, mvec, mcfi);
+ else
+ CreateIntSetInstruction(target, (int64_t) C, dest, mvec, mcfi);
+
+ } else {
+ // Make an instruction sequence to load the constant, viz:
+ // SETX <addr-of-constant>, tmpReg, addrReg
+ // LOAD /*addr*/ addrReg, /*offset*/ 0, dest
+ // First, create a tmp register to be used by the SETX sequence.
+ TmpInstruction* tmpReg =
+ new TmpInstruction(mcfi, PointerType::get(val->getType()));
+
+ // Create another TmpInstruction for the address register
+ TmpInstruction* addrReg =
+ new TmpInstruction(mcfi, PointerType::get(val->getType()));
+
+ // Get the constant pool index for this constant
+ MachineConstantPool *CP = MachineFunction::get(F).getConstantPool();
+ Constant *C = cast<Constant>(val);
+ unsigned CPI = CP->getConstantPoolIndex(C);
+
+ // Put the address of the constant into a register
+ MachineInstr* MI;
+
+ MI = BuildMI(V9::SETHI, 2).addConstantPoolIndex(CPI).addRegDef(tmpReg);
+ MI->getOperand(0).markHi64();
+ mvec.push_back(MI);
+
+ MI = BuildMI(V9::ORi, 3).addReg(tmpReg).addConstantPoolIndex(CPI)
+ .addRegDef(tmpReg);
+ MI->getOperand(1).markLo64();
+ mvec.push_back(MI);
+
+ mvec.push_back(BuildMI(V9::SLLXi6, 3).addReg(tmpReg).addZImm(32)
+ .addRegDef(tmpReg));
+ MI = BuildMI(V9::SETHI, 2).addConstantPoolIndex(CPI).addRegDef(addrReg);
+ MI->getOperand(0).markHi32();
+ mvec.push_back(MI);
+
+ MI = BuildMI(V9::ORr, 3).addReg(addrReg).addReg(tmpReg).addRegDef(addrReg);
+ mvec.push_back(MI);
+
+ MI = BuildMI(V9::ORi, 3).addReg(addrReg).addConstantPoolIndex(CPI)
+ .addRegDef(addrReg);
+ MI->getOperand(1).markLo32();
+ mvec.push_back(MI);
+
+ // Now load the constant from out ConstantPool label
+ unsigned Opcode = ChooseLoadInstruction(val->getType());
+ Opcode = convertOpcodeFromRegToImm(Opcode);
+ mvec.push_back(BuildMI(Opcode, 3)
+ .addReg(addrReg).addSImm((int64_t)0).addRegDef(dest));
+ }
+}
+
+/// CreateCodeToCopyFloatToInt - Similarly, create an instruction sequence
+/// to copy an FP register `val' to an integer register `dest' by copying to
+/// memory and back. The generated instructions are returned in `mvec'. Any
+/// temp. virtual registers (TmpInstruction) created are recorded in mcfi.
+/// Temporary stack space required is allocated via MachineFunction.
+///
+void CreateCodeToCopyFloatToInt(const TargetMachine& target, Function* F,
+ Value* val, Instruction* dest,
+ std::vector<MachineInstr*>& mvec,
+ MachineCodeForInstruction& mcfi) {
+ const Type* opTy = val->getType();
+ const Type* destTy = dest->getType();
+ assert(opTy->isFloatingPoint() && "Source type must be float/double");
+ assert((destTy->isIntegral() || isa<PointerType>(destTy))
+ && "Dest type must be integer, bool or pointer");
+
+ // FIXME: For now, we allocate permanent space because the stack frame
+ // manager does not allow locals to be allocated (e.g., for alloca) after
+ // a temp is allocated!
+ int offset = MachineFunction::get(F).getInfo()->allocateLocalVar(val);
+
+ unsigned FPReg = target.getRegInfo()->getFramePointer();
+
+ // Store instruction stores `val' to [%fp+offset].
+ // The store opCode is based only the source value being copied.
+ unsigned StoreOpcode = ChooseStoreInstruction(opTy);
+ StoreOpcode = convertOpcodeFromRegToImm(StoreOpcode);
+ mvec.push_back(BuildMI(StoreOpcode, 3)
+ .addReg(val).addMReg(FPReg).addSImm(offset));
+
+ // Load instruction loads [%fp+offset] to `dest'.
+ // The type of the load opCode is the integer type that matches the
+ // source type in size:
+ // On SparcV9: int for float, long for double.
+ // Note that we *must* use signed loads even for unsigned dest types, to
+ // ensure correct sign-extension for UByte, UShort or UInt:
+ const Type* loadTy = (opTy == Type::FloatTy)? Type::IntTy : Type::LongTy;
+ unsigned LoadOpcode = ChooseLoadInstruction(loadTy);
+ LoadOpcode = convertOpcodeFromRegToImm(LoadOpcode);
+ mvec.push_back(BuildMI(LoadOpcode, 3).addMReg(FPReg)
+ .addSImm(offset).addRegDef(dest));
+}
+
+/// CreateBitExtensionInstructions - Helper function for sign-extension and
+/// zero-extension. For SPARC v9, we sign-extend the given operand using SLL;
+/// SRA/SRL.
+///
+inline void
+CreateBitExtensionInstructions(bool signExtend, const TargetMachine& target,
+ Function* F, Value* srcVal, Value* destVal,
+ unsigned int numLowBits,
+ std::vector<MachineInstr*>& mvec,
+ MachineCodeForInstruction& mcfi) {
+ MachineInstr* M;
+
+ assert(numLowBits <= 32 && "Otherwise, nothing should be done here!");
+
+ if (numLowBits < 32) {
+ // SLL is needed since operand size is < 32 bits.
+ TmpInstruction *tmpI = new TmpInstruction(mcfi, destVal->getType(),
+ srcVal, destVal, "make32");
+ mvec.push_back(BuildMI(V9::SLLXi6, 3).addReg(srcVal)
+ .addZImm(32-numLowBits).addRegDef(tmpI));
+ srcVal = tmpI;
+ }
+
+ mvec.push_back(BuildMI(signExtend? V9::SRAi5 : V9::SRLi5, 3)
+ .addReg(srcVal).addZImm(32-numLowBits).addRegDef(destVal));
+}
+
+/// CreateSignExtensionInstructions - Create instruction sequence to produce
+/// a sign-extended register value from an arbitrary-sized integer value (sized
+/// in bits, not bytes). The generated instructions are returned in `mvec'. Any
+/// temp. registers (TmpInstruction) created are recorded in mcfi. Any stack
+/// space required is allocated via MachineFunction.
+///
+void CreateSignExtensionInstructions(const TargetMachine& target,
+ Function* F, Value* srcVal, Value* destVal,
+ unsigned int numLowBits,
+ std::vector<MachineInstr*>& mvec,
+ MachineCodeForInstruction& mcfi) {
+ CreateBitExtensionInstructions(/*signExtend*/ true, target, F, srcVal,
+ destVal, numLowBits, mvec, mcfi);
+}
+
+/// CreateZeroExtensionInstructions - Create instruction sequence to produce
+/// a zero-extended register value from an arbitrary-sized integer value (sized
+/// in bits, not bytes). For SPARC v9, we sign-extend the given operand using
+/// SLL; SRL. The generated instructions are returned in `mvec'. Any temp.
+/// registers (TmpInstruction) created are recorded in mcfi. Any stack space
+/// required is allocated via MachineFunction.
+///
+void CreateZeroExtensionInstructions(const TargetMachine& target,
+ Function* F, Value* srcVal, Value* destVal,
+ unsigned int numLowBits,
+ std::vector<MachineInstr*>& mvec,
+ MachineCodeForInstruction& mcfi) {
+ CreateBitExtensionInstructions(/*signExtend*/ false, target, F, srcVal,
+ destVal, numLowBits, mvec, mcfi);
+}
+
+/// CreateCodeToCopyIntToFloat - Create an instruction sequence to copy an
+/// integer register `val' to a floating point register `dest' by copying to
+/// memory and back. val must be an integral type. dest must be a Float or
+/// Double. The generated instructions are returned in `mvec'. Any temp.
+/// registers (TmpInstruction) created are recorded in mcfi. Any stack space
+/// required is allocated via MachineFunction.
+///
+void CreateCodeToCopyIntToFloat(const TargetMachine& target,
+ Function* F, Value* val, Instruction* dest,
+ std::vector<MachineInstr*>& mvec,
+ MachineCodeForInstruction& mcfi) {
+ assert((val->getType()->isIntegral() || isa<PointerType>(val->getType()))
+ && "Source type must be integral (integer or bool) or pointer");
+ assert(dest->getType()->isFloatingPoint()
+ && "Dest type must be float/double");
+
+ // Get a stack slot to use for the copy
+ int offset = MachineFunction::get(F).getInfo()->allocateLocalVar(val);
+
+ // Get the size of the source value being copied.
+ size_t srcSize = target.getTargetData().getTypeSize(val->getType());
+
+ // Store instruction stores `val' to [%fp+offset].
+ // The store and load opCodes are based on the size of the source value.
+ // If the value is smaller than 32 bits, we must sign- or zero-extend it
+ // to 32 bits since the load-float will load 32 bits.
+ // Note that the store instruction is the same for signed and unsigned ints.
+ const Type* storeType = (srcSize <= 4)? Type::IntTy : Type::LongTy;
+ Value* storeVal = val;
+ if (srcSize < target.getTargetData().getTypeSize(Type::FloatTy)) {
+ // sign- or zero-extend respectively
+ storeVal = new TmpInstruction(mcfi, storeType, val);
+ if (val->getType()->isSigned())
+ CreateSignExtensionInstructions(target, F, val, storeVal, 8*srcSize,
+ mvec, mcfi);
+ else
+ CreateZeroExtensionInstructions(target, F, val, storeVal, 8*srcSize,
+ mvec, mcfi);
+ }
+
+ unsigned FPReg = target.getRegInfo()->getFramePointer();
+ unsigned StoreOpcode = ChooseStoreInstruction(storeType);
+ StoreOpcode = convertOpcodeFromRegToImm(StoreOpcode);
+ mvec.push_back(BuildMI(StoreOpcode, 3)
+ .addReg(storeVal).addMReg(FPReg).addSImm(offset));
+
+ // Load instruction loads [%fp+offset] to `dest'.
+ // The type of the load opCode is the floating point type that matches the
+ // stored type in size:
+ // On SparcV9: float for int or smaller, double for long.
+ const Type* loadType = (srcSize <= 4)? Type::FloatTy : Type::DoubleTy;
+ unsigned LoadOpcode = ChooseLoadInstruction(loadType);
+ LoadOpcode = convertOpcodeFromRegToImm(LoadOpcode);
+ mvec.push_back(BuildMI(LoadOpcode, 3)
+ .addMReg(FPReg).addSImm(offset).addRegDef(dest));
+}
+
+/// InsertCodeToLoadConstant - Generates code to load the constant
+/// into a TmpInstruction (virtual reg) and returns the virtual register.
+///
+static TmpInstruction*
+InsertCodeToLoadConstant(Function *F, Value* opValue, Instruction* vmInstr,
+ std::vector<MachineInstr*>& loadConstVec,
+ TargetMachine& target) {
+ // Create a tmp virtual register to hold the constant.
+ MachineCodeForInstruction &mcfi = MachineCodeForInstruction::get(vmInstr);
+ TmpInstruction* tmpReg = new TmpInstruction(mcfi, opValue);
+
+ CreateCodeToLoadConst(target, F, opValue, tmpReg, loadConstVec, mcfi);
+
+ // Record the mapping from the tmp VM instruction to machine instruction.
+ // Do this for all machine instructions that were not mapped to any
+ // other temp values created by
+ // tmpReg->addMachineInstruction(loadConstVec.back());
+ return tmpReg;
+}
+
+MachineOperand::MachineOperandType
+ChooseRegOrImmed(int64_t intValue, bool isSigned,
+ MachineOpCode opCode, const TargetMachine& target,
+ bool canUseImmed, unsigned int& getMachineRegNum,
+ int64_t& getImmedValue) {
+ MachineOperand::MachineOperandType opType=MachineOperand::MO_VirtualRegister;
+ getMachineRegNum = 0;
+ getImmedValue = 0;
+
+ if (canUseImmed &&
+ target.getInstrInfo()->constantFitsInImmedField(opCode, intValue)) {
+ opType = isSigned? MachineOperand::MO_SignExtendedImmed
+ : MachineOperand::MO_UnextendedImmed;
+ getImmedValue = intValue;
+ } else if (intValue == 0 &&
+ target.getRegInfo()->getZeroRegNum() != (unsigned)-1) {
+ opType = MachineOperand::MO_MachineRegister;
+ getMachineRegNum = target.getRegInfo()->getZeroRegNum();
+ }
+
+ return opType;
+}
+
+MachineOperand::MachineOperandType
+ChooseRegOrImmed(Value* val,
+ MachineOpCode opCode, const TargetMachine& target,
+ bool canUseImmed, unsigned int& getMachineRegNum,
+ int64_t& getImmedValue) {
+ getMachineRegNum = 0;
+ getImmedValue = 0;
+
+ // To use reg or immed, constant needs to be integer, bool, or a NULL pointer.
+ // ConvertConstantToIntType() does the right conversions.
+ bool isValidConstant;
+ uint64_t valueToUse =
+ ConvertConstantToIntType(target, val, val->getType(), isValidConstant);
+ if (! isValidConstant)
+ return MachineOperand::MO_VirtualRegister;
+
+ // Now check if the constant value fits in the IMMED field.
+ return ChooseRegOrImmed((int64_t) valueToUse, val->getType()->isSigned(),
+ opCode, target, canUseImmed,
+ getMachineRegNum, getImmedValue);
+}
+
+/// CreateCopyInstructionsByType - Create instruction(s) to copy src to dest,
+/// for arbitrary types. The generated instructions are returned in `mvec'. Any
+/// temp. registers (TmpInstruction) created are recorded in mcfi. Any stack
+/// space required is allocated via MachineFunction.
+///
+void CreateCopyInstructionsByType(const TargetMachine& target,
+ Function *F, Value* src, Instruction* dest,
+ std::vector<MachineInstr*>& mvec,
+ MachineCodeForInstruction& mcfi) {
+ bool loadConstantToReg = false;
+ const Type* resultType = dest->getType();
+ MachineOpCode opCode = ChooseAddInstructionByType(resultType);
+ assert (opCode != V9::INVALID_OPCODE
+ && "Unsupported result type in CreateCopyInstructionsByType()");
+
+ // If `src' is a constant that doesn't fit in the immed field or if it is
+ // a global variable (i.e., a constant address), generate a load
+ // instruction instead of an add.
+ if (isa<GlobalValue>(src))
+ loadConstantToReg = true;
+ else if (isa<Constant>(src)) {
+ unsigned int machineRegNum;
+ int64_t immedValue;
+ MachineOperand::MachineOperandType opType =
+ ChooseRegOrImmed(src, opCode, target, /*canUseImmed*/ true,
+ machineRegNum, immedValue);
+
+ if (opType == MachineOperand::MO_VirtualRegister)
+ loadConstantToReg = true;
+ }
+
+ if (loadConstantToReg) {
+ // `src' is constant and cannot fit in immed field for the ADD.
+ // Insert instructions to "load" the constant into a register.
+ CreateCodeToLoadConst(target, F, src, dest, mvec, mcfi);
+ } else {
+ // Create a reg-to-reg copy instruction for the given type:
+ // -- For FP values, create a FMOVS or FMOVD instruction
+ // -- For non-FP values, create an add-with-0 instruction (opCode as above)
+ // Make `src' the second operand, in case it is a small constant!
+ MachineInstr* MI;
+ if (resultType->isFloatingPoint())
+ MI = (BuildMI(resultType == Type::FloatTy? V9::FMOVS : V9::FMOVD, 2)
+ .addReg(src).addRegDef(dest));
+ else {
+ const Type* Ty =isa<PointerType>(resultType)? Type::ULongTy :resultType;
+ MI = (BuildMI(opCode, 3)
+ .addSImm((int64_t) 0).addReg(src).addRegDef(dest));
+ }
+ mvec.push_back(MI);
+ }
+}
+
+/// FixConstantOperandsForInstr - Make a machine instruction use its constant
+/// operands more efficiently. If the constant is 0, then use the hardwired 0
+/// register, if any. Else, if the constant fits in the IMMEDIATE field, then
+/// use that field. Otherwise, else create instructions to put the constant
+/// into a register, either directly or by loading explicitly from the constant
+/// pool. In the first 2 cases, the operand of `minstr' is modified in place.
