summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorDaniel Dunbar <daniel@zuster.org>2012-03-15 22:19:35 +0000
committerDaniel Dunbar <daniel@zuster.org>2012-03-15 22:19:35 +0000
commit90d9e022850240e3b5a8f943ea8e7b85987673b3 (patch)
tree8c2430be498496b2c242203a1af8ba5e0a39024a
parent530b19b70212f02cffa971256501e77284c320a0 (diff)
downloadllvm-90d9e022850240e3b5a8f943ea8e7b85987673b3.tar.gz
llvm-90d9e022850240e3b5a8f943ea8e7b85987673b3.tar.bz2
llvm-90d9e022850240e3b5a8f943ea8e7b85987673b3.tar.xz
docs: Update TestingGuide to change recommended practice to using LNT to drive
the test-suite. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152860 91177308-0d34-0410-b5e6-96231b3b80d8
-rw-r--r--docs/TestSuiteMakefileGuide.html351
-rw-r--r--docs/TestingGuide.html381
2 files changed, 405 insertions, 327 deletions
diff --git a/docs/TestSuiteMakefileGuide.html b/docs/TestSuiteMakefileGuide.html
new file mode 100644
index 0000000000..876fe426cf
--- /dev/null
+++ b/docs/TestSuiteMakefileGuide.html
@@ -0,0 +1,351 @@
+<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
+ "http://www.w3.org/TR/html4/strict.dtd">
+<html>
+<head>
+ <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
+ <title>LLVM test-suite Makefile Guide</title>
+ <link rel="stylesheet" href="llvm.css" type="text/css">
+</head>
+<body>
+
+<h1>
+ LLVM test-suite Makefile Guide
+</h1>
+
+<ol>
+ <li><a href="#overview">Overview</a></li>
+ <li><a href="#testsuitestructure">Test suite structure</a></li>
+ <li><a href="#testsuiterun">Running the test suite</a>
+ <ul>
+ <li><a href="#testsuiteexternal">Configuring External Tests</a></li>
+ <li><a href="#testsuitetests">Running different tests</a></li>
+ <li><a href="#testsuiteoutput">Generating test output</a></li>
+ <li><a href="#testsuitecustom">Writing custom tests for test-suite</a></li>
+ </ul>
+ </li>
+</ol>
+
+<div class="doc_author">
+ <p>Written by John T. Criswell, Daniel Dunbar, Reid Spencer, and Tanya Lattner</p>
+</div>
+
+<!--=========================================================================-->
+<h2><a name="overview">Overview</a></h2>
+<!--=========================================================================-->
+
+<div>
+
+<p>This document describes the features of the Makefile-based LLVM
+test-suite. This way of interacting with the test-suite is deprecated in favor
+of running the test-suite using LNT, but may continue to prove useful for some
+users. See the Testing
+Guide's <a href="TestingGuide.html#testsuitequickstart">test-suite
+Quickstart</a> section for more information.</p>
+
+</div>
+
+<!--=========================================================================-->
+<h2><a name="testsuitestructure">Test suite Structure</a></h2>
+<!--=========================================================================-->
+
+<div>
+
+<p>The <tt>test-suite</tt> module contains a number of programs that can be compiled
+with LLVM and executed. These programs are compiled using the native compiler
+and various LLVM backends. The output from the program compiled with the
+native compiler is assumed correct; the results from the other programs are
+compared to the native program output and pass if they match.</p>
+
+<p>When executing tests, it is usually a good idea to start out with a subset of
+the available tests or programs. This makes test run times smaller at first and
+later on this is useful to investigate individual test failures. To run some
+test only on a subset of programs, simply change directory to the programs you
+want tested and run <tt>gmake</tt> there. Alternatively, you can run a different
+test using the <tt>TEST</tt> variable to change what tests or run on the
+selected programs (see below for more info).</p>
+
+<p>In addition for testing correctness, the <tt>test-suite</tt> directory also
+performs timing tests of various LLVM optimizations. It also records
+compilation times for the compilers and the JIT. This information can be
+used to compare the effectiveness of LLVM's optimizations and code
+generation.</p>
+
+<p><tt>test-suite</tt> tests are divided into three types of tests: MultiSource,
+SingleSource, and External.</p>
+
+<ul>
+<li><tt>test-suite/SingleSource</tt>
+<p>The SingleSource directory contains test programs that are only a single
+source file in size. These are usually small benchmark programs or small
+programs that calculate a particular value. Several such programs are grouped
+together in each directory.</p></li>
+
+<li><tt>test-suite/MultiSource</tt>
+<p>The MultiSource directory contains subdirectories which contain entire
+programs with multiple source files. Large benchmarks and whole applications
+go here.</p></li>
+
+<li><tt>test-suite/External</tt>
+<p>The External directory contains Makefiles for building code that is external
+to (i.e., not distributed with) LLVM. The most prominent members of this
+directory are the SPEC 95 and SPEC 2000 benchmark suites. The <tt>External</tt>
+directory does not contain these actual tests, but only the Makefiles that know
+how to properly compile these programs from somewhere else. The presence and
+location of these external programs is configured by the test-suite
+<tt>configure</tt> script.</p></li>
+</ul>
+
+<p>Each tree is then subdivided into several categories, including applications,
+benchmarks, regression tests, code that is strange grammatically, etc. These
+organizations should be relatively self explanatory.</p>
+
+<p>Some tests are known to fail. Some are bugs that we have not fixed yet;
+others are features that we haven't added yet (or may never add). In the
+regression tests, the result for such tests will be XFAIL (eXpected FAILure).
