summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorMisha Brukman <brukman+llvm@gmail.com>2004-07-26 18:43:11 +0000
committerMisha Brukman <brukman+llvm@gmail.com>2004-07-26 18:43:11 +0000
commitc6d398abbb462dc3453e2027886ec01c96d3e651 (patch)
tree1a3a5c9b78941a8083eb8b7af83e302086f81a07
parentb097f216b0fe35303f519fda6cf0dceda0587d44 (diff)
downloadllvm-c6d398abbb462dc3453e2027886ec01c96d3e651.tar.gz
llvm-c6d398abbb462dc3453e2027886ec01c96d3e651.tar.bz2
llvm-c6d398abbb462dc3453e2027886ec01c96d3e651.tar.xz
Renamed files to have the `X86' prefix for uniqueness purposes.
All CVS history was renamed, the *,v were copied over. No worries. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@15238 91177308-0d34-0410-b5e6-96231b3b80d8
-rw-r--r--lib/Target/X86/FloatingPoint.cpp721
-rw-r--r--lib/Target/X86/InstSelectPattern.cpp124
-rw-r--r--lib/Target/X86/InstSelectSimple.cpp3907
-rw-r--r--lib/Target/X86/PeepholeOptimizer.cpp515
-rw-r--r--lib/Target/X86/Printer.cpp1033
5 files changed, 0 insertions, 6300 deletions
diff --git a/lib/Target/X86/FloatingPoint.cpp b/lib/Target/X86/FloatingPoint.cpp
deleted file mode 100644
index fa2632f6fa..0000000000
--- a/lib/Target/X86/FloatingPoint.cpp
+++ /dev/null
@@ -1,721 +0,0 @@
-//===-- FloatingPoint.cpp - Floating point Reg -> Stack converter ---------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file defines the pass which converts floating point instructions from
-// virtual registers into register stack instructions. This pass uses live
-// variable information to indicate where the FPn registers are used and their
-// lifetimes.
-//
-// This pass is hampered by the lack of decent CFG manipulation routines for
-// machine code. In particular, this wants to be able to split critical edges
-// as necessary, traverse the machine basic block CFG in depth-first order, and
-// allow there to be multiple machine basic blocks for each LLVM basicblock
-// (needed for critical edge splitting).
-//
-// In particular, this pass currently barfs on critical edges. Because of this,
-// it requires the instruction selector to insert FP_REG_KILL instructions on
-// the exits of any basic block that has critical edges going from it, or which
-// branch to a critical basic block.
-//
-// FIXME: this is not implemented yet. The stackifier pass only works on local
-// basic blocks.
-//
-//===----------------------------------------------------------------------===//
-
-#define DEBUG_TYPE "fp"
-#include "X86.h"
-#include "X86InstrInfo.h"
-#include "llvm/CodeGen/MachineFunctionPass.h"
-#include "llvm/CodeGen/MachineInstrBuilder.h"
-#include "llvm/CodeGen/LiveVariables.h"
-#include "llvm/CodeGen/Passes.h"
-#include "llvm/Target/TargetInstrInfo.h"
-#include "llvm/Target/TargetMachine.h"
-#include "Support/Debug.h"
-#include "Support/DepthFirstIterator.h"
-#include "Support/Statistic.h"
-#include "Support/STLExtras.h"
-#include <algorithm>
-#include <set>
-using namespace llvm;
-
-namespace {
- Statistic<> NumFXCH("x86-codegen", "Number of fxch instructions inserted");
- Statistic<> NumFP ("x86-codegen", "Number of floating point instructions");
-
- struct FPS : public MachineFunctionPass {
- virtual bool runOnMachineFunction(MachineFunction &MF);
-
- virtual const char *getPassName() const { return "X86 FP Stackifier"; }
-
- virtual void getAnalysisUsage(AnalysisUsage &AU) const {
- AU.addRequired<LiveVariables>();
- MachineFunctionPass::getAnalysisUsage(AU);
- }
- private:
- LiveVariables *LV; // Live variable info for current function...
- MachineBasicBlock *MBB; // Current basic block
- unsigned Stack[8]; // FP<n> Registers in each stack slot...
- unsigned RegMap[8]; // Track which stack slot contains each register
- unsigned StackTop; // The current top of the FP stack.
-
- void dumpStack() const {
- std::cerr << "Stack contents:";
- for (unsigned i = 0; i != StackTop; ++i) {
- std::cerr << " FP" << Stack[i];
- assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
- }
- std::cerr << "\n";
- }
- private:
- // getSlot - Return the stack slot number a particular register number is
- // in...
- unsigned getSlot(unsigned RegNo) const {
- assert(RegNo < 8 && "Regno out of range!");
- return RegMap[RegNo];
- }
-
- // getStackEntry - Return the X86::FP<n> register in register ST(i)
- unsigned getStackEntry(unsigned STi) const {
- assert(STi < StackTop && "Access past stack top!");
- return Stack[StackTop-1-STi];
- }
-
- // getSTReg - Return the X86::ST(i) register which contains the specified
- // FP<RegNo> register
- unsigned getSTReg(unsigned RegNo) const {
- return StackTop - 1 - getSlot(RegNo) + llvm::X86::ST0;
- }
-
- // pushReg - Push the specified FP<n> register onto the stack
- void pushReg(unsigned Reg) {
- assert(Reg < 8 && "Register number out of range!");
- assert(StackTop < 8 && "Stack overflow!");
- Stack[StackTop] = Reg;
- RegMap[Reg] = StackTop++;
- }
-
- bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
- void moveToTop(unsigned RegNo, MachineBasicBlock::iterator &I) {
- if (!isAtTop(RegNo)) {
- unsigned Slot = getSlot(RegNo);
- unsigned STReg = getSTReg(RegNo);
- unsigned RegOnTop = getStackEntry(0);
-
- // Swap the slots the regs are in
- std::swap(RegMap[RegNo], RegMap[RegOnTop]);
-
- // Swap stack slot contents
- assert(RegMap[RegOnTop] < StackTop);
- std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
-
- // Emit an fxch to update the runtime processors version of the state
- BuildMI(*MBB, I, X86::FXCH, 1).addReg(STReg);
- NumFXCH++;
- }
- }
-
- void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) {
- unsigned STReg = getSTReg(RegNo);
- pushReg(AsReg); // New register on top of stack
-
- BuildMI(*MBB, I, X86::FLDrr, 1).addReg(STReg);
- }
-
- // popStackAfter - Pop the current value off of the top of the FP stack
- // after the specified instruction.