+/// Returns a vector of machine instructions generated for operands that fall
+/// under case 3; these must be inserted before `minstr'.
+///
+std::vector<MachineInstr*>
+FixConstantOperandsForInstr(Instruction* vmInstr, MachineInstr* minstr,
+ TargetMachine& target) {
+ std::vector<MachineInstr*> MVec;
+
+ MachineOpCode opCode = minstr->getOpcode();
+ const TargetInstrInfo& instrInfo = *target.getInstrInfo();
+ int resultPos = instrInfo.getResultPos(opCode);
+ int immedPos = instrInfo.getImmedConstantPos(opCode);
+
+ Function *F = vmInstr->getParent()->getParent();
+
+ for (unsigned op=0; op < minstr->getNumOperands(); op++) {
+ const MachineOperand& mop = minstr->getOperand(op);
+
+ // Skip the result position, preallocated machine registers, or operands
+ // that cannot be constants (CC regs or PC-relative displacements)
+ if (resultPos == (int)op ||
+ mop.getType() == MachineOperand::MO_MachineRegister ||
+ mop.getType() == MachineOperand::MO_CCRegister ||
+ mop.getType() == MachineOperand::MO_PCRelativeDisp)
+ continue;
+
+ bool constantThatMustBeLoaded = false;
+ unsigned int machineRegNum = 0;
+ int64_t immedValue = 0;
+ Value* opValue = NULL;
+ MachineOperand::MachineOperandType opType =
+ MachineOperand::MO_VirtualRegister;
+
+ // Operand may be a virtual register or a compile-time constant
+ if (mop.getType() == MachineOperand::MO_VirtualRegister) {
+ assert(mop.getVRegValue() != NULL);
+ opValue = mop.getVRegValue();
+ if (Constant *opConst = dyn_cast<Constant>(opValue))
+ if (!isa<GlobalValue>(opConst)) {
+ opType = ChooseRegOrImmed(opConst, opCode, target,
+ (immedPos == (int)op), machineRegNum,
+ immedValue);
+ if (opType == MachineOperand::MO_VirtualRegister)
+ constantThatMustBeLoaded = true;
+ }
+ } else {
+ // If the operand is from the constant pool, don't try to change it.
+ if (mop.getType() == MachineOperand::MO_ConstantPoolIndex) {
+ continue;
+ }
+ assert(mop.isImmediate());
+ bool isSigned = mop.getType() == MachineOperand::MO_SignExtendedImmed;
+
+ // Bit-selection flags indicate an instruction that is extracting
+ // bits from its operand so ignore this even if it is a big constant.
+ if (mop.isHiBits32() || mop.isLoBits32() ||
+ mop.isHiBits64() || mop.isLoBits64())
+ continue;
+
+ opType = ChooseRegOrImmed(mop.getImmedValue(), isSigned,
+ opCode, target, (immedPos == (int)op),
+ machineRegNum, immedValue);
+
+ if (opType == MachineOperand::MO_SignExtendedImmed ||
+ opType == MachineOperand::MO_UnextendedImmed) {
+ // The optype is an immediate value
+ // This means we need to change the opcode, e.g. ADDr -> ADDi
+ unsigned newOpcode = convertOpcodeFromRegToImm(opCode);
+ minstr->setOpcode(newOpcode);
+ }
+
+ if (opType == mop.getType())
+ continue; // no change: this is the most common case
+
+ if (opType == MachineOperand::MO_VirtualRegister) {
+ constantThatMustBeLoaded = true;
+ opValue = isSigned
+ ? (Value*)ConstantSInt::get(Type::LongTy, immedValue)
+ : (Value*)ConstantUInt::get(Type::ULongTy,(uint64_t)immedValue);
+ }
+ }
+
+ if (opType == MachineOperand::MO_MachineRegister)
+ minstr->SetMachineOperandReg(op, machineRegNum);
+ else if (opType == MachineOperand::MO_SignExtendedImmed ||
+ opType == MachineOperand::MO_UnextendedImmed) {
+ minstr->SetMachineOperandConst(op, opType, immedValue);
+ // The optype is or has become an immediate
+ // This means we need to change the opcode, e.g. ADDr -> ADDi
+ unsigned newOpcode = convertOpcodeFromRegToImm(opCode);
+ minstr->setOpcode(newOpcode);
+ } else if (constantThatMustBeLoaded ||
+ (opValue && isa<GlobalValue>(opValue)))
+ { // opValue is a constant that must be explicitly loaded into a reg
+ assert(opValue);
+ TmpInstruction* tmpReg = InsertCodeToLoadConstant(F, opValue, vmInstr,
+ MVec, target);
+ minstr->SetMachineOperandVal(op, MachineOperand::MO_VirtualRegister,
+ tmpReg);
+ }
+ }
+
+ // Also, check for implicit operands used by the machine instruction
+ // (no need to check those defined since they cannot be constants).
+ // These include:
+ // -- arguments to a Call
+ // -- return value of a Return
+ // Any such operand that is a constant value needs to be fixed also.
+ // The current instructions with implicit refs (viz., Call and Return)
+ // have no immediate fields, so the constant always needs to be loaded
+ // into a register.
+ bool isCall = instrInfo.isCall(opCode);
+ unsigned lastCallArgNum = 0; // unused if not a call
+ CallArgsDescriptor* argDesc = NULL; // unused if not a call
+ if (isCall)
+ argDesc = CallArgsDescriptor::get(minstr);
+
+ for (unsigned i=0, N=minstr->getNumImplicitRefs(); i < N; ++i)
+ if (isa<Constant>(minstr->getImplicitRef(i))) {
+ Value* oldVal = minstr->getImplicitRef(i);
+ TmpInstruction* tmpReg =
+ InsertCodeToLoadConstant(F, oldVal, vmInstr, MVec, target);
+ minstr->setImplicitRef(i, tmpReg);
+
+ if (isCall) {
+ // find and replace the argument in the CallArgsDescriptor
+ unsigned i=lastCallArgNum;
+ while (argDesc->getArgInfo(i).getArgVal() != oldVal)
+ ++i;
+ assert(i < argDesc->getNumArgs() &&
+ "Constant operands to a call *must* be in the arg list");
+ lastCallArgNum = i;
+ argDesc->getArgInfo(i).replaceArgVal(tmpReg);
+ }
+ }
+
+ return MVec;
+}
+
static inline void Add3OperandInstr(unsigned Opcode, InstructionNode* Node,
std::vector<MachineInstr*>& mvec) {
mvec.push_back(BuildMI(Opcode, 3).addReg(Node->leftChild()->getValue())
@@ -40,30 +1559,21 @@ static inline void Add3OperandInstr(unsigned Opcode, InstructionNode* Node,
.addRegDef(Node->getValue()));
}
-
-//---------------------------------------------------------------------------
-// Function: FoldGetElemChain
-//
-// Purpose:
-// Fold a chain of GetElementPtr instructions containing only
-// constant offsets into an equivalent (Pointer, IndexVector) pair.
-// Returns the pointer Value, and stores the resulting IndexVector
-// in argument chainIdxVec. This is a helper function for
-// FoldConstantIndices that does the actual folding.
-//---------------------------------------------------------------------------
-
-
-// Check for a constant 0.
-static inline bool
-IsZero(Value* idx)
-{
+/// IsZero - Check for a constant 0.
+///
+static inline bool IsZero(Value* idx) {
return (idx == ConstantSInt::getNullValue(idx->getType()));
}
+/// FoldGetElemChain - Fold a chain of GetElementPtr instructions containing
+/// only constant offsets into an equivalent (Pointer, IndexVector) pair.
+/// Returns the pointer Value, and stores the resulting IndexVector in argument
+/// chainIdxVec. This is a helper function for FoldConstantIndices that does the
+/// actual folding.
+//
static Value*
FoldGetElemChain(InstrTreeNode* ptrNode, std::vector<Value*>& chainIdxVec,
- bool lastInstHasLeadingNonZero)
-{
+ bool lastInstHasLeadingNonZero) {
InstructionNode* gepNode = dyn_cast<InstructionNode>(ptrNode);
GetElementPtrInst* gepInst =
dyn_cast_or_null<GetElementPtrInst>(gepNode ? gepNode->getInstruction() :0);
@@ -82,11 +1592,9 @@ FoldGetElemChain(InstrTreeNode* ptrNode, std::vector<Value*>& chainIdxVec,
// and the last index of the current node is a non-array index:
// in that case, a non-array declared type is being accessed as an array
// which is not type-safe, but could be legal.
- //
InstructionNode* ptrChild = gepNode;
while (ptrChild && (ptrChild->getOpLabel() == Instruction::GetElementPtr ||
- ptrChild->getOpLabel() == GetElemPtrIdx))
- {
+ ptrChild->getOpLabel() == GetElemPtrIdx)) {
// Child is a GetElemPtr instruction
gepInst = cast<GetElementPtrInst>(ptrChild->getValue());
User::op_iterator OI, firstIdx = gepInst->idx_begin();
@@ -101,7 +1609,6 @@ FoldGetElemChain(InstrTreeNode* ptrNode, std::vector<Value*>& chainIdxVec,
// current one references a sequential (i.e., indexable) type.
// If not, the code is not type-safe and we would create an illegal GEP
// by folding them, so don't fold any more instructions.
- //
if (lastInstHasLeadingNonZero)
if (! isa<SequentialType>(gepInst->getType()->getElementType()))
break; // cannot fold in any preceding getElementPtr instrs.
@@ -136,29 +1643,20 @@ FoldGetElemChain(InstrTreeNode* ptrNode, std::vector<Value*>& chainIdxVec,
// If the first getElementPtr instruction had a leading [0], add it back.
// Note that this instruction is the *last* one that was successfully
// folded *and* contributed any indices, in the loop above.
- //
if (ptrVal && ! lastInstHasLeadingNonZero)
chainIdxVec.insert(chainIdxVec.begin(), ConstantSInt::get(Type::LongTy,0));
return ptrVal;
}
-
-//---------------------------------------------------------------------------
-// Function: GetGEPInstArgs
-//
-// Purpose:
-// Helper function for GetMemInstArgs that handles the final getElementPtr
-// instruction used by (or same as) the memory operation.
-// Extracts the indices of the current instruction and tries to fold in
-// preceding ones if all indices of the current one are constant.
-//---------------------------------------------------------------------------
-
-static Value *
-GetGEPInstArgs(InstructionNode* gepNode,
- std::vector<Value*>& idxVec,
- bool& allConstantIndices)
-{
+/// GetGEPInstArgs - Helper function for GetMemInstArgs that handles the
+/// final getElementPtr instruction used by (or same as) the memory operation.
+/// Extracts the indices of the current instruction and tries to fold in
+/// preceding ones if all indices of the current one are constant.
+///
+static Value *GetGEPInstArgs(InstructionNode *gepNode,
+ std::vector<Value *> &idxVec,
+ bool &allConstantIndices) {
allConstantIndices = true;
GetElementPtrInst* gepI = cast<GetElementPtrInst>(gepNode->getInstruction());
@@ -193,28 +1691,18 @@ GetGEPInstArgs(InstructionNode* gepNode,
return ptrVal;
}
-//---------------------------------------------------------------------------
-// Function: GetMemInstArgs
-//
-// Purpose:
-// Get the pointer value and the index vector for a memory operation
-// (GetElementPtr, Load, or Store). If all indices of the given memory
-// operation are constant, fold in constant indices in a chain of
-// preceding GetElementPtr instructions (if any), and return the
-// pointer value of the first instruction in the chain.
-// All folded instructions are marked so no code is generated for them.
-//
-// Return values:
-// Returns the pointer Value to use.
-// Returns the resulting IndexVector in idxVec.
-// Returns true/false in allConstantIndices if all indices are/aren't const.
-//---------------------------------------------------------------------------
-
-static Value*
-GetMemInstArgs(InstructionNode* memInstrNode,
- std::vector<Value*>& idxVec,
- bool& allConstantIndices)
-{
+/// GetMemInstArgs - Get the pointer value and the index vector for a memory
+/// operation (GetElementPtr, Load, or Store). If all indices of the given
+/// memory operation are constant, fold in constant indices in a chain of
+/// preceding GetElementPtr instructions (if any), and return the pointer value
+/// of the first instruction in the chain. All folded instructions are marked so
+/// no code is generated for them. Returns the pointer Value to use, and
+/// returns the resulting IndexVector in idxVec. Sets allConstantIndices
+/// to true/false if all indices are/aren't const.
+///
+static Value *GetMemInstArgs(InstructionNode *memInstrNode,
+ std::vector<Value*> &idxVec,
+ bool& allConstantIndices) {
allConstantIndices = false;
Instruction* memInst = memInstrNode->getInstruction();
assert(idxVec.size() == 0 && "Need empty vector to return indices");
@@ -247,20 +1735,14 @@ GetMemInstArgs(InstructionNode* memInstrNode,
: ptrVal;
}
-
-//************************ Internal Functions ******************************/
-
-
static inline MachineOpCode
-ChooseBprInstruction(const InstructionNode* instrNode)
-{
+ChooseBprInstruction(const InstructionNode* instrNode) {
MachineOpCode opCode;
Instruction* setCCInstr =
((InstructionNode*) instrNode->leftChild())->getInstruction();
- switch(setCCInstr->getOpcode())
- {
+ switch(setCCInstr->getOpcode()) {
case Instruction::SetEQ: opCode = V9::BRZ; break;
case Instruction::SetNE: opCode = V9::BRNZ; break;
case Instruction::SetLE: opCode = V9::BRLEZ; break;
@@ -276,18 +1758,15 @@ ChooseBprInstruction(const InstructionNode* instrNode)
return opCode;
}
-
static inline MachineOpCode
ChooseBpccInstruction(const InstructionNode* instrNode,
- const BinaryOperator* setCCInstr)
-{
+ const BinaryOperator* setCCInstr) {
MachineOpCode opCode = V9::INVALID_OPCODE;
bool isSigned = setCCInstr->getOperand(0)->getType()->isSigned();
if (isSigned) {
- switch(setCCInstr->getOpcode())
- {
+ switch(setCCInstr->getOpcode()) {
case Instruction::SetEQ: opCode = V9::BE; break;
case Instruction::SetNE: opCode = V9::BNE; break;
case Instruction::SetLE: opCode = V9::BLE; break;
@@ -299,8 +1778,7 @@ ChooseBpccInstruction(const InstructionNode* instrNode,
break;
}
} else {
- switch(setCCInstr->getOpcode())
- {
+ switch(setCCInstr->getOpcode()) {
case Instruction::SetEQ: opCode = V9::BE; break;
case Instruction::SetNE: opCode = V9::BNE; break;
case Instruction::SetLE: opCode = V9::BLEU; break;
@@ -318,12 +1796,10 @@ ChooseBpccInstruction(const InstructionNode* instrNode,
static inline MachineOpCode
ChooseBFpccInstruction(const InstructionNode* instrNode,
- const BinaryOperator* setCCInstr)
-{
+ const BinaryOperator* setCCInstr) {
MachineOpCode opCode = V9::INVALID_OPCODE;
- switch(setCCInstr->getOpcode())
- {
+ switch(setCCInstr->getOpcode()) {
case Instruction::SetEQ: opCode = V9::FBE; break;
case Instruction::SetNE: opCode = V9::FBNE; break;
case Instruction::SetLE: opCode = V9::FBLE; break;
@@ -338,8 +1814,7 @@ ChooseBFpccInstruction(const InstructionNode* instrNode,
return opCode;
}
-
-// Create a unique TmpInstruction for a boolean value,
+// GetTmpForCC - Create a unique TmpInstruction for a boolean value,
// representing the CC register used by a branch on that value.
// For now, hack this using a little static cache of TmpInstructions.
// Eventually the entire BURG instruction selection should be put
@@ -347,10 +1822,9 @@ ChooseBFpccInstruction(const InstructionNode* instrNode,
// The static cache is not too bad because the memory for these
// TmpInstructions will be freed along with the rest of the Function anyway.