+In this way, you can tell the difference between an expected and unexpected
+failure.</p>
+
+<p>The tests in the test suite have no such feature at this time. If the
+test passes, only warnings and other miscellaneous output will be generated. If
+a test fails, a large &lt;program&gt; FAILED message will be displayed. This
+will help you separate benign warnings from actual test failures.</p>
+
+</div>
+
+<!--=========================================================================-->
+<h2><a name="testsuiterun">Running the test suite</a></h2>
+<!--=========================================================================-->
+
+<div>
+
+<p>First, all tests are executed within the LLVM object directory tree. They
+<i>are not</i> executed inside of the LLVM source tree. This is because the
+test suite creates temporary files during execution.</p>
+
+<p>To run the test suite, you need to use the following steps:</p>
+
+<ol>
+ <li><tt>cd</tt> into the <tt>llvm/projects</tt> directory in your source tree.
+ </li>
+
+ <li><p>Check out the <tt>test-suite</tt> module with:</p>
+
+<div class="doc_code">
+<pre>
+% svn co http://llvm.org/svn/llvm-project/test-suite/trunk test-suite
+</pre>
+</div>
+ <p>This will get the test suite into <tt>llvm/projects/test-suite</tt>.</p>
+ </li>
+ <li><p>Configure and build <tt>llvm</tt>.</p></li>
+ <li><p>Configure and build <tt>llvm-gcc</tt>.</p></li>
+ <li><p>Install <tt>llvm-gcc</tt> somewhere.</p></li>
+ <li><p><em>Re-configure</em> <tt>llvm</tt> from the top level of
+ each build tree (LLVM object directory tree) in which you want
+ to run the test suite, just as you do before building LLVM.</p>
+ <p>During the <em>re-configuration</em>, you must either: (1)
+ have <tt>llvm-gcc</tt> you just built in your path, or (2)
+ specify the directory where your just-built <tt>llvm-gcc</tt> is
+ installed using <tt>--with-llvmgccdir=$LLVM_GCC_DIR</tt>.</p>
+ <p>You must also tell the configure machinery that the test suite
+ is available so it can be configured for your build tree:</p>
+<div class="doc_code">
+<pre>
+% cd $LLVM_OBJ_ROOT ; $LLVM_SRC_ROOT/configure [--with-llvmgccdir=$LLVM_GCC_DIR]
+</pre>
+</div>
+ <p>[Remember that <tt>$LLVM_GCC_DIR</tt> is the directory where you
+ <em>installed</em> llvm-gcc, not its src or obj directory.]</p>
+ </li>
+
+ <li><p>You can now run the test suite from your build tree as follows:</p>
+<div class="doc_code">
+<pre>
+% cd $LLVM_OBJ_ROOT/projects/test-suite
+% make
+</pre>
+</div>
+ </li>
+</ol>
+<p>Note that the second and third steps only need to be done once. After you
+have the suite checked out and configured, you don't need to do it again (unless
+the test code or configure script changes).</p>
+
+<!-- _______________________________________________________________________ -->
+<h3>
+ <a name="testsuiteexternal">Configuring External Tests</a>
+</h3>
+<!-- _______________________________________________________________________ -->
+
+<div>
+<p>In order to run the External tests in the <tt>test-suite</tt>
+ module, you must specify <i>--with-externals</i>. This
+ must be done during the <em>re-configuration</em> step (see above),
+ and the <tt>llvm</tt> re-configuration must recognize the
+ previously-built <tt>llvm-gcc</tt>. If any of these is missing or
+ neglected, the External tests won't work.</p>
+<dl>
+<dt><i>--with-externals</i></dt>
+<dt><i>--with-externals=&lt;<tt>directory</tt>&gt;</i></dt>
+</dl>
+ This tells LLVM where to find any external tests. They are expected to be
+ in specifically named subdirectories of &lt;<tt>directory</tt>&gt;.