- void popStackAfter(MachineBasicBlock::iterator &I);
-
- // freeStackSlotAfter - Free the specified register from the register stack,
- // so that it is no longer in a register. If the register is currently at
- // the top of the stack, we just pop the current instruction, otherwise we
- // store the current top-of-stack into the specified slot, then pop the top
- // of stack.
- void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
-
- bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
-
- void handleZeroArgFP(MachineBasicBlock::iterator &I);
- void handleOneArgFP(MachineBasicBlock::iterator &I);
- void handleOneArgFPRW(MachineBasicBlock::iterator &I);
- void handleTwoArgFP(MachineBasicBlock::iterator &I);
- void handleCompareFP(MachineBasicBlock::iterator &I);
- void handleCondMovFP(MachineBasicBlock::iterator &I);
- void handleSpecialFP(MachineBasicBlock::iterator &I);
- };
-}
-
-FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
-
-/// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
-/// register references into FP stack references.
-///
-bool FPS::runOnMachineFunction(MachineFunction &MF) {
- LV = &getAnalysis<LiveVariables>();
- StackTop = 0;
-
- // Process the function in depth first order so that we process at least one
- // of the predecessors for every reachable block in the function.
- std::set<MachineBasicBlock*> Processed;
- MachineBasicBlock *Entry = MF.begin();
-
- bool Changed = false;
- for (df_ext_iterator<MachineBasicBlock*, std::set<MachineBasicBlock*> >
- I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed);
- I != E; ++I)
- Changed |= processBasicBlock(MF, **I);
-
- return Changed;
-}
-
-/// processBasicBlock - Loop over all of the instructions in the basic block,
-/// transforming FP instructions into their stack form.
-///
-bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
- const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
- bool Changed = false;
- MBB = &BB;
-
- for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
- MachineInstr *MI = I;
- unsigned Flags = TII.get(MI->getOpcode()).TSFlags;
- if ((Flags & X86II::FPTypeMask) == X86II::NotFP)
- continue; // Efficiently ignore non-fp insts!
-
- MachineInstr *PrevMI = 0;
- if (I != BB.begin())
- PrevMI = prior(I);
-
- ++NumFP; // Keep track of # of pseudo instrs
- DEBUG(std::cerr << "\nFPInst:\t";
- MI->print(std::cerr, &(MF.getTarget())));
-
- // Get dead variables list now because the MI pointer may be deleted as part
- // of processing!
- LiveVariables::killed_iterator IB = LV->dead_begin(MI);
- LiveVariables::killed_iterator IE = LV->dead_end(MI);
-
- DEBUG(const MRegisterInfo *MRI = MF.getTarget().getRegisterInfo();
- LiveVariables::killed_iterator I = LV->killed_begin(MI);
- LiveVariables::killed_iterator E = LV->killed_end(MI);
- if (I != E) {
- std::cerr << "Killed Operands:";
- for (; I != E; ++I)
- std::cerr << " %" << MRI->getName(I->second);
- std::cerr << "\n";
- });
-
- switch (Flags & X86II::FPTypeMask) {
- case X86II::ZeroArgFP: handleZeroArgFP(I); break;
- case X86II::OneArgFP: handleOneArgFP(I); break; // fstp ST(0)
- case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
- case X86II::TwoArgFP: handleTwoArgFP(I); break;
- case X86II::CompareFP: handleCompareFP(I); break;
- case X86II::CondMovFP: handleCondMovFP(I); break;
- case X86II::SpecialFP: handleSpecialFP(I); break;
- default: assert(0 && "Unknown FP Type!");
- }
-
- // Check to see if any of the values defined by this instruction are dead
- // after definition. If so, pop them.
- for (; IB != IE; ++IB) {
- unsigned Reg = IB->second;
- if (Reg >= X86::FP0 && Reg <= X86::FP6) {
- DEBUG(std::cerr << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
- freeStackSlotAfter(I, Reg-X86::FP0);
- }
- }
-
- // Print out all of the instructions expanded to if -debug
- DEBUG(
- MachineBasicBlock::iterator PrevI(PrevMI);
- if (I == PrevI) {
- std::cerr << "Just deleted pseudo instruction\n";
- } else {
- MachineBasicBlock::iterator Start = I;
- // Rewind to first instruction newly inserted.
- while (Start != BB.begin() && prior(Start) != PrevI) --Start;
- std::cerr << "Inserted instructions:\n\t";
- Start->print(std::cerr, &MF.getTarget());
- while (++Start != next(I));
- }
- dumpStack();
- );
-
- Changed = true;
- }
-
- assert(StackTop == 0 && "Stack not empty at end of basic block?");
- return Changed;
-}
-
-//===----------------------------------------------------------------------===//
-// Efficient Lookup Table Support
-//===----------------------------------------------------------------------===//
-
-namespace {
- struct TableEntry {
- unsigned from;
- unsigned to;
- bool operator<(const TableEntry &TE) const { return from < TE.from; }
- bool operator<(unsigned V) const { return from < V; }
- };
-}
-
-static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
- for (unsigned i = 0; i != NumEntries-1; ++i)
- if (!(Table[i] < Table[i+1])) return false;
- return true;
-}
-
-static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
- const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
- if (I != Table+N && I->from == Opcode)
- return I->to;
- return -1;
-}
-
-#define ARRAY_SIZE(TABLE) \
- (sizeof(TABLE)/sizeof(TABLE[0]))
-
-#ifdef NDEBUG
-#define ASSERT_SORTED(TABLE)
-#else
-#define ASSERT_SORTED(TABLE) \
- { static bool TABLE##Checked = false; \
- if (!TABLE##Checked) \
- assert(TableIsSorted(TABLE, ARRAY_SIZE(TABLE)) && \
- "All lookup tables must be sorted for efficient access!"); \
- }
-#endif
-
-
-//===----------------------------------------------------------------------===//
-// Helper Methods
-//===----------------------------------------------------------------------===//
-
-// PopTable - Sorted map of instructions to their popping version. The first
-// element is an instruction, the second is the version which pops.