//
-static TmpInstruction*
-GetTmpForCC(Value* boolVal, const Function *F, const Type* ccType,
- MachineCodeForInstruction& mcfi)
-{
+static TmpInstruction *GetTmpForCC (Value* boolVal, const Function *F,
+ const Type* ccType,
+ MachineCodeForInstruction& mcfi) {
typedef hash_map<const Value*, TmpInstruction*> BoolTmpCache;
static BoolTmpCache boolToTmpCache; // Map boolVal -> TmpInstruction*
static const Function *lastFunction = 0;// Use to flush cache between funcs
@@ -371,11 +1845,8 @@ GetTmpForCC(Value* boolVal, const Function *F, const Type* ccType,
return tmpI;
}
-
static inline MachineOpCode
-ChooseBccInstruction(const InstructionNode* instrNode,
- const Type*& setCCType)
-{
+ChooseBccInstruction(const InstructionNode* instrNode, const Type*& setCCType) {
InstructionNode* setCCNode = (InstructionNode*) instrNode->leftChild();
assert(setCCNode->getOpLabel() == SetCCOp);
BinaryOperator* setCCInstr =cast<BinaryOperator>(setCCNode->getInstruction());
@@ -387,21 +1858,18 @@ ChooseBccInstruction(const InstructionNode* instrNode,
return ChooseBpccInstruction(instrNode, setCCInstr);
}
-
-// WARNING: since this function has only one caller, it always returns
-// the opcode that expects an immediate and a register. If this function
-// is ever used in cases where an opcode that takes two registers is required,
-// then modify this function and use convertOpcodeFromRegToImm() where required.
-//
-// It will be necessary to expand convertOpcodeFromRegToImm() to handle the
-// new cases of opcodes.
+/// ChooseMovFpcciInstruction - WARNING: since this function has only one
+/// caller, it always returns the opcode that expects an immediate and a
+/// register. If this function is ever used in cases where an opcode that takes
+/// two registers is required, then modify this function and use
+/// convertOpcodeFromRegToImm() where required. It will be necessary to expand
+/// convertOpcodeFromRegToImm() to handle the new cases of opcodes.
+///
static inline MachineOpCode
-ChooseMovFpcciInstruction(const InstructionNode* instrNode)
-{
+ChooseMovFpcciInstruction(const InstructionNode* instrNode) {
MachineOpCode opCode = V9::INVALID_OPCODE;
- switch(instrNode->getInstruction()->getOpcode())
- {
+ switch(instrNode->getInstruction()->getOpcode()) {
case Instruction::SetEQ: opCode = V9::MOVFEi; break;
case Instruction::SetNE: opCode = V9::MOVFNEi; break;
case Instruction::SetLE: opCode = V9::MOVFLEi; break;
@@ -416,29 +1884,20 @@ ChooseMovFpcciInstruction(const InstructionNode* instrNode)
return opCode;
}
-
-// ChooseMovpcciForSetCC -- Choose a conditional-move instruction
-// based on the type of SetCC operation.
-//
-// WARNING: since this function has only one caller, it always returns
-// the opcode that expects an immediate and a register. If this function
-// is ever used in cases where an opcode that takes two registers is required,
-// then modify this function and use convertOpcodeFromRegToImm() where required.
-//
-// It will be necessary to expand convertOpcodeFromRegToImm() to handle the
-// new cases of opcodes.
-//
-static MachineOpCode
-ChooseMovpcciForSetCC(const InstructionNode* instrNode)
-{
+/// ChooseMovpcciForSetCC -- Choose a conditional-move instruction
+/// based on the type of SetCC operation.
+///
+/// WARNING: like the previous function, this function always returns
+/// the opcode that expects an immediate and a register. See above.
+///
+static MachineOpCode ChooseMovpcciForSetCC(const InstructionNode* instrNode) {
MachineOpCode opCode = V9::INVALID_OPCODE;
const Type* opType = instrNode->leftChild()->getValue()->getType();
assert(opType->isIntegral() || isa<PointerType>(opType));
bool noSign = opType->isUnsigned() || isa<PointerType>(opType);
- switch(instrNode->getInstruction()->getOpcode())
- {
+ switch(instrNode->getInstruction()->getOpcode()) {
case Instruction::SetEQ: opCode = V9::MOVEi; break;
case Instruction::SetLE: opCode = noSign? V9::MOVLEUi : V9::MOVLEi; break;
case Instruction::SetGE: opCode = noSign? V9::MOVCCi : V9::MOVGEi; break;
@@ -451,21 +1910,17 @@ ChooseMovpcciForSetCC(const InstructionNode* instrNode)
return opCode;
}
-
-// ChooseMovpregiForSetCC -- Choose a conditional-move-on-register-value
-// instruction based on the type of SetCC operation. These instructions
-// compare a register with 0 and perform the move is the comparison is true.
-//
-// WARNING: like the previous function, this function it always returns
-// the opcode that expects an immediate and a register. See above.
-//
-static MachineOpCode
-ChooseMovpregiForSetCC(const InstructionNode* instrNode)
-{
+/// ChooseMovpregiForSetCC -- Choose a conditional-move-on-register-value
+/// instruction based on the type of SetCC operation. These instructions
+/// compare a register with 0 and perform the move is the comparison is true.
+///
+/// WARNING: like the previous function, this function it always returns
+/// the opcode that expects an immediate and a register. See above.
+///
+static MachineOpCode ChooseMovpregiForSetCC(const InstructionNode* instrNode) {
MachineOpCode opCode = V9::INVALID_OPCODE;
- switch(instrNode->getInstruction()->getOpcode())
- {
+ switch(instrNode->getInstruction()->getOpcode()) {
case Instruction::SetEQ: opCode = V9::MOVRZi; break;
case Instruction::SetLE: opCode = V9::MOVRLEZi; break;
case Instruction::SetGE: opCode = V9::MOVRGEZi; break;
@@ -478,11 +1933,9 @@ ChooseMovpregiForSetCC(const InstructionNode* instrNode)
return opCode;
}
-
static inline MachineOpCode
ChooseConvertToFloatInstr(const TargetMachine& target,
- OpLabel vopCode, const Type* opType)
-{
+ OpLabel vopCode, const Type* opType) {
assert((vopCode == ToFloatTy || vopCode == ToDoubleTy) &&
"Unrecognized convert-to-float opcode!");
assert((opType->isIntegral() || opType->isFloatingPoint() ||
@@ -509,8 +1962,7 @@ ChooseConvertToFloatInstr(const TargetMachine& target,
static inline MachineOpCode
ChooseConvertFPToIntInstr(const TargetMachine& target,
- const Type* destType, const Type* opType)
-{
+ const Type* destType, const Type* opType) {
assert((opType == Type::FloatTy || opType == Type::DoubleTy)
&& "This function should only be called for FLOAT or DOUBLE");
assert((destType->isIntegral() || isa<PointerType>(destType))
@@ -533,40 +1985,34 @@ ChooseConvertFPToIntInstr(const TargetMachine& target,
}
static MachineInstr*
-CreateConvertFPToIntInstr(const TargetMachine& target,
- Value* srcVal,
- Value* destVal,
- const Type* destType)
-{
+CreateConvertFPToIntInstr(const TargetMachine& target, Value* srcVal,
+ Value* destVal, const Type* destType) {
MachineOpCode opCode = ChooseConvertFPToIntInstr(target, destType,
srcVal->getType());
assert(opCode != V9::INVALID_OPCODE && "Expected to need conversion!");
return BuildMI(opCode, 2).addReg(srcVal).addRegDef(destVal);
}
-// CreateCodeToConvertFloatToInt: Convert FP value to signed or unsigned integer
-// The FP value must be converted to the dest type in an FP register,
-// and the result is then copied from FP to int register via memory.
-// SPARC does not have a float-to-uint conversion, only a float-to-int (fdtoi).
-// Since fdtoi converts to signed integers, any FP value V between MAXINT+1
-// and MAXUNSIGNED (i.e., 2^31 <= V <= 2^32-1) would be converted incorrectly.
-// Therefore, for converting an FP value to uint32_t, we first need to convert
-// to uint64_t and then to uint32_t.
-//
+/// CreateCodeToConvertFloatToInt: Convert FP value to signed or unsigned
+/// integer. The FP value must be converted to the dest type in an FP register,
+/// and the result is then copied from FP to int register via memory. SPARC
+/// does not have a float-to-uint conversion, only a float-to-int (fdtoi).
+/// Since fdtoi converts to signed integers, any FP value V between MAXINT+1 and
+/// MAXUNSIGNED (i.e., 2^31 <= V <= 2^32-1) would be converted incorrectly.
+/// Therefore, for converting an FP value to uint32_t, we first need to convert
+/// to uint64_t and then to uint32_t.
+///
static void
CreateCodeToConvertFloatToInt(const TargetMachine& target,
- Value* opVal,
- Instruction* destI,
+ Value* opVal, Instruction* destI,
std::vector<MachineInstr*>& mvec,
- MachineCodeForInstruction& mcfi)
-{
+ MachineCodeForInstruction& mcfi) {
Function* F = destI->getParent()->getParent();
// Create a temporary to represent the FP register into which the
// int value will placed after conversion. The type of this temporary
// depends on the type of FP register to use: single-prec for a 32-bit
// int or smaller; double-prec for a 64-bit int.
- //
size_t destSize = target.getTargetData().getTypeSize(destI->getType());
const Type* castDestType = destI->getType(); // type for the cast instr result
@@ -581,8 +2027,7 @@ CreateCodeToConvertFloatToInt(const TargetMachine& target,
castDestRegType = Type::DoubleTy; // uint64_t needs 64-bit FP register.
destForCast = new TmpInstruction(mcfi, castDestRegType, opVal);
fpToIntCopyDest = new TmpInstruction(mcfi, castDestType, destForCast);
- }
- else {
+ } else {
castDestRegType = (destSize > 4)? Type::DoubleTy : Type::FloatTy;
destForCast = new TmpInstruction(mcfi, castDestRegType, opVal);
}
@@ -601,26 +2046,21 @@ CreateCodeToConvertFloatToInt(const TargetMachine& target,
/*numLowBits*/ 32, mvec, mcfi);
}
-
static inline MachineOpCode
-ChooseAddInstruction(const InstructionNode* instrNode)
-{
+ChooseAddInstruction(const InstructionNode* instrNode) {
return ChooseAddInstructionByType(instrNode->getInstruction()->getType());
}
-
static inline MachineInstr*
CreateMovFloatInstruction(const InstructionNode* instrNode,
- const Type* resultType)
-{
+ const Type* resultType) {
return BuildMI((resultType == Type::FloatTy) ? V9::FMOVS : V9::FMOVD, 2)
.addReg(instrNode->leftChild()->getValue())
.addRegDef(instrNode->getValue());
}
static inline MachineInstr*
-CreateAddConstInstruction(const InstructionNode* instrNode)
-{
+CreateAddConstInstruction(const InstructionNode* instrNode) {
MachineInstr* minstr = NULL;
Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
@@ -629,7 +2069,6 @@ CreateAddConstInstruction(const InstructionNode* instrNode)
// Cases worth optimizing are:
// (1) Add with 0 for float or double: use an FMOV of appropriate type,
// instead of an FADD (1 vs 3 cycles). There is no integer MOV.
- //
if (ConstantFP *FPC = dyn_cast<ConstantFP>(constOp)) {
double dval = FPC->getValue();
if (dval == 0.0)
@@ -640,17 +2079,13 @@ CreateAddConstInstruction(const InstructionNode* instrNode)
return minstr;
}
-
-static inline MachineOpCode
-ChooseSubInstructionByType(const Type* resultType)
-{
+static inline MachineOpCode ChooseSubInstructionByType(const Type* resultType) {
MachineOpCode opCode = V9::INVALID_OPCODE;
if (resultType->isInteger() || isa<PointerType>(resultType)) {
opCode = V9::SUBr;
} else {
- switch(resultType->getTypeID())
- {
+ switch(resultType->getTypeID()) {
case Type::FloatTyID: opCode = V9::FSUBS; break;
case Type::DoubleTyID: opCode = V9::FSUBD; break;
default: assert(0 && "Invalid type for SUB instruction"); break;
@@ -660,10 +2095,8 @@ ChooseSubInstructionByType(const Type* resultType)
return opCode;
}
-
static inline MachineInstr*
-CreateSubConstInstruction(const InstructionNode* instrNode)
-{
+CreateSubConstInstruction(const InstructionNode* instrNode) {
MachineInstr* minstr = NULL;
Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
@@ -672,7 +2105,6 @@ CreateSubConstInstruction(const InstructionNode* instrNode)
// Cases worth optimizing are:
// (1) Sub with 0 for float or double: use an FMOV of appropriate type,
// instead of an FSUB (1 vs 3 cycles). There is no integer MOV.
- //
if (ConstantFP *FPC = dyn_cast<ConstantFP>(constOp)) {
double dval = FPC->getValue();
if (dval == 0.0)
@@ -683,10 +2115,8 @@ CreateSubConstInstruction(const InstructionNode* instrNode)
return minstr;
}
-
static inline MachineOpCode
-ChooseFcmpInstruction(const InstructionNode* instrNode)
-{
+ChooseFcmpInstruction(const InstructionNode* instrNode) {
MachineOpCode opCode = V9::INVALID_OPCODE;
Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue();
@@ -699,35 +2129,27 @@ ChooseFcmpInstruction(const InstructionNode* instrNode)
return opCode;
}
-
-// Assumes that leftArg and rightArg are both cast instructions.
-//
-static inline bool
-BothFloatToDouble(const InstructionNode* instrNode)
-{
+/// BothFloatToDouble - Assumes that leftArg and rightArg of instrNode are both
+/// cast instructions. Returns true if both are floats cast to double.
+///
+static inline bool BothFloatToDouble(const InstructionNode* instrNode) {
InstrTreeNode* leftArg = instrNode->leftChild();
InstrTreeNode* rightArg = instrNode->rightChild();
InstrTreeNode* leftArgArg = leftArg->leftChild();
InstrTreeNode* rightArgArg = rightArg->leftChild();
assert(leftArg->getValue()->getType() == rightArg->getValue()->getType());
-
- // Check if both arguments are floats cast to double
return (leftArg->getValue()->getType() == Type::DoubleTy &&
leftArgArg->getValue()->getType() == Type::FloatTy &&
rightArgArg->getValue()->getType() == Type::FloatTy);
}
-
-static inline MachineOpCode
-ChooseMulInstructionByType(const Type* resultType)
-{
+static inline MachineOpCode ChooseMulInstructionByType(const Type* resultType) {
MachineOpCode opCode = V9::INVALID_OPCODE;
if (resultType->isInteger())
opCode = V9::MULXr;
else
- switch(resultType->getTypeID())
- {
+ switch(resultType->getTypeID()) {
case Type::FloatTyID: opCode = V9::FMULS; break;
case Type::DoubleTyID: opCode = V9::FMULD; break;
default: assert(0 && "Invalid type for MUL instruction"); break;
@@ -736,36 +2158,27 @@ ChooseMulInstructionByType(const Type* resultType)
return opCode;
}
-
-
static inline MachineInstr*
-CreateIntNegInstruction(const TargetMachine& target,
- Value* vreg)
-{
+CreateIntNegInstruction(const TargetMachine& target, Value* vreg) {
return BuildMI(V9::SUBr, 3).addMReg(target.getRegInfo()->getZeroRegNum())
.addReg(vreg).addRegDef(vreg);
}
-
-// Create instruction sequence for any shift operation.
-// SLL or SLLX on an operand smaller than the integer reg. size (64bits)
-// requires a second instruction for explicit sign-extension.
-// Note that we only have to worry about a sign-bit appearing in the
-// most significant bit of the operand after shifting (e.g., bit 32 of
-// Int or bit 16 of Short), so we do not have to worry about results
-// that are as large as a normal integer register.
-//
+/// CreateShiftInstructions - Create instruction sequence for any shift
+/// operation. SLL or SLLX on an operand smaller than the integer reg. size
+/// (64bits) requires a second instruction for explicit sign-extension. Note
+/// that we only have to worry about a sign-bit appearing in the most
+/// significant bit of the operand after shifting (e.g., bit 32 of Int or bit 16
+/// of Short), so we do not have to worry about results that are as large as a
+/// normal integer register.