+ If <tt>directory</tt> is left unspecified,
+ <tt>configure</tt> uses the default value
+ <tt>/home/vadve/shared/benchmarks/speccpu2000/benchspec</tt>.
+ Subdirectory names known to LLVM include:
+ <dl>
+ <dt>spec95</dt>
+ <dt>speccpu2000</dt>
+ <dt>speccpu2006</dt>
+ <dt>povray31</dt>
+ </dl>
+ Others are added from time to time, and can be determined from
+ <tt>configure</tt>.
+</div>
+
+<!-- _______________________________________________________________________ -->
+<h3>
+ <a name="testsuitetests">Running different tests</a>
+</h3>
+<!-- _______________________________________________________________________ -->
+<div>
+<p>In addition to the regular "whole program" tests, the <tt>test-suite</tt>
+module also provides a mechanism for compiling the programs in different ways.
+If the variable TEST is defined on the <tt>gmake</tt> command line, the test system will
+include a Makefile named <tt>TEST.&lt;value of TEST variable&gt;.Makefile</tt>.
+This Makefile can modify build rules to yield different results.</p>
+
+<p>For example, the LLVM nightly tester uses <tt>TEST.nightly.Makefile</tt> to
+create the nightly test reports. To run the nightly tests, run <tt>gmake
+TEST=nightly</tt>.</p>
+
+<p>There are several TEST Makefiles available in the tree. Some of them are
+designed for internal LLVM research and will not work outside of the LLVM
+research group. They may still be valuable, however, as a guide to writing your
+own TEST Makefile for any optimization or analysis passes that you develop with
+LLVM.</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<h3>
+ <a name="testsuiteoutput">Generating test output</a>
+</h3>
+<!-- _______________________________________________________________________ -->
+<div>
+ <p>There are a number of ways to run the tests and generate output. The most
+ simple one is simply running <tt>gmake</tt> with no arguments. This will
+ compile and run all programs in the tree using a number of different methods
+ and compare results. Any failures are reported in the output, but are likely
+ drowned in the other output. Passes are not reported explicitely.</p>
+
+ <p>Somewhat better is running <tt>gmake TEST=sometest test</tt>, which runs
+ the specified test and usually adds per-program summaries to the output
+ (depending on which sometest you use). For example, the <tt>nightly</tt> test
+ explicitely outputs TEST-PASS or TEST-FAIL for every test after each program.
+ Though these lines are still drowned in the output, it's easy to grep the
+ output logs in the Output directories.</p>
+
+ <p>Even better are the <tt>report</tt> and <tt>report.format</tt> targets
+ (where <tt>format</tt> is one of <tt>html</tt>, <tt>csv</tt>, <tt>text</tt> or
+ <tt>graphs</tt>). The exact contents of the report are dependent on which
+ <tt>TEST</tt> you are running, but the text results are always shown at the
+ end of the run and the results are always stored in the
+ <tt>report.&lt;type&gt;.format</tt> file (when running with
+ <tt>TEST=&lt;type&gt;</tt>).
+
+ The <tt>report</tt> also generate a file called
+ <tt>report.&lt;type&gt;.raw.out</tt> containing the output of the entire test
+ run.
+</div>
+
+<!-- _______________________________________________________________________ -->
+<h3>
+ <a name="testsuitecustom">Writing custom tests for the test suite</a>
+</h3>
+<!-- _______________________________________________________________________ -->
+
+<div>
+
+<p>Assuming you can run the test suite, (e.g. "<tt>gmake TEST=nightly report</tt>"
+should work), it is really easy to run optimizations or code generator
+components against every program in the tree, collecting statistics or running
+custom checks for correctness. At base, this is how the nightly tester works,
+it's just one example of a general framework.</p>
+
+<p>Lets say that you have an LLVM optimization pass, and you want to see how
+many times it triggers. First thing you should do is add an LLVM
+<a href="ProgrammersManual.html#Statistic">statistic</a> to your pass, which
+will tally counts of things you care about.</p>
+
+<p>Following this, you can set up a test and a report that collects these and
+formats them for easy viewing. This consists of two files, a
+"<tt>test-suite/TEST.XXX.Makefile</tt>" fragment (where XXX is the name of your
+test) and a "<tt>test-suite/TEST.XXX.report</tt>" file that indicates how to
+format the output into a table. There are many example reports of various
+levels of sophistication included with the test suite, and the framework is very
+general.</p>
+
+<p>If you are interested in testing an optimization pass, check out the
+"libcalls" test as an example. It can be run like this:<p>
+
+<div class="doc_code">
+<pre>
+% cd llvm/projects/test-suite/MultiSource/Benchmarks # or some other level
+% make TEST=libcalls report
+</pre>
+</div>
+
+<p>This will do a bunch of stuff, then eventually print a table like this:</p>
+
+<div class="doc_code">
+<pre>
+Name | total | #exit |
+...