-//
-static const TableEntry PopTable[] = {
- { X86::FADDrST0 , X86::FADDPrST0 },
-
- { X86::FDIVRrST0, X86::FDIVRPrST0 },
- { X86::FDIVrST0 , X86::FDIVPrST0 },
-
- { X86::FIST16m , X86::FISTP16m },
- { X86::FIST32m , X86::FISTP32m },
-
- { X86::FMULrST0 , X86::FMULPrST0 },
-
- { X86::FST32m , X86::FSTP32m },
- { X86::FST64m , X86::FSTP64m },
- { X86::FSTrr , X86::FSTPrr },
-
- { X86::FSUBRrST0, X86::FSUBRPrST0 },
- { X86::FSUBrST0 , X86::FSUBPrST0 },
-
- { X86::FUCOMIr , X86::FUCOMIPr },
-
- { X86::FUCOMPr , X86::FUCOMPPr },
- { X86::FUCOMr , X86::FUCOMPr },
-};
-
-/// popStackAfter - Pop the current value off of the top of the FP stack after
-/// the specified instruction. This attempts to be sneaky and combine the pop
-/// into the instruction itself if possible. The iterator is left pointing to
-/// the last instruction, be it a new pop instruction inserted, or the old
-/// instruction if it was modified in place.
-///
-void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
- ASSERT_SORTED(PopTable);
- assert(StackTop > 0 && "Cannot pop empty stack!");
- RegMap[Stack[--StackTop]] = ~0; // Update state
-
- // Check to see if there is a popping version of this instruction...
- int Opcode = Lookup(PopTable, ARRAY_SIZE(PopTable), I->getOpcode());
- if (Opcode != -1) {
- I->setOpcode(Opcode);
- if (Opcode == X86::FUCOMPPr)
- I->RemoveOperand(0);
-
- } else { // Insert an explicit pop
- I = BuildMI(*MBB, ++I, X86::FSTPrr, 1).addReg(X86::ST0);
- }
-}
-
-/// freeStackSlotAfter - Free the specified register from the register stack, so
-/// that it is no longer in a register. If the register is currently at the top
-/// of the stack, we just pop the current instruction, otherwise we store the
-/// current top-of-stack into the specified slot, then pop the top of stack.
-void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
- if (getStackEntry(0) == FPRegNo) { // already at the top of stack? easy.
- popStackAfter(I);
- return;
- }
-
- // Otherwise, store the top of stack into the dead slot, killing the operand
- // without having to add in an explicit xchg then pop.
- //
- unsigned STReg = getSTReg(FPRegNo);
- unsigned OldSlot = getSlot(FPRegNo);
- unsigned TopReg = Stack[StackTop-1];
- Stack[OldSlot] = TopReg;
- RegMap[TopReg] = OldSlot;
- RegMap[FPRegNo] = ~0;
- Stack[--StackTop] = ~0;
- I = BuildMI(*MBB, ++I, X86::FSTPrr, 1).addReg(STReg);
-}
-
-
-static unsigned getFPReg(const MachineOperand &MO) {
- assert(MO.isRegister() && "Expected an FP register!");
- unsigned Reg = MO.getReg();
- assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
- return Reg - X86::FP0;
-}
-
-
-//===----------------------------------------------------------------------===//
-// Instruction transformation implementation
-//===----------------------------------------------------------------------===//
-
-/// handleZeroArgFP - ST(0) = fld0 ST(0) = flds <mem>
-///
-void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
- MachineInstr *MI = I;
- unsigned DestReg = getFPReg(MI->getOperand(0));
- MI->RemoveOperand(0); // Remove the explicit ST(0) operand
-
- // Result gets pushed on the stack...
- pushReg(DestReg);
-}
-
-/// handleOneArgFP - fst <mem>, ST(0)
-///
-void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
- MachineInstr *MI = I;
- assert((MI->getNumOperands() == 5 || MI->getNumOperands() == 1) &&
- "Can only handle fst* & ftst instructions!");
-
- // Is this the last use of the source register?
- unsigned Reg = getFPReg(MI->getOperand(MI->getNumOperands()-1));
- bool KillsSrc = false;
- for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
- E = LV->killed_end(MI); KI != E; ++KI)
- KillsSrc |= KI->second == X86::FP0+Reg;
-
- // FSTP80r and FISTP64r are strange because there are no non-popping versions.
- // If we have one _and_ we don't want to pop the operand, duplicate the value
- // on the stack instead of moving it. This ensure that popping the value is
- // always ok.
- //
- if ((MI->getOpcode() == X86::FSTP80m ||
- MI->getOpcode() == X86::FISTP64m) && !KillsSrc) {
- duplicateToTop(Reg, 7 /*temp register*/, I);
- } else {
- moveToTop(Reg, I); // Move to the top of the stack...
- }
- MI->RemoveOperand(MI->getNumOperands()-1); // Remove explicit ST(0) operand
-
- if (MI->getOpcode() == X86::FSTP80m || MI->getOpcode() == X86::FISTP64m) {
- assert(StackTop > 0 && "Stack empty??");
- --StackTop;
- } else if (KillsSrc) { // Last use of operand?
- popStackAfter(I);
- }
-}
-
-
-/// handleOneArgFPRW: Handle instructions that read from the top of stack and
-/// replace the value with a newly computed value. These instructions may have
-/// non-fp operands after their FP operands.