+///
static inline void
-CreateShiftInstructions(const TargetMachine& target,
- Function* F,
- MachineOpCode shiftOpCode,
- Value* argVal1,
+CreateShiftInstructions(const TargetMachine& target, Function* F,
+ MachineOpCode shiftOpCode, Value* argVal1,
Value* optArgVal2, /* Use optArgVal2 if not NULL */
unsigned optShiftNum, /* else use optShiftNum */
- Instruction* destVal,
- std::vector<MachineInstr*>& mvec,
- MachineCodeForInstruction& mcfi)
-{
+ Instruction* destVal, std::vector<MachineInstr*>& mvec,
+ MachineCodeForInstruction& mcfi) {
assert((optArgVal2 != NULL || optShiftNum <= 64) &&
"Large shift sizes unexpected, but can be handled below: "
"You need to check whether or not it fits in immed field below");
@@ -773,7 +2186,6 @@ CreateShiftInstructions(const TargetMachine& target,
// If this is a logical left shift of a type smaller than the standard
// integer reg. size, we have to extend the sign-bit into upper bits
// of dest, so we need to put the result of the SLL into a temporary.
- //
Value* shiftDest = destVal;
unsigned opSize = target.getTargetData().getTypeSize(argVal1->getType());
@@ -797,18 +2209,17 @@ CreateShiftInstructions(const TargetMachine& target,
}
}
-
-// Does not create any instructions if we cannot exploit constant to
-// create a cheaper instruction.
-// This returns the approximate cost of the instructions generated,
-// which is used to pick the cheapest when both operands are constant.
+/// CreateMulConstInstruction - Does not create any instructions if we
+/// cannot exploit constant to create a cheaper instruction. This returns the
+/// approximate cost of the instructions generated, which is used to pick the
+/// cheapest when both operands are constant.
+///
static unsigned
CreateMulConstInstruction(const TargetMachine &target, Function* F,
Value* lval, Value* rval, Instruction* destVal,
std::vector<MachineInstr*>& mvec,
- MachineCodeForInstruction& mcfi)
-{
- /* Use max. multiply cost, viz., cost of MULX */
+ MachineCodeForInstruction& mcfi) {
+ // Use max. multiply cost, viz., cost of MULX
unsigned cost = target.getInstrInfo()->minLatency(V9::MULXr);
unsigned firstNewInstr = mvec.size();
@@ -819,7 +2230,6 @@ CreateMulConstInstruction(const TargetMachine &target, Function* F,
// Cases worth optimizing are:
// (1) Multiply by 0 or 1 for any type: replace with copy (ADD or FMOV)
// (2) Multiply by 2^x for integer types: replace with Shift
- //
const Type* resultType = destVal->getType();
if (resultType->isInteger() || isa<PointerType>(resultType)) {
@@ -878,18 +2288,15 @@ CreateMulConstInstruction(const TargetMachine &target, Function* F,
return cost;
}
-
-// Does not create any instructions if we cannot exploit constant to
-// create a cheaper instruction.
-//
+/// CreateCheapestMulConstInstruction - Does not create any instructions
+/// if we cannot exploit constant to create a cheaper instruction.
+///
static inline void
-CreateCheapestMulConstInstruction(const TargetMachine &target,
- Function* F,
+CreateCheapestMulConstInstruction(const TargetMachine &target, Function* F,
Value* lval, Value* rval,
Instruction* destVal,
std::vector<MachineInstr*>& mvec,
- MachineCodeForInstruction& mcfi)
-{
+ MachineCodeForInstruction& mcfi) {
Value* constOp;
if (isa<Constant>(lval) && isa<Constant>(rval)) {
// both operands are constant: evaluate and "set" in dest
@@ -907,14 +2314,15 @@ CreateCheapestMulConstInstruction(const TargetMachine &target,
return;
}
-// Return NULL if we cannot exploit constant to create a cheaper instruction
+/// CreateMulInstruction - Returns NULL if we cannot exploit constant
+/// to create a cheaper instruction.
+///
static inline void
CreateMulInstruction(const TargetMachine &target, Function* F,
Value* lval, Value* rval, Instruction* destVal,
std::vector<MachineInstr*>& mvec,
MachineCodeForInstruction& mcfi,
- MachineOpCode forceMulOp = -1)
-{
+ MachineOpCode forceMulOp = -1) {
unsigned L = mvec.size();
CreateCheapestMulConstInstruction(target,F, lval, rval, destVal, mvec, mcfi);
if (mvec.size() == L) {
@@ -929,15 +2337,12 @@ CreateMulInstruction(const TargetMachine &target, Function* F,
}
}
-
-// Generate a divide instruction for Div or Rem.
-// For Rem, this assumes that the operand type will be signed if the result
-// type is signed. This is correct because they must have the same sign.
-//
+/// ChooseDivInstruction - Generate a divide instruction for Div or Rem.
+/// For Rem, this assumes that the operand type will be signed if the result
+/// type is signed. This is correct because they must have the same sign.
+///
static inline MachineOpCode
-ChooseDivInstruction(TargetMachine &target,
- const InstructionNode* instrNode)
-{
+ChooseDivInstruction(TargetMachine &target, const InstructionNode* instrNode) {
MachineOpCode opCode = V9::INVALID_OPCODE;
const Type* resultType = instrNode->getInstruction()->getType();
@@ -945,8 +2350,7 @@ ChooseDivInstruction(TargetMachine &target,
if (resultType->isInteger())
opCode = resultType->isSigned()? V9::SDIVXr : V9::UDIVXr;
else
- switch(resultType->getTypeID())
- {
+ switch(resultType->getTypeID()) {
case Type::FloatTyID: opCode = V9::FDIVS; break;
case Type::DoubleTyID: opCode = V9::FDIVD; break;
default: assert(0 && "Invalid type for DIV instruction"); break;
@@ -955,13 +2359,12 @@ ChooseDivInstruction(TargetMachine &target,
return opCode;
}
-
-// Return if we cannot exploit constant to create a cheaper instruction
-static void
-CreateDivConstInstruction(TargetMachine &target,
- const InstructionNode* instrNode,
- std::vector<MachineInstr*>& mvec)
-{
+/// CreateDivConstInstruction - Return if we cannot exploit constant to create
+/// a cheaper instruction.
+///
+static void CreateDivConstInstruction(TargetMachine &target,
+ const InstructionNode* instrNode,
+ std::vector<MachineInstr*>& mvec) {
Value* LHS = instrNode->leftChild()->getValue();
Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
if (!isa<Constant>(constOp))
@@ -973,7 +2376,6 @@ CreateDivConstInstruction(TargetMachine &target,
// Cases worth optimizing are:
// (1) Divide by 1 for any type: replace with copy (ADD or FMOV)
// (2) Divide by 2^x for integer types: replace with SR[L or A]{X}
- //
const Type* resultType = instrNode->getInstruction()->getType();
if (resultType->isInteger()) {
@@ -1015,7 +2417,6 @@ CreateDivConstInstruction(TargetMachine &target,
// srlx t1, 64-k, t2 // t2 = 2^k - 1, if N < 0, 0 else
// add t2, N, t3 // t3 = N + 2^k -1, if N < 0, N else
// sra t3, k, result // result = N / 2^k
- //
TmpInstruction *sraTmp, *srlTmp, *addTmp;
MachineCodeForInstruction& mcfi
= MachineCodeForInstruction::get(destVal);
@@ -1072,13 +2473,10 @@ CreateDivConstInstruction(TargetMachine &target,
}
}
-
-static void
-CreateCodeForVariableSizeAlloca(const TargetMachine& target,
- Instruction* result,
- unsigned tsize,
- Value* numElementsVal,
- std::vector<MachineInstr*>& getMvec)
+static void CreateCodeForVariableSizeAlloca(const TargetMachine& target,
+ Instruction* result, unsigned tsize,
+ Value* numElementsVal,
+ std::vector<MachineInstr*>& getMvec)
{
Value* totalSizeVal;
MachineInstr* M;
@@ -1106,7 +2504,6 @@ CreateCodeForVariableSizeAlloca(const TargetMachine& target,
// Create temporary values to hold the result of MUL, SLL, SRL
// To pad `size' to next smallest multiple of 16:
// size = (size + 15) & (-16 = 0xfffffffffffffff0)
- //
TmpInstruction* tmpProd = new TmpInstruction(mcfi,numElementsVal, tsizeVal);
TmpInstruction* tmpAdd15= new TmpInstruction(mcfi,numElementsVal, tmpProd);
TmpInstruction* tmpAndf0= new TmpInstruction(mcfi,numElementsVal, tmpAdd15);
@@ -1133,7 +2530,7 @@ CreateCodeForVariableSizeAlloca(const TargetMachine& target,
bool growUp;
ConstantSInt* dynamicAreaOffset =
ConstantSInt::get(Type::IntTy,
- target.getFrameInfo()->getDynamicAreaOffset(mcInfo,growUp));
+ target.getFrameInfo()->getDynamicAreaOffset(mcInfo,growUp));
assert(! growUp && "Has SPARC v9 stack frame convention changed?");
unsigned SPReg = target.getRegInfo()->getStackPointer();
@@ -1147,14 +2544,11 @@ CreateCodeForVariableSizeAlloca(const TargetMachine& target,
.addRegDef(result));
}
-
static void
CreateCodeForFixedSizeAlloca(const TargetMachine& target,
- Instruction* result,
- unsigned tsize,
+ Instruction* result, unsigned tsize,
unsigned numElements,
- std::vector<MachineInstr*>& getMvec)
-{
+ std::vector<MachineInstr*>& getMvec) {
assert(result && result->getParent() &&
"Result value is not part of a function?");
Function *F = result->getParent()->getParent();
@@ -1166,7 +2560,6 @@ CreateCodeForFixedSizeAlloca(const TargetMachine& target,
if (tsize == 0)
tsize = 1;
-
// Put the variable in the dynamically sized area of the frame if either:
// (a) The offset is too large to use as an immediate in load/stores
// (check LDX because all load/stores have the same-size immed. field).
@@ -1180,8 +2573,8 @@ CreateCodeForFixedSizeAlloca(const TargetMachine& target,
paddedSize,
tsize * numElements);
- if (((int)paddedSize) > 8 * target.getFrameInfo()->getSizeOfEachArgOnStack() ||
- ! target.getInstrInfo()->constantFitsInImmedField(V9::LDXi,offsetFromFP)) {
+ if (((int)paddedSize) > 8 * target.getFrameInfo()->getSizeOfEachArgOnStack()||
+ !target.getInstrInfo()->constantFitsInImmedField(V9::LDXi,offsetFromFP)) {
CreateCodeForVariableSizeAlloca(target, result, tsize,
ConstantSInt::get(Type::IntTy,numElements),
getMvec);
@@ -1201,29 +2594,21 @@ CreateCodeForFixedSizeAlloca(const TargetMachine& target,
.addRegDef(result));
}
-
-//------------------------------------------------------------------------
-// Function SetOperandsForMemInstr
-//
-// Choose addressing mode for the given load or store instruction.
-// Use [reg+reg] if it is an indexed reference, and the index offset is
-// not a constant or if it cannot fit in the offset field.
-// Use [reg+offset] in all other cases.
-//
-// This assumes that all array refs are "lowered" to one of these forms:
-// %x = load (subarray*) ptr, constant ; single constant offset
-// %x = load (subarray*) ptr, offsetVal ; single non-constant offset
-// Generally, this should happen via strength reduction + LICM.
-// Also, strength reduction should take care of using the same register for
-// the loop index variable and an array index, when that is profitable.
-//------------------------------------------------------------------------
-
-static void
-SetOperandsForMemInstr(unsigned Opcode,
- std::vector<MachineInstr*>& mvec,
- InstructionNode* vmInstrNode,
- const TargetMachine& target)
-{
+/// SetOperandsForMemInstr - Choose addressing mode for the given load or store
+/// instruction. Use [reg+reg] if it is an indexed reference, and the index
+/// offset is not a constant or if it cannot fit in the offset field. Use
+/// [reg+offset] in all other cases. This assumes that all array refs are
+/// "lowered" to one of these forms:
+/// %x = load (subarray*) ptr, constant ; single constant offset
+/// %x = load (subarray*) ptr, offsetVal ; single non-constant offset
+/// Generally, this should happen via strength reduction + LICM. Also, strength
+/// reduction should take care of using the same register for the loop index
+/// variable and an array index, when that is profitable.
+///
+static void SetOperandsForMemInstr(unsigned Opcode,
+ std::vector<MachineInstr*>& mvec,
+ InstructionNode* vmInstrNode,
+ const TargetMachine& target) {
Instruction* memInst = vmInstrNode->getInstruction();
// Index vector, ptr value, and flag if all indices are const.
std::vector<Value*> idxVec;
@@ -1239,7 +2624,6 @@ SetOperandsForMemInstr(unsigned Opcode,
// Check if there is an index vector and if so, compute the
// right offset for structures and for arrays
- //
if (!idxVec.empty()) {
const PointerType* ptrType = cast<PointerType>(ptrVal->getType());
@@ -1254,7 +2638,6 @@ SetOperandsForMemInstr(unsigned Opcode,
// be an array ref, and must have been lowered to a single non-zero
// offset. (An extra leading zero offset, if any, can be ignored.)
// Generate code sequence to compute address from index.
- //
bool firstIdxIsZero = IsZero(idxVec[0]);
assert(idxVec.size() == 1U + firstIdxIsZero
&& "Array refs must be lowered before Instruction Selection");
@@ -1299,7 +2682,6 @@ SetOperandsForMemInstr(unsigned Opcode,
// Operand 0 is value, operand 1 is ptr, operand 2 is offset
// For LOAD or GET_ELEMENT_PTR,
// Operand 0 is ptr, operand 1 is offset, operand 2 is result.
- //
unsigned offsetOpNum, ptrOpNum;
MachineInstr *MI;
if (memInst->getOpcode() == Instruction::Store) {
@@ -1324,31 +2706,24 @@ SetOperandsForMemInstr(unsigned Opcode,
mvec.push_back(MI);
}
-
-//
-// Substitute operand `operandNum' of the instruction in node `treeNode'
-// in place of the use(s) of that instruction in node `parent'.
-// Check both explicit and implicit operands!
-// Also make sure to skip over a parent who:
-// (1) is a list node in the Burg tree, or
-// (2) itself had its results forwarded to its parent
-//
-static void
-ForwardOperand(InstructionNode* treeNode,
- InstrTreeNode* parent,
- int operandNum)
-{
+/// ForwardOperand - Substitute operand `operandNum' of the instruction in
+/// node `treeNode' in place of the use(s) of that instruction in node `parent'.
+/// Check both explicit and implicit operands! Also make sure to skip over a
+/// parent who: (1) is a list node in the Burg tree, or (2) itself had its
+/// results forwarded to its parent.
+///
+static void ForwardOperand (InstructionNode *treeNode, InstrTreeNode *parent,
+ int operandNum) {
assert(treeNode && parent && "Invalid invocation of ForwardOperand");
Instruction* unusedOp = treeNode->getInstruction();
Value* fwdOp = unusedOp->getOperand(operandNum);
// The parent itself may be a list node, so find the real parent instruction
- while (parent->getNodeType() != InstrTreeNode::NTInstructionNode)
- {
- parent = parent->parent();
- assert(parent && "ERROR: Non-instruction node has no parent in tree.");
- }
+ while (parent->getNodeType() != InstrTreeNode::NTInstructionNode) {
+ parent = parent->parent();
+ assert(parent && "ERROR: Non-instruction node has no parent in tree.");
+ }
InstructionNode* parentInstrNode = (InstructionNode*) parent;
Instruction* userInstr = parentInstrNode->getInstruction();
@@ -1367,8 +2742,7 @@ ForwardOperand(InstructionNode* treeNode,
for (unsigned i=0, numOps=minstr->getNumOperands(); i < numOps; ++i) {
const MachineOperand& mop = minstr->getOperand(i);
if (mop.getType() == MachineOperand::MO_VirtualRegister &&
- mop.getVRegValue() == unusedOp)
- {
+ mop.getVRegValue() == unusedOp) {
minstr->SetMachineOperandVal(i, MachineOperand::MO_VirtualRegister,
fwdOp);
}
@@ -1381,11 +2755,11 @@ ForwardOperand(InstructionNode* treeNode,
}
}
-
-inline bool
-AllUsesAreBranches(const Instruction* setccI)
-{
- for (Value::use_const_iterator UI=setccI->use_begin(), UE=setccI->use_end();
+/// AllUsesAreBranches - Returns true if all the uses of I are
+/// Branch instructions, false otherwise.
+///
+inline bool AllUsesAreBranches(const Instruction* I) {
+ for (Value::use_const_iterator UI=I->use_begin(), UE=I->use_end();
UI != UE; ++UI)
if (! isa<TmpInstruction>(*UI) // ignore tmp instructions here
&& cast<Instruction>(*UI)->getOpcode() != Instruction::Br)
@@ -1393,10 +2767,10 @@ AllUsesAreBranches(const Instruction* setccI)
return true;
}
-// Generate code for any intrinsic that needs a special code sequence
-// instead of a regular call. If not that kind of intrinsic, do nothing.
