summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorMatthijs Kooijman <matthijs@stdin.nl>2008-06-11 14:05:05 +0000
committerMatthijs Kooijman <matthijs@stdin.nl>2008-06-11 14:05:05 +0000
commita9012eca1a5121ae9ed9c0522c734319b2e0d17f (patch)
treebd49c0bcfbbcd1be64b6b7da5b93fcbd9255c78d
parent0039adb5148f3a2c878c84f09268a58d0478e2ad (diff)
downloadllvm-a9012eca1a5121ae9ed9c0522c734319b2e0d17f.tar.gz
llvm-a9012eca1a5121ae9ed9c0522c734319b2e0d17f.tar.bz2
llvm-a9012eca1a5121ae9ed9c0522c734319b2e0d17f.tar.xz
Teach instruction combining about the extractvalue. It can succesfully fold
useless insert-extract chains, similar to how it folds them for vectors. Add a testcase for this. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@52217 91177308-0d34-0410-b5e6-96231b3b80d8
-rw-r--r--lib/Transforms/Scalar/InstructionCombining.cpp157
-rw-r--r--test/Transforms/InstCombine/extractvalue.ll24
2 files changed, 181 insertions, 0 deletions
diff --git a/lib/Transforms/Scalar/InstructionCombining.cpp b/lib/Transforms/Scalar/InstructionCombining.cpp
index a1a3333382..b8270a0bcd 100644
--- a/lib/Transforms/Scalar/InstructionCombining.cpp
+++ b/lib/Transforms/Scalar/InstructionCombining.cpp
@@ -232,6 +232,7 @@ namespace {
Instruction *visitInsertElementInst(InsertElementInst &IE);
Instruction *visitExtractElementInst(ExtractElementInst &EI);
Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
+ Instruction *visitExtractValueInst(ExtractValueInst &EV);
// visitInstruction - Specify what to return for unhandled instructions...
Instruction *visitInstruction(Instruction &I) { return 0; }
@@ -397,6 +398,22 @@ namespace {
int &NumCastsRemoved);
unsigned GetOrEnforceKnownAlignment(Value *V,
unsigned PrefAlign = 0);
+
+ // visitExtractValue helpers
+ Value *FindScalarValue(Value *V,
+ const unsigned *idx_begin,
+ const unsigned *idx_end,
+ Instruction &InsertBefore);
+ Value *BuildSubAggregate(Value *From,
+ const unsigned *idx_begin,
+ const unsigned *idx_end,
+ Instruction &InsertBefore);
+ Value *BuildSubAggregate(Value *From,
+ Value* To,
+ const Type *IndexedType,
+ SmallVector<unsigned, 10> &Idxs,
+ unsigned IdxSkip,
+ Instruction &InsertBefore);
};
}
@@ -10509,6 +10526,146 @@ Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
return 0;
}
+// This is the recursive version of BuildSubAggregate. It takes a few different
+// arguments. Idxs is the index within the nested struct From that we are
+// looking at now (which is of type IndexedType). IdxSkip is the number of
+// indices from Idxs that should be left out when inserting into the resulting
+// struct. To is the result struct built so far, new insertvalue instructions
+// build on that.
+Value *InstCombiner::BuildSubAggregate(Value *From, Value* To, const Type *IndexedType,
+ SmallVector<unsigned, 10> &Idxs,
+ unsigned IdxSkip,
+ Instruction &InsertBefore) {
+ const llvm::StructType *STy = llvm::dyn_cast<llvm::StructType>(IndexedType);
+ if (STy) {
+ // General case, the type indexed by Idxs is a struct
+ for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
+ // Process each struct element recursively
+ Idxs.push_back(i);
+ To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, InsertBefore);
+ Idxs.pop_back();
+ }
+ return To;
+ } else {
+ // Base case, the type indexed by SourceIdxs is not a struct
+ // Load the value from the nested struct into the sub struct (and skip
+ // IdxSkip indices when indexing the sub struct).
+ Instruction *V = llvm::ExtractValueInst::Create(From, Idxs.begin(), Idxs.end(), "tmp");
+ InsertNewInstBefore(V, InsertBefore);
+ Instruction *Ins = llvm::InsertValueInst::Create(To, V, Idxs.begin() + IdxSkip, Idxs.end(), "tmp");
+ InsertNewInstBefore(Ins, InsertBefore);
+ return Ins;
+ }
+}
+
+// This helper takes a nested struct and extracts a part of it (which is again a
+// struct) into a new value. For example, given the struct:
+// { a, { b, { c, d }, e } }
+// and the indices "1, 1" this returns
+// { c, d }.
+//
+// It does this by inserting an extractvalue and insertvalue for each element in
+// the resulting struct, as opposed to just inserting a single struct. This
+// allows for later folding of these individual extractvalue instructions with
+// insertvalue instructions that fill the nested struct.
+//
+// Any inserted instructions are inserted before InsertBefore
+Value *InstCombiner::BuildSubAggregate(Value *From, const unsigned *idx_begin, const unsigned *idx_end, Instruction &InsertBefore) {
+ const Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), idx_begin, idx_end);
+ Value *To = UndefValue::get(IndexedType);
+ SmallVector<unsigned, 10> Idxs(idx_begin, idx_end);
+ unsigned IdxSkip = Idxs.size();
+
+ return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
+}
+
+/// FindScalarValue - Given an aggregrate and an sequence of indices, see if the
+/// scalar value indexed is already around as a register, for example if it were
+/// inserted directly into the aggregrate.