-///
-/// Examples:
-/// R1 = fchs R2
-/// R1 = fadd R2, [mem]
-///
-void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
- MachineInstr *MI = I;
- assert(MI->getNumOperands() >= 2 && "FPRW instructions must have 2 ops!!");
-
- // Is this the last use of the source register?
- unsigned Reg = getFPReg(MI->getOperand(1));
- bool KillsSrc = false;
- for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
- E = LV->killed_end(MI); KI != E; ++KI)
- KillsSrc |= KI->second == X86::FP0+Reg;
-
- if (KillsSrc) {
- // If this is the last use of the source register, just make sure it's on
- // the top of the stack.
- moveToTop(Reg, I);
- assert(StackTop > 0 && "Stack cannot be empty!");
- --StackTop;
- pushReg(getFPReg(MI->getOperand(0)));
- } else {
- // If this is not the last use of the source register, _copy_ it to the top
- // of the stack.
- duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
- }
-
- MI->RemoveOperand(1); // Drop the source operand.
- MI->RemoveOperand(0); // Drop the destination operand.
-}
-
-
-//===----------------------------------------------------------------------===//
-// Define tables of various ways to map pseudo instructions
-//
-
-// ForwardST0Table - Map: A = B op C into: ST(0) = ST(0) op ST(i)
-static const TableEntry ForwardST0Table[] = {
- { X86::FpADD , X86::FADDST0r },
- { X86::FpDIV , X86::FDIVST0r },
- { X86::FpMUL , X86::FMULST0r },
- { X86::FpSUB , X86::FSUBST0r },
-};
-
-// ReverseST0Table - Map: A = B op C into: ST(0) = ST(i) op ST(0)
-static const TableEntry ReverseST0Table[] = {
- { X86::FpADD , X86::FADDST0r }, // commutative
- { X86::FpDIV , X86::FDIVRST0r },
- { X86::FpMUL , X86::FMULST0r }, // commutative
- { X86::FpSUB , X86::FSUBRST0r },
-};
-
-// ForwardSTiTable - Map: A = B op C into: ST(i) = ST(0) op ST(i)
-static const TableEntry ForwardSTiTable[] = {
- { X86::FpADD , X86::FADDrST0 }, // commutative
- { X86::FpDIV , X86::FDIVRrST0 },
- { X86::FpMUL , X86::FMULrST0 }, // commutative
- { X86::FpSUB , X86::FSUBRrST0 },
-};
-
-// ReverseSTiTable - Map: A = B op C into: ST(i) = ST(i) op ST(0)
-static const TableEntry ReverseSTiTable[] = {
- { X86::FpADD , X86::FADDrST0 },
- { X86::FpDIV , X86::FDIVrST0 },
- { X86::FpMUL , X86::FMULrST0 },
- { X86::FpSUB , X86::FSUBrST0 },
-};
-
-
-/// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
-/// instructions which need to be simplified and possibly transformed.
-///
-/// Result: ST(0) = fsub ST(0), ST(i)
-/// ST(i) = fsub ST(0), ST(i)
-/// ST(0) = fsubr ST(0), ST(i)
-/// ST(i) = fsubr ST(0), ST(i)
-///
-void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
- ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
- ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
- MachineInstr *MI = I;
-
- unsigned NumOperands = MI->getNumOperands();
- assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
- unsigned Dest = getFPReg(MI->getOperand(0));
- unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
- unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
- bool KillsOp0 = false, KillsOp1 = false;
-
- for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
- E = LV->killed_end(MI); KI != E; ++KI) {
- KillsOp0 |= (KI->second == X86::FP0+Op0);
- KillsOp1 |= (KI->second == X86::FP0+Op1);
- }
-
- unsigned TOS = getStackEntry(0);
-
- // One of our operands must be on the top of the stack. If neither is yet, we
- // need to move one.
- if (Op0 != TOS && Op1 != TOS) { // No operand at TOS?
- // We can choose to move either operand to the top of the stack. If one of
- // the operands is killed by this instruction, we want that one so that we
- // can update right on top of the old version.
- if (KillsOp0) {
- moveToTop(Op0, I); // Move dead operand to TOS.
- TOS = Op0;
- } else if (KillsOp1) {
- moveToTop(Op1, I);
- TOS = Op1;
- } else {
- // All of the operands are live after this instruction executes, so we
- // cannot update on top of any operand. Because of this, we must
- // duplicate one of the stack elements to the top. It doesn't matter
- // which one we pick.
- //
- duplicateToTop(Op0, Dest, I);
- Op0 = TOS = Dest;
- KillsOp0 = true;
- }
- } else if (!KillsOp0 && !KillsOp1) {
- // If we DO have one of our operands at the top of the stack, but we don't
- // have a dead operand, we must duplicate one of the operands to a new slot
- // on the stack.
- duplicateToTop(Op0, Dest, I);
- Op0 = TOS = Dest;
- KillsOp0 = true;
- }
-
- // Now we know that one of our operands is on the top of the stack, and at
- // least one of our operands is killed by this instruction.
- assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
- "Stack conditions not set up right!");
-
- // We decide which form to use based on what is on the top of the stack, and
- // which operand is killed by this instruction.
- const TableEntry *InstTable;
- bool isForward = TOS == Op0;
- bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
- if (updateST0) {
- if (isForward)
- InstTable = ForwardST0Table;
- else
- InstTable = ReverseST0Table;
- } else {
- if (isForward)
- InstTable = ForwardSTiTable;
- else
- InstTable = ReverseSTiTable;
- }
-
- int Opcode = Lookup(InstTable, ARRAY_SIZE(ForwardST0Table), MI->getOpcode());
- assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
-
- // NotTOS - The register which is not on the top of stack...
- unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
-
- // Replace the old instruction with a new instruction
- MBB->remove(I++);
- I = BuildMI(*MBB, I, Opcode, 1).addReg(getSTReg(NotTOS));
-
- // If both operands are killed, pop one off of the stack in addition to
- // overwriting the other one.