-// Returns true if code was generated, otherwise false.
-//
+/// CodeGenIntrinsic - Generate code for any intrinsic that needs a special
+/// code sequence instead of a regular call. If not that kind of intrinsic, do
+/// nothing. Returns true if code was generated, otherwise false.
+///
static bool CodeGenIntrinsic(Intrinsic::ID iid, CallInst &callInstr,
TargetMachine &target,
std::vector<MachineInstr*>& mvec) {
@@ -1430,20 +2804,10 @@ static bool CodeGenIntrinsic(Intrinsic::ID iid, CallInst &callInstr,
}
}
-//******************* Externally Visible Functions *************************/
-
-//------------------------------------------------------------------------
-// External Function: ThisIsAChainRule
-//
-// Purpose:
-// Check if a given BURG rule is a chain rule.
-//------------------------------------------------------------------------
-
-extern bool
-ThisIsAChainRule(int eruleno)
-{
- switch(eruleno)
- {
+/// ThisIsAChainRule - returns true if the given BURG rule is a chain rule.
+///
+extern bool ThisIsAChainRule(int eruleno) {
+ switch(eruleno) {
case 111: // stmt: reg
case 123:
case 124:
@@ -1472,22 +2836,13 @@ ThisIsAChainRule(int eruleno)
}
}
-
-//------------------------------------------------------------------------
-// External Function: GetInstructionsByRule
-//
-// Purpose:
-// Choose machine instructions for the SPARC according to the
-// patterns chosen by the BURG-generated parser.
-//------------------------------------------------------------------------
-
-void
-GetInstructionsByRule(InstructionNode* subtreeRoot,
- int ruleForNode,
- short* nts,
- TargetMachine &target,
- std::vector<MachineInstr*>& mvec)
-{
+/// GetInstructionsByRule - Choose machine instructions for the
+/// SPARC V9 according to the patterns chosen by the BURG-generated parser.
+/// This is where most of the work in the V9 instruction selector gets done.
+///
+void GetInstructionsByRule(InstructionNode* subtreeRoot, int ruleForNode,
+ short* nts, TargetMachine &target,
+ std::vector<MachineInstr*>& mvec) {
bool checkCast = false; // initialize here to use fall-through
bool maskUnsignedResult = false;
int nextRule;
@@ -1504,14 +2859,11 @@ GetInstructionsByRule(InstructionNode* subtreeRoot,
if (subtreeRoot->isFoldedIntoParent())
return;
- //
// Let's check for chain rules outside the switch so that we don't have
// to duplicate the list of chain rule production numbers here again
- //
if (ThisIsAChainRule(ruleForNode)) {
// Chain rules have a single nonterminal on the RHS.
// Get the rule that matches the RHS non-terminal and use that instead.
- //
assert(nts[0] && ! nts[1]
&& "A chain rule should have only one RHS non-terminal!");
nextRule = burm_rule(subtreeRoot->state, nts[0]);
@@ -1534,7 +2886,6 @@ GetInstructionsByRule(InstructionNode* subtreeRoot,
// Create a hidden virtual reg to represent the return address register
// used by the machine instruction but not represented in LLVM.
- //
Instruction* returnAddrTmp = new TmpInstruction(mcfi, returnInstr);
MachineInstr* retMI =
@@ -1546,7 +2897,6 @@ GetInstructionsByRule(InstructionNode* subtreeRoot,
// (b) Insert a copy to copy the return value to the appropriate reg.
// -- For FP values, create a FMOVS or FMOVD instruction
// -- For non-FP values, create an add-with-0 instruction
- //
if (retVal != NULL) {
const SparcV9RegInfo& regInfo =
(SparcV9RegInfo&) *target.getRegInfo();
@@ -1557,16 +2907,15 @@ GetInstructionsByRule(InstructionNode* subtreeRoot,
: (unsigned) SparcV9IntRegClass::i0);
retRegNum = regInfo.getUnifiedRegNum(regClassID, retRegNum);
- // () Insert sign-extension instructions for small signed values.
- //
+ // Insert sign-extension instructions for small signed values.
Value* retValToUse = retVal;
if (retType->isIntegral() && retType->isSigned()) {
unsigned retSize = target.getTargetData().getTypeSize(retType);
if (retSize <= 4) {
- // create a temporary virtual reg. to hold the sign-extension
+ // Create a temporary virtual reg. to hold the sign-extension.
retValToUse = new TmpInstruction(mcfi, retVal);
- // sign-extend retVal and put the result in the temporary reg.
+ // Sign-extend retVal and put the result in the temporary reg.
CreateSignExtensionInstructions
(target, returnInstr->getParent()->getParent(),
retVal, retValToUse, 8*retSize, mvec, mcfi);
@@ -1576,7 +2925,6 @@ GetInstructionsByRule(InstructionNode* subtreeRoot,
// (b) Now, insert a copy to to the appropriate register:
// -- For FP values, create a FMOVS or FMOVD instruction
// -- For non-FP values, create an add-with-0 instruction
- //
// First, create a virtual register to represent the register and
// mark this vreg as being an implicit operand of the ret MI.
TmpInstruction* retVReg =
@@ -2896,4 +4244,266 @@ GetInstructionsByRule(InstructionNode* subtreeRoot,
}
}
+} // End llvm namespace
+
+//==------------------------------------------------------------------------==//
+// Class V9ISel Implementation
+//==------------------------------------------------------------------------==//
+
+bool V9ISel::runOnFunction(Function &F) {
+ // First pass - Walk the function, lowering any calls to intrinsic functions
+ // which the instruction selector cannot handle.
+ for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
+ for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
+ if (CallInst *CI = dyn_cast<CallInst>(I++))
+ if (Function *F = CI->getCalledFunction())
+ switch (F->getIntrinsicID()) {
+ case Intrinsic::not_intrinsic:
+ case Intrinsic::vastart:
+ case Intrinsic::vacopy:
+ case Intrinsic::vaend:
+ // We directly implement these intrinsics. Note that this knowledge
+ // is incestuously entangled with the code in
+ // SparcInstrSelection.cpp and must be updated when it is updated.
+ // Since ALL of the code in this library is incestuously intertwined
+ // with it already and sparc specific, we will live with this.
+ break;
+ default:
+ // All other intrinsic calls we must lower.
+ Instruction *Before = CI->getPrev();
+ Target.getIntrinsicLowering().LowerIntrinsicCall(CI);
+ if (Before) { // Move iterator to instruction after call
+ I = Before; ++I;
+ } else {
+ I = BB->begin();
+ }
+ }
+
+ // Build the instruction trees to be given as inputs to BURG.
+ InstrForest instrForest(&F);
+ if (SelectDebugLevel >= Select_DebugInstTrees) {
+ std::cerr << "\n\n*** Input to instruction selection for function "
+ << F.getName() << "\n\n" << F
+ << "\n\n*** Instruction trees for function "
+ << F.getName() << "\n\n";
+ instrForest.dump();
+ }
+
+ // Invoke BURG instruction selection for each tree
+ for (InstrForest::const_root_iterator RI = instrForest.roots_begin();
+ RI != instrForest.roots_end(); ++RI) {
+ InstructionNode* basicNode = *RI;
+ assert(basicNode->parent() == NULL && "A `root' node has a parent?");
+
+ // Invoke BURM to label each tree node with a state
+ burm_label(basicNode);
+ if (SelectDebugLevel >= Select_DebugBurgTrees) {
+ printcover(basicNode, 1, 0);
+ std::cerr << "\nCover cost == " << treecost(basicNode, 1, 0) <<"\n\n";
+ printMatches(basicNode);
+ }
+
+ // Then recursively walk the tree to select instructions
+ SelectInstructionsForTree(basicNode, /*goalnt*/1);
+ }
+
+ // Create the MachineBasicBlocks and add all of the MachineInstrs
+ // defined in the MachineCodeForInstruction objects to the MachineBasicBlocks.
+ MachineFunction &MF = MachineFunction::get(&F);
+ std::map<const BasicBlock *, MachineBasicBlock *> MBBMap;
+ for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
+ MachineBasicBlock *MBB = new MachineBasicBlock(BI);
+ MF.getBasicBlockList().push_back(MBB);
+ MBBMap[BI] = MBB;
+
+ for (BasicBlock::iterator II = BI->begin(); II != BI->end(); ++II) {
+ MachineCodeForInstruction &mvec = MachineCodeForInstruction::get(II);
+ MBB->insert(MBB->end(), mvec.begin(), mvec.end());
+ }
+ }
+
+ // Initialize Machine-CFG for the function.
+ for (MachineFunction::iterator i = MF.begin (), e = MF.end (); i != e; ++i) {
+ MachineBasicBlock &MBB = *i;
+ const BasicBlock *BB = MBB.getBasicBlock ();
+ // for each successor S of BB, add MBBMap[S] as a successor of MBB.
+ for (succ_const_iterator si = succ_begin(BB), se = succ_end(BB); si != se;
+ ++si) {
+ MachineBasicBlock *succMBB = MBBMap[*si];
+ assert (succMBB && "Can't find MachineBasicBlock for this successor");
+ MBB.addSuccessor (succMBB);
+ }
+ }
+
+ // Insert phi elimination code
+ InsertCodeForPhis(F);
+
+ if (SelectDebugLevel >= Select_PrintMachineCode) {
+ std::cerr << "\n*** Machine instructions after INSTRUCTION SELECTION\n";
+ MachineFunction::get(&F).dump();
+ }
+
+ return true;
+}
+
+/// InsertCodeForPhis - This method inserts Phi elimination code for
+/// all Phi nodes in the given function. After this method is called,
+/// the Phi nodes still exist in the LLVM code, but copies are added to the
+/// machine code.
+///
+void V9ISel::InsertCodeForPhis(Function &F) {
+ // Iterate over every Phi node PN in F:
+ MachineFunction &MF = MachineFunction::get(&F);
+ for (MachineFunction::iterator BB = MF.begin(); BB != MF.end(); ++BB) {
+ for (BasicBlock::const_iterator IIt = BB->getBasicBlock()->begin();
+ const PHINode *PN = dyn_cast<PHINode>(IIt); ++IIt) {
+ // Create a new temporary register to hold the result of the Phi copy.
+ // The leak detector shouldn't track these nodes. They are not garbage,
+ // even though their parent field is never filled in.
+ Value *PhiCpRes = new PHINode(PN->getType(), PN->getName() + ":PhiCp");
+ LeakDetector::removeGarbageObject(PhiCpRes);
+
+ // For each of PN's incoming values, insert a copy in the corresponding
+ // predecessor block.
+ MachineCodeForInstruction &MCforPN = MachineCodeForInstruction::get (PN);
+ for (unsigned i = 0; i < PN->getNumIncomingValues(); ++i) {
+ std::vector<MachineInstr*> mvec, CpVec;
+ Target.getRegInfo()->cpValue2Value(PN->getIncomingValue(i),
+ PhiCpRes, mvec);
+ for (std::vector<MachineInstr*>::iterator MI=mvec.begin();
+ MI != mvec.end(); ++MI) {
+ std::vector<MachineInstr*> CpVec2 =
+ FixConstantOperandsForInstr(const_cast<PHINode*>(PN), *MI, Target);
+ CpVec2.push_back(*MI);
+ CpVec.insert(CpVec.end(), CpVec2.begin(), CpVec2.end());
+ }
+ // Insert the copy instructions into the predecessor BB.
+ InsertPhiElimInstructions(PN->getIncomingBlock(i), CpVec);
+ MCforPN.insert (MCforPN.end (), CpVec.begin (), CpVec.end ());
+ }
+ // Insert a copy instruction from PhiCpRes to PN.
+ std::vector<MachineInstr*> mvec;
+ Target.getRegInfo()->cpValue2Value(PhiCpRes, const_cast<PHINode*>(PN),
+ mvec);
+ BB->insert(BB->begin(), mvec.begin(), mvec.end());
+ MCforPN.insert (MCforPN.end (), mvec.begin (), mvec.end ());
+ } // for each Phi Instr in BB
+ } // for all BBs in function
+}
+
+/// InsertPhiElimInstructions - Inserts the instructions in CpVec into the
+/// MachineBasicBlock corresponding to BB, just before its terminator
+/// instruction. This is used by InsertCodeForPhis() to insert copies, above.
+///
+void V9ISel::InsertPhiElimInstructions(BasicBlock *BB,
+ const std::vector<MachineInstr*>& CpVec)
+{
+ Instruction *TermInst = (Instruction*)BB->getTerminator();
+ MachineCodeForInstruction &MC4Term = MachineCodeForInstruction::get(TermInst);
+ MachineInstr *FirstMIOfTerm = MC4Term.front();
+ assert (FirstMIOfTerm && "No Machine Instrs for terminator");
+
+ MachineBasicBlock *MBB = FirstMIOfTerm->getParent();
+ assert(MBB && "Machine BB for predecessor's terminator not found");
+ MachineBasicBlock::iterator MCIt = FirstMIOfTerm;
+ assert(MCIt != MBB->end() && "Start inst of terminator not found");
+
+ // Insert the copy instructions just before the first machine instruction
+ // generated for the terminator.
+ MBB->insert(MCIt, CpVec.begin(), CpVec.end());
+}
+
+/// SelectInstructionsForTree - Recursively walk the tree to select
+/// instructions. Do this top-down so that child instructions can exploit
+/// decisions made at the child instructions.
+///
+/// E.g., if br(setle(reg,const)) decides the constant is 0 and uses
+/// a branch-on-integer-register instruction, then the setle node
+/// can use that information to avoid generating the SUBcc instruction.
+///
+/// Note that this cannot be done bottom-up because setle must do this
+/// only if it is a child of the branch (otherwise, the result of setle
+/// may be used by multiple instructions).
+///
+void V9ISel::SelectInstructionsForTree(InstrTreeNode* treeRoot, int goalnt) {
+ // Get the rule that matches this node.
+ int ruleForNode = burm_rule(treeRoot->state, goalnt);
+
+ if (ruleForNode == 0) {
+ std::cerr << "Could not match instruction tree for instr selection\n";
+ abort();
+ }
+
+ // Get this rule's non-terminals and the corresponding child nodes (if any)
+ short *nts = burm_nts[ruleForNode];
+
+ // First, select instructions for the current node and rule.
+ // (If this is a list node, not an instruction, then skip this step).
+ // This function is specific to the target architecture.
+ if (treeRoot->opLabel != VRegListOp) {
+ std::vector<MachineInstr*> minstrVec;
+ InstructionNode* instrNode = (InstructionNode*)treeRoot;
+ assert(instrNode->getNodeType() == InstrTreeNode::NTInstructionNode);
+ GetInstructionsByRule(instrNode, ruleForNode, nts, Target, minstrVec);
+ MachineCodeForInstruction &mvec =
+ MachineCodeForInstruction::get(instrNode->getInstruction());
+ mvec.insert(mvec.end(), minstrVec.begin(), minstrVec.end());
+ }
+
+ // Then, recursively compile the child nodes, if any.
+ //
+ if (nts[0]) {
+ // i.e., there is at least one kid
+ InstrTreeNode* kids[2];
+ int currentRule = ruleForNode;
+ burm_kids(treeRoot, currentRule, kids);
+
+ // First skip over any chain rules so that we don't visit
+ // the current node again.
+ while (ThisIsAChainRule(currentRule)) {
+ currentRule = burm_rule(treeRoot->state, nts[0]);
+ nts = burm_nts[currentRule];
+ burm_kids(treeRoot, currentRule, kids);
+ }
+
+ // Now we have the first non-chain rule so we have found
+ // the actual child nodes. Recursively compile them.
+ for (unsigned i = 0; nts[i]; i++) {
+ assert(i < 2);
+ InstrTreeNode::InstrTreeNodeType nodeType = kids[i]->getNodeType();
+ if (nodeType == InstrTreeNode::NTVRegListNode ||
+ nodeType == InstrTreeNode::NTInstructionNode)
+ SelectInstructionsForTree(kids[i], nts[i]);
+ }
+ }
+
+ // Finally, do any post-processing on this node after its children
+ // have been translated.
+ if (treeRoot->opLabel != VRegListOp)
+ PostprocessMachineCodeForTree((InstructionNode*)treeRoot, ruleForNode, nts);
+}
+
+/// PostprocessMachineCodeForTree - Apply any final cleanups to
+/// machine code for the root of a subtree after selection for all its
+/// children has been completed.