+FreeBench/analyzer/analyzer | 51 | 6 |
+FreeBench/fourinarow/fourinarow | 1 | 1 |
+FreeBench/neural/neural | 19 | 9 |
+FreeBench/pifft/pifft | 5 | 3 |
+MallocBench/cfrac/cfrac | 1 | * |
+MallocBench/espresso/espresso | 52 | 12 |
+MallocBench/gs/gs | 4 | * |
+Prolangs-C/TimberWolfMC/timberwolfmc | 302 | * |
+Prolangs-C/agrep/agrep | 33 | 12 |
+Prolangs-C/allroots/allroots | * | * |
+Prolangs-C/assembler/assembler | 47 | * |
+Prolangs-C/bison/mybison | 74 | * |
+...
+</pre>
+</div>
+
+<p>This basically is grepping the -stats output and displaying it in a table.
+You can also use the "TEST=libcalls report.html" target to get the table in HTML
+form, similarly for report.csv and report.tex.</p>
+
+<p>The source for this is in test-suite/TEST.libcalls.*. The format is pretty
+simple: the Makefile indicates how to run the test (in this case,
+"<tt>opt -simplify-libcalls -stats</tt>"), and the report contains one line for
+each column of the output. The first value is the header for the column and the
+second is the regex to grep the output of the command for. There are lots of
+example reports that can do fancy stuff.</p>
+
+</div>
+
+</div>
+
+<!-- *********************************************************************** -->
+
+<hr>
+<address>
+ <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
+ src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
+ <a href="http://validator.w3.org/check/referer"><img
+ src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
+
+ John T. Criswell, Daniel Dunbar, Reid Spencer, and Tanya Lattner<br>
+ <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br>
+ Last modified: $Date$
+</address>
+</body>
+</html>
diff --git a/docs/TestingGuide.html b/docs/TestingGuide.html
index bb47cb1fc5..fe5d836fe5 100644
--- a/docs/TestingGuide.html
+++ b/docs/TestingGuide.html
@@ -18,14 +18,13 @@
<li><a href="#org">LLVM testing infrastructure organization</a>
<ul>
<li><a href="#regressiontests">Regression tests</a></li>
- <li><a href="#testsuite">Test suite</a></li>
+ <li><a href="#testsuite"><tt>test-suite</tt></a></li>
<li><a href="#debuginfotests">Debugging Information tests</a></li>
</ul>
</li>
<li><a href="#quick">Quick start</a>
<ul>
<li><a href="#quickregressiontests">Regression tests</a></li>
- <li><a href="#quicktestsuite">Test suite</a></li>
<li><a href="#quickdebuginfotests">Debugging Information tests</a></li>
</ul>
</li>
@@ -37,13 +36,10 @@
<li><a href="#rtfeatures">Other features</a></li>
</ul>
</li>
- <li><a href="#testsuitestructure">Test suite structure</a></li>
- <li><a href="#testsuiterun">Running the test suite</a>
+ <li><a href="#testsuiteoverview"><tt>test-suite</tt> Overview</a>
<ul>
- <li><a href="#testsuiteexternal">Configuring External Tests</a></li>
- <li><a href="#testsuitetests">Running different tests</a></li>
- <li><a href="#testsuiteoutput">Generating test output</a></li>
- <li><a href="#testsuitecustom">Writing custom tests for test-suite</a></li>
+ <li><a href="#testsuitequickstart"><tt>test-suite</tt> Quickstart</a></li>
+ <li><a href="#testsuitemakefiles"><tt>test-suite</tt> Makefiles</a></li>
</ul>
</li>
</ol>
@@ -85,10 +81,13 @@ as <a href="http://python.org">Python</a> 2.4 or later.</p>
<p>The LLVM testing infrastructure contains two major categories of tests:
regression tests and whole programs. The regression tests are contained inside
the LLVM repository itself under <tt>llvm/test</tt> and are expected to always
-pass -- they should be run before every commit. The whole programs tests are
-referred to as the "LLVM test suite" and are in the <tt>test-suite</tt> module
-in subversion.