- if (KillsOp0 && KillsOp1 && Op0 != Op1) {
- assert(!updateST0 && "Should have updated other operand!");
- popStackAfter(I); // Pop the top of stack
- }
-
- // Update stack information so that we know the destination register is now on
- // the stack.
- unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
- assert(UpdatedSlot < StackTop && Dest < 7);
- Stack[UpdatedSlot] = Dest;
- RegMap[Dest] = UpdatedSlot;
- delete MI; // Remove the old instruction
-}
-
-/// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
-/// register arguments and no explicit destinations.
-///
-void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
- ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
- ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
- MachineInstr *MI = I;
-
- unsigned NumOperands = MI->getNumOperands();
- assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
- unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
- unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
- bool KillsOp0 = false, KillsOp1 = false;
-
- for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
- E = LV->killed_end(MI); KI != E; ++KI) {
- KillsOp0 |= (KI->second == X86::FP0+Op0);
- KillsOp1 |= (KI->second == X86::FP0+Op1);
- }
-
- // Make sure the first operand is on the top of stack, the other one can be
- // anywhere.
- moveToTop(Op0, I);
-
- MI->getOperand(0).setReg(getSTReg(Op1));
- MI->RemoveOperand(1);
-
- // If any of the operands are killed by this instruction, free them.
- if (KillsOp0) freeStackSlotAfter(I, Op0);
- if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
-}
-
-/// handleCondMovFP - Handle two address conditional move instructions. These
-/// instructions move a st(i) register to st(0) iff a condition is true. These
-/// instructions require that the first operand is at the top of the stack, but
-/// otherwise don't modify the stack at all.
-void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
- MachineInstr *MI = I;
-
- unsigned Op0 = getFPReg(MI->getOperand(0));
- unsigned Op1 = getFPReg(MI->getOperand(1));
-
- // The first operand *must* be on the top of the stack.
- moveToTop(Op0, I);
-
- // Change the second operand to the stack register that the operand is in.
- MI->RemoveOperand(0);
- MI->getOperand(0).setReg(getSTReg(Op1));
-
- // If we kill the second operand, make sure to pop it from the stack.
- if (Op0 != Op1)
- for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
- E = LV->killed_end(MI); KI != E; ++KI)
- if (KI->second == X86::FP0+Op1) {
- // Get this value off of the register stack.
- freeStackSlotAfter(I, Op1);
- break;
- }
-}
-
-
-/// handleSpecialFP - Handle special instructions which behave unlike other
-/// floating point instructions. This is primarily intended for use by pseudo
-/// instructions.
-///
-void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
- MachineInstr *MI = I;
- switch (MI->getOpcode()) {
- default: assert(0 && "Unknown SpecialFP instruction!");
- case X86::FpGETRESULT: // Appears immediately after a call returning FP type!
- assert(StackTop == 0 && "Stack should be empty after a call!");
- pushReg(getFPReg(MI->getOperand(0)));
- break;
- case X86::FpSETRESULT:
- assert(StackTop == 1 && "Stack should have one element on it to return!");
- --StackTop; // "Forget" we have something on the top of stack!
- break;
- case X86::FpMOV: {
- unsigned SrcReg = getFPReg(MI->getOperand(1));
- unsigned DestReg = getFPReg(MI->getOperand(0));
- bool KillsSrc = false;
- for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
- E = LV->killed_end(MI); KI != E; ++KI)
- KillsSrc |= KI->second == X86::FP0+SrcReg;
-
- if (KillsSrc) {
- // If the input operand is killed, we can just change the owner of the
- // incoming stack slot into the result.
- unsigned Slot = getSlot(SrcReg);
- assert(Slot < 7 && DestReg < 7 && "FpMOV operands invalid!");
- Stack[Slot] = DestReg;
- RegMap[DestReg] = Slot;
-
- } else {
- // For FMOV we just duplicate the specified value to a new stack slot.
- // This could be made better, but would require substantial changes.
- duplicateToTop(SrcReg, DestReg, I);
- }
- break;
- }
- }
-
- I = MBB->erase(I); // Remove the pseudo instruction
- --I;
-}
diff --git a/lib/Target/X86/InstSelectPattern.cpp b/lib/Target/X86/InstSelectPattern.cpp
deleted file mode 100644
index cd79b1d87d..0000000000
--- a/lib/Target/X86/InstSelectPattern.cpp
+++ /dev/null
@@ -1,124 +0,0 @@
-//===-- InstSelectPattern.cpp - A pattern matching inst selector for X86 --===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file defines a pattern matching instruction selector for X86.
-//
-// FIXME: we could allocate one big array of unsigneds to use as the backing
-// store for all of the nodes costs arrays.
-//
-//===----------------------------------------------------------------------===//
-
-#include "X86.h"
-#include "llvm/Pass.h"
-#include "llvm/Function.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/CodeGen/SelectionDAG.h"
-#include "llvm/CodeGen/MachineFunction.h"
-#include "llvm/CodeGen/MachineFrameInfo.h"
-#include "llvm/CodeGen/SSARegMap.h"
-#include "X86RegisterInfo.h"
-#include <iostream>
-
-// Include the generated instruction selector...
-#include "X86GenInstrSelector.inc"
-using namespace llvm;
-
-namespace {
- struct ISel : public FunctionPass, SelectionDAGTargetBuilder {
- TargetMachine &TM;
- ISel(TargetMachine &tm) : TM(tm) {}
- int VarArgsFrameIndex; // FrameIndex for start of varargs area
-
- bool runOnFunction(Function &Fn) {
- MachineFunction &MF = MachineFunction::construct(&Fn, TM);
- SelectionDAG DAG(MF, TM, *this);
-
- std::cerr << "\n\n\n=== "
- << DAG.getMachineFunction().getFunction()->getName() << "\n";
-
- DAG.dump();
- X86ISel(DAG).generateCode();
- std::cerr << "\n\n\n";
- return true;
- }
-
- public: // Implementation of the SelectionDAGTargetBuilder class...
- /// expandArguments - Add nodes to the DAG to indicate how to load arguments
- /// off of the X86 stack.