+///
+void V9ISel::PostprocessMachineCodeForTree(InstructionNode *instrNode,
+ int ruleForNode, short *nts) {
+ // Fix up any constant operands in the machine instructions to either
+ // use an immediate field or to load the constant into a register.
+ // Walk backwards and use direct indexes to allow insertion before current.
+ Instruction* vmInstr = instrNode->getInstruction();
+ MachineCodeForInstruction &mvec = MachineCodeForInstruction::get(vmInstr);
+ for (unsigned i = mvec.size(); i != 0; --i) {
+ std::vector<MachineInstr*> loadConstVec =
+ FixConstantOperandsForInstr(vmInstr, mvec[i-1], Target);
+ mvec.insert(mvec.begin()+i-1, loadConstVec.begin(), loadConstVec.end());
+ }
+}
+
+/// createSparcV9BurgInstSelector - Creates and returns a new SparcV9
+/// BURG-based instruction selection pass.
+///
+FunctionPass *llvm::createSparcV9BurgInstSelector(TargetMachine &TM) {
+ return new V9ISel(TM);
}
diff --git a/lib/Target/SparcV9/SparcV9BurgISel.h b/lib/Target/SparcV9/SparcV9BurgISel.h
new file mode 100644
index 0000000000..baf37da71f
--- /dev/null
+++ b/lib/Target/SparcV9/SparcV9BurgISel.h
@@ -0,0 +1,56 @@
+//===-- SparcV9BurgISel.h ---------------------------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Global functions exposed by the BURG-based instruction selector
+// for the SparcV9 target.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef SPARCV9BURGISEL_H
+#define SPARCV9BURGISEL_H
+
+//#include "llvm/DerivedTypes.h"
+//#include "llvm/Instruction.h"
+//#include "SparcV9Internals.h"
+
+namespace llvm {
+
+class Constant;
+class Instruction;
+class TargetMachine;
+class Function;
+class Value;
+class MachineInstr;
+class MachineCodeForInstruction;
+class FunctionPass;
+
+/// ConstantMayNotFitInImmedField - Test if this constant may not fit in the
+/// immediate field of the machine instructions (probably) generated for this
+/// instruction.
+///
+bool ConstantMayNotFitInImmedField (const Constant *CV, const Instruction *I);
+
+/// CreateCodeToLoadConst - Create an instruction sequence to put the
+/// constant `val' into the virtual register `dest'. `val' may be a Constant
+/// or a GlobalValue, viz., the constant address of a global variable or
+/// function. The generated instructions are returned in `mvec'. Any temp.
+/// registers (TmpInstruction) created are recorded in mcfi.
+///
+void CreateCodeToLoadConst (const TargetMachine &target, Function *F,
+ Value *val, Instruction *dest, std::vector<MachineInstr*> &mvec,
+ MachineCodeForInstruction &mcfi);
+
+/// createSparcV9BurgInstSelector - Creates and returns a new SparcV9
+/// BURG-based instruction selection pass.
+///
+FunctionPass *createSparcV9BurgInstSelector(TargetMachine &TM);
+
+} // End llvm namespace
+
+#endif
diff --git a/lib/Target/SparcV9/SparcV9InstrInfo.cpp b/lib/Target/SparcV9/SparcV9InstrInfo.cpp
deleted file mode 100644
index 239758fa7e..0000000000
--- a/lib/Target/SparcV9/SparcV9InstrInfo.cpp
+++ /dev/null
@@ -1,789 +0,0 @@
-//===-- SparcV9InstrInfo.cpp - SparcV9 Instr. Selection Support Methods ---===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file contains various methods of the class SparcV9InstrInfo, many of
-// which appear to build canned sequences of MachineInstrs, and are
-// used in instruction selection.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Function.h"
-#include "llvm/Instructions.h"
-#include "llvm/CodeGen/InstrSelection.h"
-#include "llvm/CodeGen/MachineConstantPool.h"
-#include "llvm/CodeGen/MachineFunction.h"
-#include "llvm/CodeGen/MachineFunctionInfo.h"
-#include "llvm/CodeGen/MachineCodeForInstruction.h"
-#include "llvm/CodeGen/MachineInstrBuilder.h"
-#include "SparcV9Internals.h"
-#include "SparcV9InstrSelectionSupport.h"
-#include "SparcV9InstrInfo.h"
-
-namespace llvm {
-
-static const uint32_t MAXLO = (1 << 10) - 1; // set bits set by %lo(*)
-static const uint32_t MAXSIMM = (1 << 12) - 1; // set bits in simm13 field of OR
-
-//---------------------------------------------------------------------------
-// Function ConvertConstantToIntType
-//
-// Function to get the value of an integral constant in the form
-// that must be put into the machine register. The specified constant is
-// interpreted as (i.e., converted if necessary to) the specified destination
-// type. The result is always returned as an uint64_t, since the representation
-// of int64_t and uint64_t are identical. The argument can be any known const.
-//
-// isValidConstant is set to true if a valid constant was found.
-//---------------------------------------------------------------------------
-
-uint64_t
-ConvertConstantToIntType(const TargetMachine &target,
- const Value *V,
- const Type *destType,
- bool &isValidConstant)
-{
- isValidConstant = false;
- uint64_t C = 0;
-
- if (! destType->isIntegral() && ! isa<PointerType>(destType))
- return C;
-
- if (! isa<Constant>(V) || isa<GlobalValue>(V))
- return C;
-
- // GlobalValue: no conversions needed: get value and return it
- if (const GlobalValue* GV = dyn_cast<GlobalValue>(V)) {
- isValidConstant = true; // may be overwritten by recursive call
- return ConvertConstantToIntType(target, GV, destType, isValidConstant);
- }
-
- // ConstantBool: no conversions needed: get value and return it
- if (const ConstantBool *CB = dyn_cast<ConstantBool>(V)) {
- isValidConstant = true;
- return (uint64_t) CB->getValue();
- }
-
- // ConstantPointerNull: it's really just a big, shiny version of zero.
- if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(V)) {
- isValidConstant = true;
- return 0;
- }
-
- // For other types of constants, some conversion may be needed.
- // First, extract the constant operand according to its own type
- if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
- switch(CE->getOpcode()) {
- case Instruction::Cast: // recursively get the value as cast
- C = ConvertConstantToIntType(target, CE->getOperand(0), CE->getType(),
- isValidConstant);
- break;
- default: // not simplifying other ConstantExprs
- break;
- }
- else if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
- isValidConstant = true;
- C = CI->getRawValue();
- }
- else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
- isValidConstant = true;
- double fC = CFP->getValue();
- C = (destType->isSigned()? (uint64_t) (int64_t) fC
- : (uint64_t) fC);
- }
-
- // Now if a valid value was found, convert it to destType.
- if (isValidConstant) {
- unsigned opSize = target.getTargetData().getTypeSize(V->getType());
- unsigned destSize = target.getTargetData().getTypeSize(destType);
- uint64_t maskHi = (destSize < 8)? (1U << 8*destSize) - 1 : ~0;
- assert(opSize <= 8 && destSize <= 8 && ">8-byte int type unexpected");
-
- if (destType->isSigned()) {
- if (opSize > destSize) // operand is larger than dest:
- C = C & maskHi; // mask high bits
-
- if (opSize > destSize ||
- (opSize == destSize && ! V->getType()->isSigned()))
- if (C & (1U << (8*destSize - 1)))
- C = C | ~maskHi; // sign-extend from destSize to 64 bits
- }
- else {
- if (opSize > destSize || (V->getType()->isSigned() && destSize < 8)) {
- // operand is larger than dest,
- // OR both are equal but smaller than the full register size
- // AND operand is signed, so it may have extra sign bits:
- // mask high bits
- C = C & maskHi;
- }
- }
- }
-
- return C;
-}
-
-
-//----------------------------------------------------------------------------
-// Function: CreateSETUWConst
-//
-// Set a 32-bit unsigned constant in the register `dest', using
-// SETHI, OR in the worst case. This function correctly emulates
-// the SETUW pseudo-op for SPARC v9 (if argument isSigned == false).
-//
-// The isSigned=true case is used to implement SETSW without duplicating code.
-//
-// Optimize some common cases:
-// (1) Small value that fits in simm13 field of OR: don't need SETHI.
-// (2) isSigned = true and C is a small negative signed value, i.e.,
-// high bits are 1, and the remaining bits fit in simm13(OR).
-//----------------------------------------------------------------------------
-
-static inline void
-CreateSETUWConst(const TargetMachine& target, uint32_t C,
- Instruction* dest, std::vector<MachineInstr*>& mvec,
- bool isSigned = false)
-{
- MachineInstr *miSETHI = NULL, *miOR = NULL;
-
- // In order to get efficient code, we should not generate the SETHI if
- // all high bits are 1 (i.e., this is a small signed value that fits in
- // the simm13 field of OR). So we check for and handle that case specially.
- // NOTE: The value C = 0x80000000 is bad: sC < 0 *and* -sC < 0.
- // In fact, sC == -sC, so we have to check for this explicitly.
- int32_t sC = (int32_t) C;
- bool smallNegValue =isSigned && sC < 0 && sC != -sC && -sC < (int32_t)MAXSIMM;
-
- // Set the high 22 bits in dest if non-zero and simm13 field of OR not enough
- if (!smallNegValue && (C & ~MAXLO) && C > MAXSIMM) {
- miSETHI = BuildMI(V9::SETHI, 2).addZImm(C).addRegDef(dest);
- miSETHI->getOperand(0).markHi32();
- mvec.push_back(miSETHI);
- }
-
- // Set the low 10 or 12 bits in dest. This is necessary if no SETHI
- // was generated, or if the low 10 bits are non-zero.
- if (miSETHI==NULL || C & MAXLO) {
- if (miSETHI) {
- // unsigned value with high-order bits set using SETHI
- miOR = BuildMI(V9::ORi,3).addReg(dest).addZImm(C).addRegDef(dest);
- miOR->getOperand(1).markLo32();
- } else {
- // unsigned or small signed value that fits in simm13 field of OR
- assert(smallNegValue || (C & ~MAXSIMM) == 0);
- miOR = BuildMI(V9::ORi, 3).addMReg(target.getRegInfo()->getZeroRegNum())
- .addSImm(sC).addRegDef(dest);
- }
- mvec.push_back(miOR);
- }
-
- assert((miSETHI || miOR) && "Oops, no code was generated!");
-}
-
-
-//----------------------------------------------------------------------------
-// Function: CreateSETSWConst
-//
-// Set a 32-bit signed constant in the register `dest', with sign-extension
-// to 64 bits. This uses SETHI, OR, SRA in the worst case.
-// This function correctly emulates the SETSW pseudo-op for SPARC v9.
-//
-// Optimize the same cases as SETUWConst, plus:
-// (1) SRA is not needed for positive or small negative values.
-//----------------------------------------------------------------------------
-
-static inline void
-CreateSETSWConst(const TargetMachine& target, int32_t C,
- Instruction* dest, std::vector<MachineInstr*>& mvec)
-{
- // Set the low 32 bits of dest
- CreateSETUWConst(target, (uint32_t) C, dest, mvec, /*isSigned*/true);
-
- // Sign-extend to the high 32 bits if needed.
- // NOTE: The value C = 0x80000000 is bad: -C == C and so -C is < MAXSIMM
- if (C < 0 && (C == -C || -C > (int32_t) MAXSIMM))
- mvec.push_back(BuildMI(V9::SRAi5,3).addReg(dest).addZImm(0).addRegDef(dest));
-}
-
-
-//----------------------------------------------------------------------------
-// Function: CreateSETXConst
-//
-// Set a 64-bit signed or unsigned constant in the register `dest'.
-// Use SETUWConst for each 32 bit word, plus a left-shift-by-32 in between.
-// This function correctly emulates the SETX pseudo-op for SPARC v9.
-//
-// Optimize the same cases as SETUWConst for each 32 bit word.
-//----------------------------------------------------------------------------
-
-static inline void
-CreateSETXConst(const TargetMachine& target, uint64_t C,
- Instruction* tmpReg, Instruction* dest,
- std::vector<MachineInstr*>& mvec)
-{
- assert(C > (unsigned int) ~0 && "Use SETUW/SETSW for 32-bit values!");
-
- MachineInstr* MI;
-
- // Code to set the upper 32 bits of the value in register `tmpReg'
- CreateSETUWConst(target, (C >> 32), tmpReg, mvec);
-
- // Shift tmpReg left by 32 bits
- mvec.push_back(BuildMI(V9::SLLXi6, 3).addReg(tmpReg).addZImm(32)
- .addRegDef(tmpReg));
-
- // Code to set the low 32 bits of the value in register `dest'
- CreateSETUWConst(target, C, dest, mvec);
-
- // dest = OR(tmpReg, dest)
- mvec.push_back(BuildMI(V9::ORr,3).addReg(dest).addReg(tmpReg).addRegDef(dest));
-}
-
-
-//----------------------------------------------------------------------------
-// Function: CreateSETUWLabel
-//
-// Set a 32-bit constant (given by a symbolic label) in the register `dest'.
-//----------------------------------------------------------------------------
-
-static inline void
-CreateSETUWLabel(const TargetMachine& target, Value* val,
- Instruction* dest, std::vector<MachineInstr*>& mvec)
-{
- MachineInstr* MI;
-
- // Set the high 22 bits in dest
- MI = BuildMI(V9::SETHI, 2).addReg(val).addRegDef(dest);
- MI->getOperand(0).markHi32();
- mvec.push_back(MI);
-
- // Set the low 10 bits in dest
- MI = BuildMI(V9::ORr, 3).addReg(dest).addReg(val).addRegDef(dest);
- MI->getOperand(1).markLo32();
- mvec.push_back(MI);
-}
-
-
-//----------------------------------------------------------------------------
-// Function: CreateSETXLabel
-//
-// Set a 64-bit constant (given by a symbolic label) in the register `dest'.
-//----------------------------------------------------------------------------
-
-static inline void
-CreateSETXLabel(const TargetMachine& target,
- Value* val, Instruction* tmpReg, Instruction* dest,
- std::vector<MachineInstr*>& mvec)
-{
- assert(isa<Constant>(val) &&
- "I only know about constant values and global addresses");
-
- MachineInstr* MI;
-
- MI = BuildMI(V9::SETHI, 2).addPCDisp(val).addRegDef(tmpReg);
- MI->getOperand(0).markHi64();
- mvec.push_back(MI);
-
- MI = BuildMI(V9::ORi, 3).addReg(tmpReg).addPCDisp(val).addRegDef(tmpReg);
- MI->getOperand(1).markLo64();
- mvec.push_back(MI);
-
- mvec.push_back(BuildMI(V9::SLLXi6, 3).addReg(tmpReg).addZImm(32)
- .addRegDef(tmpReg));
- MI = BuildMI(V9::SETHI, 2).addPCDisp(val).addRegDef(dest);
- MI->getOperand(0).markHi32();
- mvec.push_back(MI);
-
- MI = BuildMI(V9::ORr, 3).addReg(dest).addReg(tmpReg).addRegDef(dest);
- mvec.push_back(MI);
-
- MI = BuildMI(V9::ORi, 3).addReg(dest).addPCDisp(val).addRegDef(dest);
- MI->getOperand(1).markLo32();
- mvec.push_back(MI);
-}
-
-
-//----------------------------------------------------------------------------
-// Function: CreateUIntSetInstruction
-//
-// Create code to Set an unsigned constant in the register `dest'.
-// Uses CreateSETUWConst, CreateSETSWConst or CreateSETXConst as needed.
-// CreateSETSWConst is an optimization for the case that the unsigned value
-// has all ones in the 33 high bits (so that sign-extension sets them all).
-//----------------------------------------------------------------------------
-
-static inline void
-CreateUIntSetInstruction(const TargetMachine& target,
- uint64_t C, Instruction* dest,
- std::vector<MachineInstr*>& mvec,
- MachineCodeForInstruction& mcfi)
-{
- static const uint64_t lo32 = (uint32_t) ~0;
- if (C <= lo32) // High 32 bits are 0. Set low 32 bits.