-</p>
+pass -- they should be run before every commit.</p>
+
+<p>The whole programs tests are referred to as the "LLVM test suite" (or
+"test-suite") and are in the <tt>test-suite</tt> module in subversion. For
+historical reasons, these tests are also referred to as the "nightly tests" in
+places, which is less ambiguous than "test-suite" and remains in use although we
+run them much more often than nightly.</p>
<!-- _______________________________________________________________________ -->
<h3><a name="regressiontests">Regression tests</a></h3>
@@ -118,20 +117,19 @@ application or benchmark.</p>
</div>
<!-- _______________________________________________________________________ -->
-<h3><a name="testsuite">Test suite</a></h3>
+<h3><a name="testsuite"><tt>test-suite</tt></a></h3>
<!-- _______________________________________________________________________ -->
<div>
-<p>The test suite contains whole programs, which are pieces of
-code which can be compiled and linked into a stand-alone program that can be
-executed. These programs are generally written in high level languages such as
-C or C++, but sometimes they are written straight in LLVM assembly.</p>
+<p>The test suite contains whole programs, which are pieces of code which can be
+compiled and linked into a stand-alone program that can be executed. These
+programs are generally written in high level languages such as C or C++.</p>
-<p>These programs are compiled and then executed using several different
-methods (native compiler, LLVM C backend, LLVM JIT, LLVM native code generation,
-etc). The output of these programs is compared to ensure that LLVM is compiling
-the program correctly.</p>
+<p>These programs are compiled using a user specified compiler and set of flags,
+and then executed to capture the program output and timing information. The
+output of these programs is compared to a reference output to ensure that the
+program is being compiled correctly.</p>
<p>In addition to compiling and executing programs, whole program tests serve as
a way of benchmarking LLVM performance, both in terms of the efficiency of the
@@ -168,15 +166,14 @@ test suite for more information . This test suite is located in the
<p>The tests are located in two separate Subversion modules. The regressions
tests are in the main "llvm" module under the directory
- <tt>llvm/test</tt> (so you get these tests for free with the main llvm tree).
- The more comprehensive test suite that includes whole
-programs in C and C++ is in the <tt>test-suite</tt> module. This module should
-be checked out to the <tt>llvm/projects</tt> directory (don't use another name
-than the default "test-suite", for then the test suite will be run every time
-you run <tt>make</tt> in the main <tt>llvm</tt> directory).
-When you <tt>configure</tt> the <tt>llvm</tt> module,
-the <tt>test-suite</tt> directory will be automatically configured.
-Alternatively, you can configure the <tt>test-suite</tt> module manually.</p>
+ <tt>llvm/test</tt> (so you get these tests for free with the main llvm
+ tree). Use "make check-all" to run the regression tests after building
+ LLVM.</p>
+
+ <p>The more comprehensive test suite that includes whole programs in C and C++
+ is in the <tt>test-suite</tt>
+ module. See <a href="#testsuitequickstart"><tt>test-suite</tt> Quickstart</a>
+ for more information on running these tests.</p>
<!-- _______________________________________________________________________ -->
<h3><a name="quickregressiontests">Regression tests</a></h3>
@@ -243,55 +240,6 @@ script which is built as part of LLVM. For example, to run the
</div>
<!-- _______________________________________________________________________ -->
-<h3><a name="quicktestsuite">Test suite</a></h3>
-<!-- _______________________________________________________________________ -->
-
-<div>
-
-<p>To run the comprehensive test suite (tests that compile and execute whole
-programs), first checkout and setup the <tt>test-suite</tt> module:</p>
-
-<div class="doc_code">
-<pre>
-% cd ~/llvm/projects
-% svn co http://llvm.org/svn/llvm-project/test-suite/trunk test-suite
-% cd ..
-</pre>
-</div>
-
-<p>and then configure and build normally as you would from the
-<a href="http://llvm.org/docs/GettingStarted.html#quickstart">Getting Started
-Guide</a>. This will autodetect first the built clang if you are building
-clang, then <tt>clang</tt> in your path and finally look for <tt>llvm-gcc</tt>
-in your path.
-
-<p>Then, run the entire test suite by running make in the <tt>test-suite</tt>
-subdirectory of your build directory:</p>
-
-<div class="doc_code">
-<pre>
-% cd <i>where-you-built-llvm</i>/projects/test-suite
-% gmake
-</pre>
-</div>
-
-<p>Usually, running the "simple" set of tests is a good idea, and you can also
-let it generate a report by running:</p>
-
-<div class="doc_code">
-<pre>
-% cd <i>where-you-built-llvm</i>/projects/test-suite
-% gmake TEST=simple report report.html
-</pre>
-</div>
-
-<p>Any of the above commands can also be run in a subdirectory of
-<tt>projects/test-suite</tt> to run the specified test only on the programs in
-that subdirectory.</p>
-
-</div>
-
-<!-- _______________________________________________________________________ -->
<h3><a name="quickdebuginfotests">Debugging Information tests</a></h3>
<div>
<!-- _______________________________________________________________________ -->
@@ -875,30 +823,15 @@ define two separate CHECK lines that match on the same line.