- void expandArguments(SelectionDAG &SD);
- void expandCall(SelectionDAG &SD, CallInst &CI);
- };
-}
-
-
-void ISel::expandArguments(SelectionDAG &SD) {
-
- // Add DAG nodes to load the arguments... On entry to a function on the X86,
- // the stack frame looks like this:
- //
- // [ESP] -- return address
- // [ESP + 4] -- first argument (leftmost lexically)
- // [ESP + 8] -- second argument, if first argument is four bytes in size
- // ...
- //
- MachineFunction &F = SD.getMachineFunction();
- MachineFrameInfo *MFI = F.getFrameInfo();
- const Function &Fn = *F.getFunction();
-
- unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
- for (Function::const_aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
- MVT::ValueType ObjectVT = SD.getValueType(I->getType());
- unsigned ArgIncrement = 4;
- unsigned ObjSize;
- switch (ObjectVT) {
- default: assert(0 && "Unhandled argument type!");
- case MVT::i8: ObjSize = 1; break;
- case MVT::i16: ObjSize = 2; break;
- case MVT::i32: ObjSize = 4; break;
- case MVT::i64: ObjSize = ArgIncrement = 8; break;
- case MVT::f32: ObjSize = 4; break;
- case MVT::f64: ObjSize = ArgIncrement = 8; break;
- }
- // Create the frame index object for this incoming parameter...
- int FI = MFI->CreateFixedObject(ObjSize, ArgOffset);
-
- // Create the SelectionDAG nodes corresponding to a load from this parameter
- SelectionDAGNode *FIN = new SelectionDAGNode(ISD::FrameIndex, MVT::i32);
- FIN->addValue(new ReducedValue_FrameIndex_i32(FI));
-
- SelectionDAGNode *Arg
- = new SelectionDAGNode(ISD::Load, ObjectVT, F.begin(), FIN);
-
- // Add the SelectionDAGNodes to the SelectionDAG... note that there is no
- // reason to add chain nodes here. We know that no loads ore stores will
- // ever alias these loads, so we are free to perform the load at any time in
- // the function
- SD.addNode(FIN);
- SD.addNodeForValue(Arg, I);
-
- ArgOffset += ArgIncrement; // Move on to the next argument...
- }
-
- // If the function takes variable number of arguments, make a frame index for
- // the start of the first vararg value... for expansion of llvm.va_start.
- if (Fn.getFunctionType()->isVarArg())
- VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
-}
-
-void ISel::expandCall(SelectionDAG &SD, CallInst &CI) {
- assert(0 && "ISel::expandCall not implemented!");
-}
-
-/// createX86PatternInstructionSelector - This pass converts an LLVM function
-/// into a machine code representation using pattern matching and a machine
-/// description file.
-///
-FunctionPass *llvm::createX86PatternInstructionSelector(TargetMachine &TM) {
- return new ISel(TM);
-}
diff --git a/lib/Target/X86/InstSelectSimple.cpp b/lib/Target/X86/InstSelectSimple.cpp
deleted file mode 100644
index 4b43896d37..0000000000
--- a/lib/Target/X86/InstSelectSimple.cpp
+++ /dev/null
@@ -1,3907 +0,0 @@
-//===-- InstSelectSimple.cpp - A simple instruction selector for x86 ------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file defines a simple peephole instruction selector for the x86 target
-//
-//===----------------------------------------------------------------------===//
-
-#include "X86.h"
-#include "X86InstrBuilder.h"
-#include "X86InstrInfo.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Function.h"
-#include "llvm/Instructions.h"
-#include "llvm/Pass.h"
-#include "llvm/CodeGen/IntrinsicLowering.h"
-#include "llvm/CodeGen/MachineConstantPool.h"
-#include "llvm/CodeGen/MachineFrameInfo.h"
-#include "llvm/CodeGen/MachineFunction.h"
-#include "llvm/CodeGen/SSARegMap.h"
-#include "llvm/Target/MRegisterInfo.h"
-#include "llvm/Target/TargetMachine.h"
-#include "llvm/Support/GetElementPtrTypeIterator.h"
-#include "llvm/Support/InstVisitor.h"
-#include "Support/Statistic.h"
-using namespace llvm;
-
-namespace {
- Statistic<>
- NumFPKill("x86-codegen", "Number of FP_REG_KILL instructions added");
-
- /// TypeClass - Used by the X86 backend to group LLVM types by their basic X86
- /// Representation.
- ///
- enum TypeClass {
- cByte, cShort, cInt, cFP, cLong
- };
-}
-
-/// getClass - Turn a primitive type into a "class" number which is based on the
-/// size of the type, and whether or not it is floating point.
-///
-static inline TypeClass getClass(const Type *Ty) {
- switch (Ty->getTypeID()) {
- case Type::SByteTyID:
- case Type::UByteTyID: return cByte; // Byte operands are class #0
- case Type::ShortTyID:
- case Type::UShortTyID: return cShort; // Short operands are class #1
- case Type::IntTyID:
- case Type::UIntTyID:
- case Type::PointerTyID: return cInt; // Int's and pointers are class #2
-
- case Type::FloatTyID:
- case Type::DoubleTyID: return cFP; // Floating Point is #3
-
- case Type::LongTyID:
- case Type::ULongTyID: return cLong; // Longs are class #4
- default:
- assert(0 && "Invalid type to getClass!");
- return cByte; // not reached
- }
-}
-
-// getClassB - Just like getClass, but treat boolean values as bytes.
-static inline TypeClass getClassB(const Type *Ty) {
- if (Ty == Type::BoolTy) return cByte;
- return getClass(Ty);
-}
-
-namespace {
- struct ISel : public FunctionPass, InstVisitor<ISel> {
- TargetMachine &TM;
- MachineFunction *F; // The function we are compiling into
- MachineBasicBlock *BB; // The current MBB we are compiling
- int VarArgsFrameIndex; // FrameIndex for start of varargs area
- int ReturnAddressIndex; // FrameIndex for the return address
-
- std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
-
- // MBBMap - Mapping between LLVM BB -> Machine BB
- std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
-
- // AllocaMap - Mapping from fixed sized alloca instructions to the
- // FrameIndex for the alloca.