- CreateSETUWConst(target, (uint32_t) C, dest, mvec);
- else if ((C & ~lo32) == ~lo32 && (C & (1U << 31))) {
- // All high 33 (not 32) bits are 1s: sign-extension will take care
- // of high 32 bits, so use the sequence for signed int
- CreateSETSWConst(target, (int32_t) C, dest, mvec);
- } else if (C > lo32) {
- // C does not fit in 32 bits
- TmpInstruction* tmpReg = new TmpInstruction(mcfi, Type::IntTy);
- CreateSETXConst(target, C, tmpReg, dest, mvec);
- }
-}
-
-
-//----------------------------------------------------------------------------
-// Function: CreateIntSetInstruction
-//
-// Create code to Set a signed constant in the register `dest'.
-// Really the same as CreateUIntSetInstruction.
-//----------------------------------------------------------------------------
-
-static inline void
-CreateIntSetInstruction(const TargetMachine& target,
- int64_t C, Instruction* dest,
- std::vector<MachineInstr*>& mvec,
- MachineCodeForInstruction& mcfi)
-{
- CreateUIntSetInstruction(target, (uint64_t) C, dest, mvec, mcfi);
-}
-
-
-//---------------------------------------------------------------------------
-// Create a table of LLVM opcode -> max. immediate constant likely to
-// be usable for that operation.
-//---------------------------------------------------------------------------
-
-// Entry == 0 ==> no immediate constant field exists at all.
-// Entry > 0 ==> abs(immediate constant) <= Entry
-//
-std::vector<int> MaxConstantsTable(Instruction::OtherOpsEnd);
-
-static int
-MaxConstantForInstr(unsigned llvmOpCode)
-{
- int modelOpCode = -1;
-
- if (llvmOpCode >= Instruction::BinaryOpsBegin &&
- llvmOpCode < Instruction::BinaryOpsEnd)
- modelOpCode = V9::ADDi;
- else
- switch(llvmOpCode) {
- case Instruction::Ret: modelOpCode = V9::JMPLCALLi; break;
-
- case Instruction::Malloc:
- case Instruction::Alloca:
- case Instruction::GetElementPtr:
- case Instruction::PHI:
- case Instruction::Cast:
- case Instruction::Call: modelOpCode = V9::ADDi; break;
-
- case Instruction::Shl:
- case Instruction::Shr: modelOpCode = V9::SLLXi6; break;
-
- default: break;
- };
-
- return (modelOpCode < 0)? 0: SparcV9MachineInstrDesc[modelOpCode].maxImmedConst;
-}
-
-static void
-InitializeMaxConstantsTable()
-{
- unsigned op;
- assert(MaxConstantsTable.size() == Instruction::OtherOpsEnd &&
- "assignments below will be illegal!");
- for (op = Instruction::TermOpsBegin; op < Instruction::TermOpsEnd; ++op)
- MaxConstantsTable[op] = MaxConstantForInstr(op);
- for (op = Instruction::BinaryOpsBegin; op < Instruction::BinaryOpsEnd; ++op)
- MaxConstantsTable[op] = MaxConstantForInstr(op);
- for (op = Instruction::MemoryOpsBegin; op < Instruction::MemoryOpsEnd; ++op)
- MaxConstantsTable[op] = MaxConstantForInstr(op);
- for (op = Instruction::OtherOpsBegin; op < Instruction::OtherOpsEnd; ++op)
- MaxConstantsTable[op] = MaxConstantForInstr(op);
-}
-
-
-//---------------------------------------------------------------------------
-// class SparcV9InstrInfo
-//
-// Purpose:
-// Information about individual instructions.
-// Most information is stored in the SparcV9MachineInstrDesc array above.
-// Other information is computed on demand, and most such functions
-// default to member functions in base class TargetInstrInfo.
-//---------------------------------------------------------------------------
-
-SparcV9InstrInfo::SparcV9InstrInfo()
- : TargetInstrInfo(SparcV9MachineInstrDesc, V9::NUM_TOTAL_OPCODES) {
- InitializeMaxConstantsTable();
-}
-
-bool ConstantMayNotFitInImmedField(const Constant* CV, const Instruction* I) {
- if (I->getOpcode() >= MaxConstantsTable.size()) // user-defined op (or bug!)
- return true;
-
- if (isa<ConstantPointerNull>(CV)) // can always use %g0
- return false;
-
- if (isa<SwitchInst>(I)) // Switch instructions will be lowered!
- return false;
-
- if (const ConstantInt* CI = dyn_cast<ConstantInt>(CV))
- return labs((int64_t)CI->getRawValue()) > MaxConstantsTable[I->getOpcode()];
-
- if (isa<ConstantBool>(CV))
- return 1 > MaxConstantsTable[I->getOpcode()];
-
- return true;
-}
-
-//
-// Create an instruction sequence to put the constant `val' into
-// the virtual register `dest'. `val' may be a Constant or a
-// GlobalValue, viz., the constant address of a global variable or function.
-// The generated instructions are returned in `mvec'.
-// Any temp. registers (TmpInstruction) created are recorded in mcfi.
-// Any stack space required is allocated via MachineFunction.
-//
-void
-CreateCodeToLoadConst(const TargetMachine& target,
- Function* F,
- Value* val,
- Instruction* dest,
- std::vector<MachineInstr*>& mvec,
- MachineCodeForInstruction& mcfi)
-{
- assert(isa<Constant>(val) &&
- "I only know about constant values and global addresses");
-
- // Use a "set" instruction for known constants or symbolic constants (labels)
- // that can go in an integer reg.
- // We have to use a "load" instruction for all other constants,
- // in particular, floating point constants.
- //
- const Type* valType = val->getType();
-
- if (isa<GlobalValue>(val)) {
- TmpInstruction* tmpReg =
- new TmpInstruction(mcfi, PointerType::get(val->getType()), val);
- CreateSETXLabel(target, val, tmpReg, dest, mvec);
- return;
- }
-
- bool isValid;
- uint64_t C = ConvertConstantToIntType(target, val, dest->getType(), isValid);
- if (isValid) {
- if (dest->getType()->isSigned())
- CreateUIntSetInstruction(target, C, dest, mvec, mcfi);
- else
- CreateIntSetInstruction(target, (int64_t) C, dest, mvec, mcfi);
-
- } else {
- // Make an instruction sequence to load the constant, viz:
- // SETX <addr-of-constant>, tmpReg, addrReg
- // LOAD /*addr*/ addrReg, /*offset*/ 0, dest
-
- // First, create a tmp register to be used by the SETX sequence.
- TmpInstruction* tmpReg =
- new TmpInstruction(mcfi, PointerType::get(val->getType()));
-
- // Create another TmpInstruction for the address register
- TmpInstruction* addrReg =
- new TmpInstruction(mcfi, PointerType::get(val->getType()));
-
- // Get the constant pool index for this constant
- MachineConstantPool *CP = MachineFunction::get(F).getConstantPool();
- Constant *C = cast<Constant>(val);
- unsigned CPI = CP->getConstantPoolIndex(C);
-
- // Put the address of the constant into a register
- MachineInstr* MI;
-
- MI = BuildMI(V9::SETHI, 2).addConstantPoolIndex(CPI).addRegDef(tmpReg);
- MI->getOperand(0).markHi64();
- mvec.push_back(MI);
-
- MI = BuildMI(V9::ORi, 3).addReg(tmpReg).addConstantPoolIndex(CPI)
- .addRegDef(tmpReg);
- MI->getOperand(1).markLo64();
- mvec.push_back(MI);
-
- mvec.push_back(BuildMI(V9::SLLXi6, 3).addReg(tmpReg).addZImm(32)
- .addRegDef(tmpReg));
- MI = BuildMI(V9::SETHI, 2).addConstantPoolIndex(CPI).addRegDef(addrReg);
- MI->getOperand(0).markHi32();
- mvec.push_back(MI);
-
- MI = BuildMI(V9::ORr, 3).addReg(addrReg).addReg(tmpReg).addRegDef(addrReg);
- mvec.push_back(MI);
-
- MI = BuildMI(V9::ORi, 3).addReg(addrReg).addConstantPoolIndex(CPI)
- .addRegDef(addrReg);
- MI->getOperand(1).markLo32();
- mvec.push_back(MI);
-
- // Now load the constant from out ConstantPool label
- unsigned Opcode = ChooseLoadInstruction(val->getType());
- Opcode = convertOpcodeFromRegToImm(Opcode);
- mvec.push_back(BuildMI(Opcode, 3)
- .addReg(addrReg).addSImm((int64_t)0).addRegDef(dest));
- }
-}
-
-// Create an instruction sequence to copy an integer register `val'
-// to a floating point register `dest' by copying to memory and back.
-// val must be an integral type. dest must be a Float or Double.
-// The generated instructions are returned in `mvec'.
-// Any temp. registers (TmpInstruction) created are recorded in mcfi.
-// Any stack space required is allocated via MachineFunction.
-//
-void
-CreateCodeToCopyIntToFloat(const TargetMachine& target,
- Function* F,
- Value* val,
- Instruction* dest,
- std::vector<MachineInstr*>& mvec,
- MachineCodeForInstruction& mcfi)
-{
- assert((val->getType()->isIntegral() || isa<PointerType>(val->getType()))
- && "Source type must be integral (integer or bool) or pointer");
- assert(dest->getType()->isFloatingPoint()
- && "Dest type must be float/double");
-
- // Get a stack slot to use for the copy
- int offset = MachineFunction::get(F).getInfo()->allocateLocalVar(val);
-
- // Get the size of the source value being copied.
- size_t srcSize = target.getTargetData().getTypeSize(val->getType());
-
- // Store instruction stores `val' to [%fp+offset].
- // The store and load opCodes are based on the size of the source value.
- // If the value is smaller than 32 bits, we must sign- or zero-extend it
- // to 32 bits since the load-float will load 32 bits.
- // Note that the store instruction is the same for signed and unsigned ints.
- const Type* storeType = (srcSize <= 4)? Type::IntTy : Type::LongTy;
- Value* storeVal = val;
- if (srcSize < target.getTargetData().getTypeSize(Type::FloatTy)) {
- // sign- or zero-extend respectively
- storeVal = new TmpInstruction(mcfi, storeType, val);
- if (val->getType()->isSigned())
- CreateSignExtensionInstructions(target, F, val, storeVal, 8*srcSize,
- mvec, mcfi);
- else
- CreateZeroExtensionInstructions(target, F, val, storeVal, 8*srcSize,
- mvec, mcfi);
- }
-
- unsigned FPReg = target.getRegInfo()->getFramePointer();
- unsigned StoreOpcode = ChooseStoreInstruction(storeType);
- StoreOpcode = convertOpcodeFromRegToImm(StoreOpcode);
- mvec.push_back(BuildMI(StoreOpcode, 3)
- .addReg(storeVal).addMReg(FPReg).addSImm(offset));
-
- // Load instruction loads [%fp+offset] to `dest'.
- // The type of the load opCode is the floating point type that matches the
- // stored type in size:
- // On SparcV9: float for int or smaller, double for long.
- //
- const Type* loadType = (srcSize <= 4)? Type::FloatTy : Type::DoubleTy;
- unsigned LoadOpcode = ChooseLoadInstruction(loadType);
- LoadOpcode = convertOpcodeFromRegToImm(LoadOpcode);
- mvec.push_back(BuildMI(LoadOpcode, 3)
- .addMReg(FPReg).addSImm(offset).addRegDef(dest));
-}
-
-// Similarly, create an instruction sequence to copy an FP register
-// `val' to an integer register `dest' by copying to memory and back.
-// The generated instructions are returned in `mvec'.
-// Any temp. virtual registers (TmpInstruction) created are recorded in mcfi.
-// Temporary stack space required is allocated via MachineFunction.
-//
-void
-CreateCodeToCopyFloatToInt(const TargetMachine& target,
- Function* F,
- Value* val,
- Instruction* dest,
- std::vector<MachineInstr*>& mvec,
- MachineCodeForInstruction& mcfi)
-{
- const Type* opTy = val->getType();
- const Type* destTy = dest->getType();
-
- assert(opTy->isFloatingPoint() && "Source type must be float/double");
- assert((destTy->isIntegral() || isa<PointerType>(destTy))
- && "Dest type must be integer, bool or pointer");
-
- // FIXME: For now, we allocate permanent space because the stack frame
- // manager does not allow locals to be allocated (e.g., for alloca) after
- // a temp is allocated!
- //
- int offset = MachineFunction::get(F).getInfo()->allocateLocalVar(val);
-
- unsigned FPReg = target.getRegInfo()->getFramePointer();
-
- // Store instruction stores `val' to [%fp+offset].
- // The store opCode is based only the source value being copied.
- //
- unsigned StoreOpcode = ChooseStoreInstruction(opTy);
- StoreOpcode = convertOpcodeFromRegToImm(StoreOpcode);
- mvec.push_back(BuildMI(StoreOpcode, 3)
- .addReg(val).addMReg(FPReg).addSImm(offset));
-
- // Load instruction loads [%fp+offset] to `dest'.
- // The type of the load opCode is the integer type that matches the
- // source type in size:
- // On SparcV9: int for float, long for double.
- // Note that we *must* use signed loads even for unsigned dest types, to
- // ensure correct sign-extension for UByte, UShort or UInt:
- //
- const Type* loadTy = (opTy == Type::FloatTy)? Type::IntTy : Type::LongTy;
- unsigned LoadOpcode = ChooseLoadInstruction(loadTy);
- LoadOpcode = convertOpcodeFromRegToImm(LoadOpcode);
- mvec.push_back(BuildMI(LoadOpcode, 3).addMReg(FPReg)
- .addSImm(offset).addRegDef(dest));
-}
-
-
-// Create instruction(s) to copy src to dest, for arbitrary types
-// The generated instructions are returned in `mvec'.
-// Any temp. registers (TmpInstruction) created are recorded in mcfi.
-// Any stack space required is allocated via MachineFunction.
-//
-void
-CreateCopyInstructionsByType(const TargetMachine& target,
- Function *F,
- Value* src,
- Instruction* dest,
- std::vector<MachineInstr*>& mvec,
- MachineCodeForInstruction& mcfi)
-{
- bool loadConstantToReg = false;
-
- const Type* resultType = dest->getType();
-
- MachineOpCode opCode = ChooseAddInstructionByType(resultType);
- assert (opCode != V9::INVALID_OPCODE
- && "Unsupported result type in CreateCopyInstructionsByType()");
-
- // if `src' is a constant that doesn't fit in the immed field or if it is
- // a global variable (i.e., a constant address), generate a load
- // instruction instead of an add
- //
- if (isa<GlobalValue>(src))
- loadConstantToReg = true;
- else if (isa<Constant>(src)) {
- unsigned int machineRegNum;
- int64_t immedValue;
- MachineOperand::MachineOperandType opType =
- ChooseRegOrImmed(src, opCode, target, /*canUseImmed*/ true,
- machineRegNum, immedValue);
-
- if (opType == MachineOperand::MO_VirtualRegister)
- loadConstantToReg = true;
- }
-
- if (loadConstantToReg) {
- // `src' is constant and cannot fit in immed field for the ADD
- // Insert instructions to "load" the constant into a register
- CreateCodeToLoadConst(target, F, src, dest, mvec, mcfi);
- } else {
- // Create a reg-to-reg copy instruction for the given type:
- // -- For FP values, create a FMOVS or FMOVD instruction
- // -- For non-FP values, create an add-with-0 instruction (opCode as above)
- // Make `src' the second operand, in case it is a small constant!
- //
- MachineInstr* MI;
- if (resultType->isFloatingPoint())
- MI = (BuildMI(resultType == Type::FloatTy? V9::FMOVS : V9::FMOVD, 2)
- .addReg(src).addRegDef(dest));
- else {
- const Type* Ty =isa<PointerType>(resultType)? Type::ULongTy :resultType;
- MI = (BuildMI(opCode, 3)
- .addSImm((int64_t) 0).addReg(src).addRegDef(dest));
- }
- mvec.push_back(MI);
- }
-}
-
-
-// Helper function for sign-extension and zero-extension.
-// For SPARC v9, we sign-extend the given operand using SLL; SRA/SRL.
-inline void
-CreateBitExtensionInstructions(bool signExtend,
- const TargetMachine& target,
- Function* F,
- Value* srcVal,
- Value* destVal,
- unsigned int numLowBits,
- std::vector<MachineInstr*>& mvec,
- MachineCodeForInstruction& mcfi)
-{
- MachineInstr* M;
-
- assert(numLowBits <= 32 && "Otherwise, nothing should be done here!");
-
- if (numLowBits < 32) {
- // SLL is needed since operand size is < 32 bits.