+Value *InstCombiner::FindScalarValue(Value *V, const unsigned *idx_begin,
+ const unsigned *idx_end, Instruction &InsertBefore) {
+ // Nothing to index? Just return V then (this is useful at the end of our
+ // recursion)
+ if (idx_begin == idx_end)
+ return V;
+ // We have indices, so V should have an indexable type
+ assert((isa<StructType>(V->getType()) || isa<ArrayType>(V->getType()))
+ && "Not looking at a struct or array?");
+ assert(ExtractValueInst::getIndexedType(V->getType(), idx_begin, idx_end)
+ && "Invalid indices for type?");
+ const CompositeType *PTy = cast<CompositeType>(V->getType());
+
+ if (isa<UndefValue>(V))
+ return UndefValue::get(ExtractValueInst::getIndexedType(PTy,
+ idx_begin,
+ idx_end));
+ else if (isa<ConstantAggregateZero>(V))
+ return Constant::getNullValue(ExtractValueInst::getIndexedType(PTy,
+ idx_begin,
+ idx_end));
+ else if (Constant *C = dyn_cast<Constant>(V)) {
+ if (isa<ConstantArray>(C) || isa<ConstantStruct>(C))
+ // Recursively process this constant
+ return FindScalarValue(C->getOperand(*idx_begin), ++idx_begin, idx_end, InsertBefore);
+ } else if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
+ // Loop the indices for the insertvalue instruction in parallel with the
+ // requested indices
+ const unsigned *req_idx = idx_begin;
+ for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); i != e; ++i, ++req_idx) {
+ if (req_idx == idx_end)
+ // The requested index is a part of a nested aggregate. Handle this
+ // specially.
+ return BuildSubAggregate(V, idx_begin, req_idx, InsertBefore);
+
+ // This insert value inserts something else than what we are looking for.
+ // See if the (aggregrate) value inserted into has the value we are
+ // looking for, then.
+ if (*req_idx != *i)
+ return FindScalarValue(I->getAggregateOperand(), idx_begin, idx_end, InsertBefore);
+ }
+ // If we end up here, the indices of the insertvalue match with those
+ // requested (though possibly only partially). Now we recursively look at
+ // the inserted value, passing any remaining indices.
+ return FindScalarValue(I->getInsertedValueOperand(), req_idx, idx_end, InsertBefore);
+ } else if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
+ // If we're extracting a value from an aggregrate that was extracted from
+ // something else, we can extract from that something else directly instead.
+ // However, we will need to chain I's indices with the requested indices.
+
+ // Calculate the number of indices required
+ unsigned size = I->getNumIndices() + (idx_end - idx_begin);
+ // Allocate some space to put the new indices in
+ unsigned *new_begin = new unsigned[size];
+ // Auto cleanup this array
+ std::auto_ptr<unsigned> newptr(new_begin);
+ // Start inserting at the beginning
+ unsigned *new_end = new_begin;
+ // Add indices from the extract value instruction
+ for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); i != e; ++i, ++new_end)
+ *new_end = *i;
+
+ // Add requested indices
+ for (const unsigned *i = idx_begin, *e = idx_end; i != e; ++i, ++new_end)
+ *new_end = *i;
+
+ assert((unsigned)(new_end - new_begin) == size && "Number of indices added not correct?");
+
+ return FindScalarValue(I->getAggregateOperand(), new_begin, new_end, InsertBefore);
+ }
+ // Otherwise, we don't know (such as, extracting from a function return value
+ // or load instruction)
+ return 0;
+}
+
+Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
+ // See if we are trying to extract a known value. If so, use that instead.
+ if (Value *Elt = FindScalarValue(EV.getOperand(0), EV.idx_begin(), EV.idx_end(), EV))
+ return ReplaceInstUsesWith(EV, Elt);
+
+ // No changes
+ return 0;
+}
+
/// CheapToScalarize - Return true if the value is cheaper to scalarize than it
/// is to leave as a vector operation.
static bool CheapToScalarize(Value *V, bool isConstant) {
diff --git a/test/Transforms/InstCombine/extractvalue.ll b/test/Transforms/InstCombine/extractvalue.ll
new file mode 100644
index 0000000000..8abeb7d315
--- /dev/null
+++ b/test/Transforms/InstCombine/extractvalue.ll
@@ -0,0 +1,24 @@
+; RUN: llvm-as < %s | opt -instcombine | llvm-dis | not grep extractelement
+
+; Instcombine should fold various combinations of insertvalue and extractvalue
+; together
+declare void @bar({i32, i32} %a)
+
+define i32 @foo() {
+ ; Build a simple struct and pull values out again
+ %s1.1 = insertvalue {i32, i32} undef, i32 0, 0
+ %s1 = insertvalue {i32, i32} %s1.1, i32 1, 1
+ %v1 = extractvalue {i32, i32} %s1, 0
+ %v2 = extractvalue {i32, i32} %s1, 1
+
+ ; Build a nested struct and pull a sub struct out of it
+ ; This requires instcombine to insert a few insertvalue instructions
+ %ns1.1 = insertvalue {i32, {i32, i32}} undef, i32 %v1, 0
+ %ns1.2 = insertvalue {i32, {i32, i32}} %ns1.1, i32 %v1, 1, 0
+ %ns1 = insertvalue {i32, {i32, i32}} %ns1.2, i32 %v2, 1, 1
+ %s2 = extractvalue {i32, {i32, i32}} %ns1, 1
+ call void @bar({i32, i32} %s2)
+ %v3 = extractvalue {i32, {i32, i32}} %ns1, 1, 1
+ ret i32 %v3
+}
+