- std::map<AllocaInst*, unsigned> AllocaMap;
-
- ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {}
-
- /// runOnFunction - Top level implementation of instruction selection for
- /// the entire function.
- ///
- bool runOnFunction(Function &Fn) {
- // First pass over the function, lower any unknown intrinsic functions
- // with the IntrinsicLowering class.
- LowerUnknownIntrinsicFunctionCalls(Fn);
-
- F = &MachineFunction::construct(&Fn, TM);
-
- // Create all of the machine basic blocks for the function...
- for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
- F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
-
- BB = &F->front();
-
- // Set up a frame object for the return address. This is used by the
- // llvm.returnaddress & llvm.frameaddress intrinisics.
- ReturnAddressIndex = F->getFrameInfo()->CreateFixedObject(4, -4);
-
- // Copy incoming arguments off of the stack...
- LoadArgumentsToVirtualRegs(Fn);
-
- // Instruction select everything except PHI nodes
- visit(Fn);
-
- // Select the PHI nodes
- SelectPHINodes();
-
- // Insert the FP_REG_KILL instructions into blocks that need them.
- InsertFPRegKills();
-
- RegMap.clear();
- MBBMap.clear();
- AllocaMap.clear();
- F = 0;
- // We always build a machine code representation for the function
- return true;
- }
-
- virtual const char *getPassName() const {
- return "X86 Simple Instruction Selection";
- }
-
- /// visitBasicBlock - This method is called when we are visiting a new basic
- /// block. This simply creates a new MachineBasicBlock to emit code into
- /// and adds it to the current MachineFunction. Subsequent visit* for
- /// instructions will be invoked for all instructions in the basic block.
- ///
- void visitBasicBlock(BasicBlock &LLVM_BB) {
- BB = MBBMap[&LLVM_BB];
- }
-
- /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
- /// function, lowering any calls to unknown intrinsic functions into the
- /// equivalent LLVM code.
- ///
- void LowerUnknownIntrinsicFunctionCalls(Function &F);
-
- /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
- /// from the stack into virtual registers.
- ///
- void LoadArgumentsToVirtualRegs(Function &F);
-
- /// SelectPHINodes - Insert machine code to generate phis. This is tricky
- /// because we have to generate our sources into the source basic blocks,
- /// not the current one.
- ///
- void SelectPHINodes();
-
- /// InsertFPRegKills - Insert FP_REG_KILL instructions into basic blocks
- /// that need them. This only occurs due to the floating point stackifier
- /// not being aggressive enough to handle arbitrary global stackification.
- ///
- void InsertFPRegKills();
-
- // Visitation methods for various instructions. These methods simply emit
- // fixed X86 code for each instruction.
- //
-
- // Control flow operators
- void visitReturnInst(ReturnInst &RI);
- void visitBranchInst(BranchInst &BI);
-
- struct ValueRecord {
- Value *Val;
- unsigned Reg;
- const Type *Ty;
- ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
- ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
- };
- void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
- const std::vector<ValueRecord> &Args);
- void visitCallInst(CallInst &I);
- void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
-
- // Arithmetic operators
- void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
- void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
- void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
- void visitMul(BinaryOperator &B);
-
- void visitDiv(BinaryOperator &B) { visitDivRem(B); }
- void visitRem(BinaryOperator &B) { visitDivRem(B); }
- void visitDivRem(BinaryOperator &B);
-
- // Bitwise operators
- void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
- void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
- void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
-
- // Comparison operators...
- void visitSetCondInst(SetCondInst &I);
- unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
- MachineBasicBlock *MBB,
- MachineBasicBlock::iterator MBBI);
- void visitSelectInst(SelectInst &SI);
-
-
- // Memory Instructions
- void visitLoadInst(LoadInst &I);
- void visitStoreInst(StoreInst &I);
- void visitGetElementPtrInst(GetElementPtrInst &I);
- void visitAllocaInst(AllocaInst &I);
- void visitMallocInst(MallocInst &I);
- void visitFreeInst(FreeInst &I);
-
- // Other operators
- void visitShiftInst(ShiftInst &I);
- void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
- void visitCastInst(CastInst &I);
- void visitVANextInst(VANextInst &I);
- void visitVAArgInst(VAArgInst &I);
-
- void visitInstruction(Instruction &I) {
- std::cerr << "Cannot instruction select: " << I;
- abort();
- }
-
- /// promote32 - Make a value 32-bits wide, and put it somewhere.
- ///
- void promote32(unsigned targetReg, const ValueRecord &VR);
-
- /// getAddressingMode - Get the addressing mode to use to address the
- /// specified value. The returned value should be used with addFullAddress.
- void getAddressingMode(Value *Addr, unsigned &BaseReg, unsigned &Scale,
- unsigned &IndexReg, unsigned &Disp);
-
-
- /// getGEPIndex - This is used to fold GEP instructions into X86 addressing
- /// expressions.
- void getGEPIndex(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
- std::vector<Value*> &GEPOps,
- std::vector<const Type*> &GEPTypes, unsigned &BaseReg,
- unsigned &Scale, unsigned &IndexReg, unsigned &Disp);
-
- /// isGEPFoldable - Return true if the specified GEP can be completely
- /// folded into the addressing mode of a load/store or lea instruction.
- bool isGEPFoldable(MachineBasicBlock *MBB,
- Value *Src, User::op_iterator IdxBegin,
- User::op_iterator IdxEnd, unsigned &BaseReg,
- unsigned &Scale, unsigned &IndexReg, unsigned &Disp);
-
- /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
- /// constant expression GEP support.
- ///
- void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
- Value *Src, User::op_iterator IdxBegin,
- User::op_iterator IdxEnd, unsigned TargetReg);
-
- /// emitCastOperation - Common code shared between visitCastInst and
- /// constant expression cast support.