- TmpInstruction *tmpI = new TmpInstruction(mcfi, destVal->getType(),
- srcVal, destVal, "make32");
- mvec.push_back(BuildMI(V9::SLLXi6, 3).addReg(srcVal)
- .addZImm(32-numLowBits).addRegDef(tmpI));
- srcVal = tmpI;
- }
-
- mvec.push_back(BuildMI(signExtend? V9::SRAi5 : V9::SRLi5, 3)
- .addReg(srcVal).addZImm(32-numLowBits).addRegDef(destVal));
-}
-
-
-// Create instruction sequence to produce a sign-extended register value
-// from an arbitrary-sized integer value (sized in bits, not bytes).
-// The generated instructions are returned in `mvec'.
-// Any temp. registers (TmpInstruction) created are recorded in mcfi.
-// Any stack space required is allocated via MachineFunction.
-//
-void
-CreateSignExtensionInstructions(
- const TargetMachine& target,
- Function* F,
- Value* srcVal,
- Value* destVal,
- unsigned int numLowBits,
- std::vector<MachineInstr*>& mvec,
- MachineCodeForInstruction& mcfi)
-{
- CreateBitExtensionInstructions(/*signExtend*/ true, target, F, srcVal,
- destVal, numLowBits, mvec, mcfi);
-}
-
-
-// Create instruction sequence to produce a zero-extended register value
-// from an arbitrary-sized integer value (sized in bits, not bytes).
-// For SPARC v9, we sign-extend the given operand using SLL; SRL.
-// The generated instructions are returned in `mvec'.
-// Any temp. registers (TmpInstruction) created are recorded in mcfi.
-// Any stack space required is allocated via MachineFunction.
-//
-void
-CreateZeroExtensionInstructions(
- const TargetMachine& target,
- Function* F,
- Value* srcVal,
- Value* destVal,
- unsigned int numLowBits,
- std::vector<MachineInstr*>& mvec,
- MachineCodeForInstruction& mcfi)
-{
- CreateBitExtensionInstructions(/*signExtend*/ false, target, F, srcVal,
- destVal, numLowBits, mvec, mcfi);
-}
-
-} // End llvm namespace
diff --git a/lib/Target/SparcV9/SparcV9InstrSelectionSupport.h b/lib/Target/SparcV9/SparcV9InstrSelectionSupport.h
deleted file mode 100644
index 11258c7a06..0000000000
--- a/lib/Target/SparcV9/SparcV9InstrSelectionSupport.h
+++ /dev/null
@@ -1,321 +0,0 @@
-//===-- SparcV9InstrSelectionSupport.h --------------------------*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// More instruction selection support routines for the SparcV9 target.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef SPARCV9INSTRSELECTIONSUPPORT_H
-#define SPARCV9INSTRSELECTIONSUPPORT_H
-
-#include "llvm/DerivedTypes.h"
-#include "SparcV9Internals.h"
-
-namespace llvm {
-
-// Choose load instruction opcode based on type of value
-inline MachineOpCode
-ChooseLoadInstruction(const Type *DestTy)
-{
- switch (DestTy->getTypeID()) {
- case Type::BoolTyID:
- case Type::UByteTyID: return V9::LDUBr;
- case Type::SByteTyID: return V9::LDSBr;
- case Type::UShortTyID: return V9::LDUHr;
- case Type::ShortTyID: return V9::LDSHr;
- case Type::UIntTyID: return V9::LDUWr;
- case Type::IntTyID: return V9::LDSWr;
- case Type::PointerTyID:
- case Type::ULongTyID:
- case Type::LongTyID: return V9::LDXr;
- case Type::FloatTyID: return V9::LDFr;
- case Type::DoubleTyID: return V9::LDDFr;
- default: assert(0 && "Invalid type for Load instruction");
- }
-
- return 0;
-}
-
-// Choose store instruction opcode based on type of value
-inline MachineOpCode
-ChooseStoreInstruction(const Type *DestTy)
-{
- switch (DestTy->getTypeID()) {
- case Type::BoolTyID:
- case Type::UByteTyID:
- case Type::SByteTyID: return V9::STBr;
- case Type::UShortTyID:
- case Type::ShortTyID: return V9::STHr;
- case Type::UIntTyID:
- case Type::IntTyID: return V9::STWr;
- case Type::PointerTyID:
- case Type::ULongTyID:
- case Type::LongTyID: return V9::STXr;
- case Type::FloatTyID: return V9::STFr;
- case Type::DoubleTyID: return V9::STDFr;
- default: assert(0 && "Invalid type for Store instruction");
- }
-
- return 0;
-}
-
-
-inline MachineOpCode
-ChooseAddInstructionByType(const Type* resultType)
-{
- MachineOpCode opCode = V9::INVALID_OPCODE;
-
- if (resultType->isIntegral() ||
- isa<PointerType>(resultType) ||
- isa<FunctionType>(resultType) ||
- resultType == Type::LabelTy)
- {
- opCode = V9::ADDr;
- }
- else
- switch(resultType->getTypeID())
- {
- case Type::FloatTyID: opCode = V9::FADDS; break;
- case Type::DoubleTyID: opCode = V9::FADDD; break;
- default: assert(0 && "Invalid type for ADD instruction"); break;
- }
-
- return opCode;
-}
-
-
-// Because the SparcV9 instruction selector likes to re-write operands to
-// instructions, making them change from a Value* (virtual register) to a
-// Constant* (making an immediate field), we need to change the opcode from a
-// register-based instruction to an immediate-based instruction, hence this
-// mapping.
-static unsigned
-convertOpcodeFromRegToImm(unsigned Opcode) {
- switch (Opcode) {
- /* arithmetic */
- case V9::ADDr: return V9::ADDi;
- case V9::ADDccr: return V9::ADDcci;
- case V9::ADDCr: return V9::ADDCi;
- case V9::ADDCccr: return V9::ADDCcci;
- case V9::SUBr: return V9::SUBi;
- case V9::SUBccr: return V9::SUBcci;
- case V9::SUBCr: return V9::SUBCi;
- case V9::SUBCccr: return V9::SUBCcci;
- case V9::MULXr: return V9::MULXi;
- case V9::SDIVXr: return V9::SDIVXi;
- case V9::UDIVXr: return V9::UDIVXi;
-
- /* logical */
- case V9::ANDr: return V9::ANDi;
- case V9::ANDccr: return V9::ANDcci;
- case V9::ANDNr: return V9::ANDNi;
- case V9::ANDNccr: return V9::ANDNcci;
- case V9::ORr: return V9::ORi;
- case V9::ORccr: return V9::ORcci;
- case V9::ORNr: return V9::ORNi;
- case V9::ORNccr: return V9::ORNcci;
- case V9::XORr: return V9::XORi;
- case V9::XORccr: return V9::XORcci;
- case V9::XNORr: return V9::XNORi;
- case V9::XNORccr: return V9::XNORcci;
-
- /* shift */
- case V9::SLLr5: return V9::SLLi5;
- case V9::SRLr5: return V9::SRLi5;
- case V9::SRAr5: return V9::SRAi5;
- case V9::SLLXr6: return V9::SLLXi6;
- case V9::SRLXr6: return V9::SRLXi6;
- case V9::SRAXr6: return V9::SRAXi6;
-
- /* Conditional move on int comparison with zero */
- case V9::MOVRZr: return V9::MOVRZi;
- case V9::MOVRLEZr: return V9::MOVRLEZi;
- case V9::MOVRLZr: return V9::MOVRLZi;
- case V9::MOVRNZr: return V9::MOVRNZi;
- case V9::MOVRGZr: return V9::MOVRGZi;
- case V9::MOVRGEZr: return V9::MOVRGEZi;
-
-
- /* Conditional move on int condition code */
- case V9::MOVAr: return V9::MOVAi;
- case V9::MOVNr: return V9::MOVNi;
- case V9::MOVNEr: return V9::MOVNEi;
- case V9::MOVEr: return V9::MOVEi;
- case V9::MOVGr: return V9::MOVGi;
- case V9::MOVLEr: return V9::MOVLEi;
- case V9::MOVGEr: return V9::MOVGEi;
- case V9::MOVLr: return V9::MOVLi;
- case V9::MOVGUr: return V9::MOVGUi;
- case V9::MOVLEUr: return V9::MOVLEUi;
- case V9::MOVCCr: return V9::MOVCCi;
- case V9::MOVCSr: return V9::MOVCSi;
- case V9::MOVPOSr: return V9::MOVPOSi;
- case V9::MOVNEGr: return V9::MOVNEGi;
- case V9::MOVVCr: return V9::MOVVCi;
- case V9::MOVVSr: return V9::MOVVSi;
-
- /* Conditional move of int reg on fp condition code */
- case V9::MOVFAr: return V9::MOVFAi;
- case V9::MOVFNr: return V9::MOVFNi;
- case V9::MOVFUr: return V9::MOVFUi;
- case V9::MOVFGr: return V9::MOVFGi;
- case V9::MOVFUGr: return V9::MOVFUGi;
- case V9::MOVFLr: return V9::MOVFLi;
- case V9::MOVFULr: return V9::MOVFULi;
- case V9::MOVFLGr: return V9::MOVFLGi;
- case V9::MOVFNEr: return V9::MOVFNEi;
- case V9::MOVFEr: return V9::MOVFEi;
- case V9::MOVFUEr: return V9::MOVFUEi;
- case V9::MOVFGEr: return V9::MOVFGEi;
- case V9::MOVFUGEr: return V9::MOVFUGEi;
- case V9::MOVFLEr: return V9::MOVFLEi;
- case V9::MOVFULEr: return V9::MOVFULEi;
- case V9::MOVFOr: return V9::MOVFOi;
-
- /* load */
- case V9::LDSBr: return V9::LDSBi;
- case V9::LDSHr: return V9::LDSHi;
- case V9::LDSWr: return V9::LDSWi;
- case V9::LDUBr: return V9::LDUBi;
- case V9::LDUHr: return V9::LDUHi;
- case V9::LDUWr: return V9::LDUWi;
- case V9::LDXr: return V9::LDXi;
- case V9::LDFr: return V9::LDFi;
- case V9::LDDFr: return V9::LDDFi;
- case V9::LDQFr: return V9::LDQFi;
- case V9::LDFSRr: return V9::LDFSRi;
- case V9::LDXFSRr: return V9::LDXFSRi;
-
- /* store */
- case V9::STBr: return V9::STBi;
- case V9::STHr: return V9::STHi;
- case V9::STWr: return V9::STWi;
- case V9::STXr: return V9::STXi;
- case V9::STFr: return V9::STFi;
- case V9::STDFr: return V9::STDFi;
- case V9::STFSRr: return V9::STFSRi;
- case V9::STXFSRr: return V9::STXFSRi;
-
- /* jump & return */
- case V9::JMPLCALLr: return V9::JMPLCALLi;
- case V9::JMPLRETr: return V9::JMPLRETi;
-
- /* save and restore */
- case V9::SAVEr: return V9::SAVEi;
- case V9::RESTOREr: return V9::RESTOREi;
-
- default:
- // It's already in correct format
- // Or, it's just not handled yet, but an assert() would break LLC
-#if 0
- std::cerr << "Unhandled opcode in convertOpcodeFromRegToImm(): " << Opcode
- << "\n";
-#endif
- return Opcode;
- }
-}
-
-MachineOperand::MachineOperandType
-ChooseRegOrImmed(Value* val, MachineOpCode opCode,
- const TargetMachine& targetMachine, bool canUseImmed,
- unsigned& getMachineRegNum, int64_t& getImmedValue);
-
-/// ConvertConstantToIntType - Get the value of an integral constant in the
-/// form that must be put into the machine register. The specified constant is
-/// interpreted as (i.e., converted if necessary to) the specified destination
-/// type. The result is always returned as an uint64_t, since the
-/// representation of int64_t and uint64_t are identical. The argument can be
-/// any known const. isValidConstant is set to true if a valid constant was
-/// found.
-///
-uint64_t ConvertConstantToIntType (const TargetMachine &target,
- const Value *V, const Type *destType, bool &isValidConstant);
-
-/// ConstantMayNotFitInImmedField - Test if this constant may not fit in the
-/// immediate field of the machine instructions (probably) generated for this
-/// instruction.
-///
-bool ConstantMayNotFitInImmedField (const Constant *CV, const Instruction *I);
-
-/// CreateCodeToLoadConst - Create an instruction sequence to put the
-/// constant `val' into the virtual register `dest'. `val' may be a Constant
-/// or a GlobalValue, viz., the constant address of a global variable or
-/// function. The generated instructions are returned in `mvec'. Any temp.
-/// registers (TmpInstruction) created are recorded in mcfi.
-///
-void CreateCodeToLoadConst (const TargetMachine &target, Function *F,
- Value *val, Instruction *dest, std::vector<MachineInstr*> &mvec,
- MachineCodeForInstruction &mcfi);
-
-/// CreateSignExtensionInstructions - Create instruction sequence to produce a
-/// sign-extended register value from an arbitrary sized value (sized in bits,
-/// not bytes). The generated instructions are appended to `mvec'. Any temp.
-/// registers (TmpInstruction) created are recorded in mcfi.
-///
-void CreateSignExtensionInstructions (const TargetMachine &target,
- Function *F, Value *srcVal, Value *destVal, unsigned int numLowBits,
- std::vector<MachineInstr*> &mvec, MachineCodeForInstruction &mcfi);
-
-/// CreateZeroExtensionInstructions - Create instruction sequence to produce a
-/// zero-extended register value from an arbitrary sized value (sized in bits,
-/// not bytes). The generated instructions are appended to `mvec'. Any temp.
-/// registers (TmpInstruction) created are recorded in mcfi.
-///
-void CreateZeroExtensionInstructions (const TargetMachine &target,
- Function *F, Value *srcVal, Value *destVal, unsigned int numLowBits,
- std::vector<MachineInstr*> &mvec, MachineCodeForInstruction &mcfi);
-
-/// CreateCodeToCopyIntToFloat - Create an instruction sequence to copy an
-/// integer value `val' to a floating point value `dest' by copying to memory
-/// and back. val must be an integral type. dest must be a Float or Double.
-/// The generated instructions are returned in `mvec'. Any temp. registers
-/// (TmpInstruction) created are recorded in mcfi.
-///
-void CreateCodeToCopyIntToFloat (const TargetMachine &target,
- Function *F, Value *val, Instruction *dest, std::vector<MachineInstr*> &mvec,
- MachineCodeForInstruction &mcfi);
-
-/// CreateCodeToCopyFloatToInt - Create an instruction sequence to copy an FP
-/// value `val' to an integer value `dest' by copying to memory and back. The
-/// generated instructions are returned in `mvec'. Any temp. registers
-/// (TmpInstruction) created are recorded in mcfi.
-///
-void CreateCodeToCopyFloatToInt (const TargetMachine &target, Function *F,
- Value *val, Instruction *dest, std::vector<MachineInstr*> &mvec,
- MachineCodeForInstruction &mcfi);
-
-/// CreateCopyInstructionsByType - Create instruction(s) to copy src to dest,
-/// for arbitrary types The generated instructions are returned in `mvec'. Any
-/// temp. registers (TmpInstruction) created are recorded in mcfi.
-///
-void CreateCopyInstructionsByType (const TargetMachine &target,
- Function *F, Value *src, Instruction *dest, std::vector<MachineInstr*> &mvec,
- MachineCodeForInstruction &mcfi);
-
-/// CreateSignExtensionInstructions - Create instruction sequence to produce a
-/// sign-extended register value from an arbitrary sized value (sized in bits,
-/// not bytes). The generated instructions are appended to `mvec'. Any temp.
-/// registers (TmpInstruction) created are recorded in mcfi.
-///
-void CreateSignExtensionInstructions (const TargetMachine &target,
- Function *F, Value *srcVal, Value *destVal, unsigned int numLowBits,
- std::vector<MachineInstr*> &mvec, MachineCodeForInstruction &mcfi);
-
-/// CreateZeroExtensionInstructions - Create instruction sequence to produce a
-/// zero-extended register value from an arbitrary sized value (sized in bits,
-/// not bytes). The generated instructions are appended to `mvec'. Any temp.
-/// registers (TmpInstruction) created are recorded in mcfi.
-///
-void CreateZeroExtensionInstructions (const TargetMachine &target,
- Function *F, Value *srcVal, Value *destVal, unsigned int numLowBits,
- std::vector<MachineInstr*> &mvec, MachineCodeForInstruction &mcfi);
-
-} // End llvm namespace
-
-#endif