</div>
<!--=========================================================================-->
-<h2><a name="testsuitestructure">Test suite Structure</a></h2>
+<h2><a name="testsuiteoverview"><tt>test-suite</tt> Overview</a></h2>
<!--=========================================================================-->
<div>
-<p>The <tt>test-suite</tt> module contains a number of programs that can be compiled
-with LLVM and executed. These programs are compiled using the native compiler
-and various LLVM backends. The output from the program compiled with the
-native compiler is assumed correct; the results from the other programs are
-compared to the native program output and pass if they match.</p>
-
-<p>When executing tests, it is usually a good idea to start out with a subset of
-the available tests or programs. This makes test run times smaller at first and
-later on this is useful to investigate individual test failures. To run some
-test only on a subset of programs, simply change directory to the programs you
-want tested and run <tt>gmake</tt> there. Alternatively, you can run a different
-test using the <tt>TEST</tt> variable to change what tests or run on the
-selected programs (see below for more info).</p>
-
-<p>In addition for testing correctness, the <tt>test-suite</tt> directory also
-performs timing tests of various LLVM optimizations. It also records
-compilation times for the compilers and the JIT. This information can be
-used to compare the effectiveness of LLVM's optimizations and code
-generation.</p>
+<p>The <tt>test-suite</tt> module contains a number of programs that can be
+compiled and executed. The <tt>test-suite</tt> includes reference outputs for
+all of the programs, so that the output of the executed program can be checked
+for correctness.</p>
<p><tt>test-suite</tt> tests are divided into three types of tests: MultiSource,
SingleSource, and External.</p>
@@ -920,246 +853,40 @@ go here.</p></li>
to (i.e., not distributed with) LLVM. The most prominent members of this
directory are the SPEC 95 and SPEC 2000 benchmark suites. The <tt>External</tt>
directory does not contain these actual tests, but only the Makefiles that know
-how to properly compile these programs from somewhere else. The presence and
-location of these external programs is configured by the test-suite
-<tt>configure</tt> script.</p></li>
+how to properly compile these programs from somewhere else. When
+using <tt>LNT</tt>, use the <tt>--test-externals</tt> option to include these
+tests in the results.</p></li>
</ul>
-
-<p>Each tree is then subdivided into several categories, including applications,
-benchmarks, regression tests, code that is strange grammatically, etc. These
-organizations should be relatively self explanatory.</p>
-
-<p>Some tests are known to fail. Some are bugs that we have not fixed yet;
-others are features that we haven't added yet (or may never add). In the
-regression tests, the result for such tests will be XFAIL (eXpected FAILure).
-In this way, you can tell the difference between an expected and unexpected
-failure.</p>
-
-<p>The tests in the test suite have no such feature at this time. If the
-test passes, only warnings and other miscellaneous output will be generated. If
-a test fails, a large &lt;program&gt; FAILED message will be displayed. This
-will help you separate benign warnings from actual test failures.</p>
-
</div>
<!--=========================================================================-->
-<h2><a name="testsuiterun">Running the test suite</a></h2>
+<h2><a name="testsuitequickstart"><tt>test-suite</tt> Quickstart</a></h2>
<!--=========================================================================-->
<div>
+<p>The modern way of running the <tt>test-suite</tt> is focused on testing and
+benchmarking complete compilers using
+the <a href="http://llvm.org/docs/lnt">LNT</a> testing infrastructure.</p>
-<p>First, all tests are executed within the LLVM object directory tree. They
-<i>are not</i> executed inside of the LLVM source tree. This is because the
-test suite creates temporary files during execution.</p>
-
-<p>To run the test suite, you need to use the following steps:</p>
-
-<ol>
- <li><tt>cd</tt> into the <tt>llvm/projects</tt> directory in your source tree.
- </li>
-
- <li><p>Check out the <tt>test-suite</tt> module with:</p>
-
-<div class="doc_code">
-<pre>
-% svn co http://llvm.org/svn/llvm-project/test-suite/trunk test-suite
-</pre>
+<p>For more information on using LNT to execute the <tt>test-suite</tt>, please
+see the <a href="http://llvm.org/docs/lnt/quickstart.html">LNT Quickstart</a>
+documentation.</p>
</div>
- <p>This will get the test suite into <tt>llvm/projects/test-suite</tt>.</p>
- </li>
- <li><p>Configure and build <tt>llvm</tt>.</p></li>
- <li><p>Configure and build <tt>llvm-gcc</tt>.</p></li>
- <li><p>Install <tt>llvm-gcc</tt> somewhere.</p></li>
- <li><p><em>Re-configure</em> <tt>llvm</tt> from the top level of
- each build tree (LLVM object directory tree) in which you want
- to run the test suite, just as you do before building LLVM.</p>
- <p>During the <em>re-configuration</em>, you must either: (1)
- have <tt>llvm-gcc</tt> you just built in your path, or (2)
- specify the directory where your just-built <tt>llvm-gcc</tt> is
- installed using <tt>--with-llvmgccdir=$LLVM_GCC_DIR</tt>.</p>
- <p>You must also tell the configure machinery that the test suite
- is available so it can be configured for your build tree:</p>
-<div class="doc_code">
-<pre>
-% cd $LLVM_OBJ_ROOT ; $LLVM_SRC_ROOT/configure [--with-llvmgccdir=$LLVM_GCC_DIR]
-</pre>
-</div>
- <p>[Remember that <tt>$LLVM_GCC_DIR</tt> is the directory where you
- <em>installed</em> llvm-gcc, not its src or obj directory.]</p>
- </li>
- <li><p>You can now run the test suite from your build tree as follows:</p>
-<div class="doc_code">
-<pre>
-% cd $LLVM_OBJ_ROOT/projects/test-suite
-% make
-</pre>
-</div>
- </li>
-</ol>
-<p>Note that the second and third steps only need to be done once. After you
-have the suite checked out and configured, you don't need to do it again (unless
-the test code or configure script changes).</p>
-
-<!-- _______________________________________________________________________ -->
-<h3>
- <a name="testsuiteexternal">Configuring External Tests</a>
-</h3>
-<!-- _______________________________________________________________________ -->
-
-<div>
-<p>In order to run the External tests in the <tt>test-suite</tt>
- module, you must specify <i>--with-externals</i>. This
- must be done during the <em>re-configuration</em> step (see above),
- and the <tt>llvm</tt> re-configuration must recognize the
- previously-built <tt>llvm-gcc</tt>. If any of these is missing or
- neglected, the External tests won't work.</p>
-<dl>
-<dt><i>--with-externals</i></dt>
-<dt><i>--with-externals=&lt;<tt>directory</tt>&gt;</i></dt>
-</dl>
- This tells LLVM where to find any external tests. They are expected to be
- in specifically named subdirectories of &lt;<tt>directory</tt>&gt;.
- If <tt>directory</tt> is left unspecified,
- <tt>configure</tt> uses the default value
- <tt>/home/vadve/shared/benchmarks/speccpu2000/benchspec</tt>.
- Subdirectory names known to LLVM include:
- <dl>
- <dt>spec95</dt>
- <dt>speccpu2000</dt>
- <dt>speccpu2006</dt>
- <dt>povray31</dt>
- </dl>
- Others are added from time to time, and can be determined from
- <tt>configure</tt>.
-</div>
-
-<!-- _______________________________________________________________________ -->
-<h3>
- <a name="testsuitetests">Running different tests</a>
-</h3>
-<!-- _______________________________________________________________________ -->
-<div>
-<p>In addition to the regular "whole program" tests, the <tt>test-suite</tt>
-module also provides a mechanism for compiling the programs in different ways.
-If the variable TEST is defined on the <tt>gmake</tt> command line, the test system will
-include a Makefile named <tt>TEST.&lt;value of TEST variable&gt;.Makefile</tt>.
-This Makefile can modify build rules to yield different results.</p>
-
-<p>For example, the LLVM nightly tester uses <tt>TEST.nightly.Makefile</tt> to
-create the nightly test reports. To run the nightly tests, run <tt>gmake
-TEST=nightly</tt>.</p>
-
-<p>There are several TEST Makefiles available in the tree. Some of them are
-designed for internal LLVM research and will not work outside of the LLVM
-research group. They may still be valuable, however, as a guide to writing your
-own TEST Makefile for any optimization or analysis passes that you develop with
-LLVM.</p>
-
-</div>
-
-<!-- _______________________________________________________________________ -->
-<h3>
- <a name="testsuiteoutput">Generating test output</a>
-</h3>
-<!-- _______________________________________________________________________ -->
-<div>
- <p>There are a number of ways to run the tests and generate output. The most
- simple one is simply running <tt>gmake</tt> with no arguments. This will
- compile and run all programs in the tree using a number of different methods
- and compare results. Any failures are reported in the output, but are likely
- drowned in the other output. Passes are not reported explicitely.</p>
-
- <p>Somewhat better is running <tt>gmake TEST=sometest test</tt>, which runs
- the specified test and usually adds per-program summaries to the output
- (depending on which sometest you use). For example, the <tt>nightly</tt> test
- explicitely outputs TEST-PASS or TEST-FAIL for every test after each program.
- Though these lines are still drowned in the output, it's easy to grep the
- output logs in the Output directories.</p>
-
- <p>Even better are the <tt>report</tt> and <tt>report.format</tt> targets
- (where <tt>format</tt> is one of <tt>html</tt>, <tt>csv</tt>, <tt>text</tt> or
- <tt>graphs</tt>). The exact contents of the report are dependent on which
- <tt>TEST</tt> you are running, but the text results are always shown at the
- end of the run and the results are always stored in the
- <tt>report.&lt;type&gt;.format</tt> file (when running with
- <tt>TEST=&lt;type&gt;</tt>).
-
- The <tt>report</tt> also generate a file called
- <tt>report.&lt;type&gt;.raw.out</tt> containing the output of the entire test
- run.
-</div>
-
-<!-- _______________________________________________________________________ -->
-<h3>
- <a name="testsuitecustom">Writing custom tests for the test suite</a>
-</h3>
-<!-- _______________________________________________________________________ -->
+<!--=========================================================================-->
+<h2><a name="testsuitemakefiles"><tt>test-suite</tt> Makefiles</a></h2>
+<!--=========================================================================-->
<div>
-
-<p>Assuming you can run the test suite, (e.g. "<tt>gmake TEST=nightly report</tt>"
-should work), it is really easy to run optimizations or code generator
-components against every program in the tree, collecting statistics or running
-custom checks for correctness. At base, this is how the nightly tester works,
-it's just one example of a general framework.</p>
-
-<p>Lets say that you have an LLVM optimization pass, and you want to see how
-many times it triggers. First thing you should do is add an LLVM
-<a href="ProgrammersManual.html#Statistic">statistic</a> to your pass, which
-will tally counts of things you care about.</p>
-
-<p>Following this, you can set up a test and a report that collects these and
-formats them for easy viewing. This consists of two files, a
-"<tt>test-suite/TEST.XXX.Makefile</tt>" fragment (where XXX is the name of your
-test) and a "<tt>test-suite/TEST.XXX.report</tt>" file that indicates how to
-format the output into a table. There are many example reports of various
-levels of sophistication included with the test suite, and the framework is very
-general.</p>
-
-<p>If you are interested in testing an optimization pass, check out the
-"libcalls" test as an example. It can be run like this:<p>
-
-<div class="doc_code">
-<pre>
-% cd llvm/projects/test-suite/MultiSource/Benchmarks # or some other level
-% make TEST=libcalls report
-</pre>
-</div>
-
-<p>This will do a bunch of stuff, then eventually print a table like this:</p>
-
-<div class="doc_code">
-<pre>
-Name | total | #exit |
-...
-FreeBench/analyzer/analyzer | 51 | 6 |
-FreeBench/fourinarow/fourinarow | 1 | 1 |
-FreeBench/neural/neural | 19 | 9 |
-FreeBench/pifft/pifft | 5 | 3 |
-MallocBench/cfrac/cfrac | 1 | * |
-MallocBench/espresso/espresso | 52 | 12 |
-MallocBench/gs/gs | 4 | * |
-Prolangs-C/TimberWolfMC/timberwolfmc | 302 | * |
-Prolangs-C/agrep/agrep | 33 | 12 |
-Prolangs-C/allroots/allroots | * | * |
-Prolangs-C/assembler/assembler | 47 | * |
-Prolangs-C/bison/mybison | 74 | * |
-...
-</pre>
-</div>
-
-<p>This basically is grepping the -stats output and displaying it in a table.
-You can also use the "TEST=libcalls report.html" target to get the table in HTML
-form, similarly for report.csv and report.tex.</p>
-
-<p>The source for this is in test-suite/TEST.libcalls.*. The format is pretty
-simple: the Makefile indicates how to run the test (in this case,
-"<tt>opt -simplify-libcalls -stats</tt>"), and the report contains one line for
-each column of the output. The first value is the header for the column and the
-second is the regex to grep the output of the command for. There are lots of
-example reports that can do fancy stuff.</p>
-
+<p>Historically, the <tt>test-suite</tt> was executed using a complicated setup
+of Makefiles. The LNT based approach above is recommended for most users, but
+there are some testing scenarios which are not supported by the LNT approach. In
+addition, LNT currently uses the Makefile setup under the covers and so
+developers who are interested in how LNT works under the hood may want to
+understand the Makefile based setup.</p>
+
+<p>For more information on the <tt>test-suite</tt> Makefile setup, please see
+the <a href="TestSuiteMakefileGuide.html">Test Suite Makefile Guide.</a></p>
</div>
</div>