- ///
- void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP,
- Value *Src, const Type *DestTy, unsigned TargetReg);
-
- /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
- /// and constant expression support.
- ///
- void emitSimpleBinaryOperation(MachineBasicBlock *BB,
- MachineBasicBlock::iterator IP,
- Value *Op0, Value *Op1,
- unsigned OperatorClass, unsigned TargetReg);
-
- /// emitBinaryFPOperation - This method handles emission of floating point
- /// Add (0), Sub (1), Mul (2), and Div (3) operations.
- void emitBinaryFPOperation(MachineBasicBlock *BB,
- MachineBasicBlock::iterator IP,
- Value *Op0, Value *Op1,
- unsigned OperatorClass, unsigned TargetReg);
-
- void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
- Value *Op0, Value *Op1, unsigned TargetReg);
-
- void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
- unsigned DestReg, const Type *DestTy,
- unsigned Op0Reg, unsigned Op1Reg);
- void doMultiplyConst(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator MBBI,
- unsigned DestReg, const Type *DestTy,
- unsigned Op0Reg, unsigned Op1Val);
-
- void emitDivRemOperation(MachineBasicBlock *BB,
- MachineBasicBlock::iterator IP,
- Value *Op0, Value *Op1, bool isDiv,
- unsigned TargetReg);
-
- /// emitSetCCOperation - Common code shared between visitSetCondInst and
- /// constant expression support.
- ///
- void emitSetCCOperation(MachineBasicBlock *BB,
- MachineBasicBlock::iterator IP,
- Value *Op0, Value *Op1, unsigned Opcode,
- unsigned TargetReg);
-
- /// emitShiftOperation - Common code shared between visitShiftInst and
- /// constant expression support.
- ///
- void emitShiftOperation(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP,
- Value *Op, Value *ShiftAmount, bool isLeftShift,
- const Type *ResultTy, unsigned DestReg);
-
- /// emitSelectOperation - Common code shared between visitSelectInst and the
- /// constant expression support.
- void emitSelectOperation(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP,
- Value *Cond, Value *TrueVal, Value *FalseVal,
- unsigned DestReg);
-
- /// copyConstantToRegister - Output the instructions required to put the
- /// specified constant into the specified register.
- ///
- void copyConstantToRegister(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator MBBI,
- Constant *C, unsigned Reg);
-
- void emitUCOMr(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
- unsigned LHS, unsigned RHS);
-
- /// makeAnotherReg - This method returns the next register number we haven't
- /// yet used.
- ///
- /// Long values are handled somewhat specially. They are always allocated
- /// as pairs of 32 bit integer values. The register number returned is the
- /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits
- /// of the long value.
- ///
- unsigned makeAnotherReg(const Type *Ty) {
- assert(dynamic_cast<const X86RegisterInfo*>(TM.getRegisterInfo()) &&
- "Current target doesn't have X86 reg info??");
- const X86RegisterInfo *MRI =
- static_cast<const X86RegisterInfo*>(TM.getRegisterInfo());
- if (Ty == Type::LongTy || Ty == Type::ULongTy) {
- const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy);
- // Create the lower part
- F->getSSARegMap()->createVirtualRegister(RC);
- // Create the upper part.
- return F->getSSARegMap()->createVirtualRegister(RC)-1;
- }
-
- // Add the mapping of regnumber => reg class to MachineFunction
- const TargetRegisterClass *RC = MRI->getRegClassForType(Ty);
- return F->getSSARegMap()->createVirtualRegister(RC);
- }
-
- /// getReg - This method turns an LLVM value into a register number.
- ///
- unsigned getReg(Value &V) { return getReg(&V); } // Allow references
- unsigned getReg(Value *V) {
- // Just append to the end of the current bb.
- MachineBasicBlock::iterator It = BB->end();
- return getReg(V, BB, It);
- }
- unsigned getReg(Value *V, MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IPt);
-
- /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
- /// that is to be statically allocated with the initial stack frame
- /// adjustment.
- unsigned getFixedSizedAllocaFI(AllocaInst *AI);
- };
-}
-
-/// dyn_castFixedAlloca - If the specified value is a fixed size alloca
-/// instruction in the entry block, return it. Otherwise, return a null
-/// pointer.
-static AllocaInst *dyn_castFixedAlloca(Value *V) {
- if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
- BasicBlock *BB = AI->getParent();
- if (isa<ConstantUInt>(AI->getArraySize()) && BB ==&BB->getParent()->front())
- return AI;
- }
- return 0;
-}
-
-/// getReg - This method turns an LLVM value into a register number.
-///
-unsigned ISel::getReg(Value *V, MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IPt) {
- // If this operand is a constant, emit the code to copy the constant into
- // the register here...
- if (Constant *C = dyn_cast<Constant>(V)) {
- unsigned Reg = makeAnotherReg(V->getType());
- copyConstantToRegister(MBB, IPt, C, Reg);
- return Reg;
- } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
- // Do not emit noop casts at all, unless it's a double -> float cast.
- if (getClassB(CI->getType()) == getClassB(CI->getOperand(0)->getType()) &&
- (CI->getType() != Type::FloatTy ||
- CI->getOperand(0)->getType() != Type::DoubleTy))
- return getReg(CI->getOperand(0), MBB, IPt);
- } else if (AllocaInst *AI = dyn_castFixedAlloca(V)) {
- // If the alloca address couldn't be folded into the instruction addressing,
- // emit an explicit LEA as appropriate.
- unsigned Reg = makeAnotherReg(V->getType());
- unsigned FI = getFixedSizedAllocaFI(AI);
- addFrameReference(BuildMI(*MBB, IPt, X86::LEA32r, 4, Reg), FI);
- return Reg;
- }
-
- unsigned &Reg = RegMap[V];
- if (Reg == 0) {
- Reg = makeAnotherReg(V->getType());
- RegMap[V] = Reg;
- }
-
- return Reg;
-}
-
-/// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
-/// that is to be statically allocated with the initial stack frame
-/// adjustment.
-unsigned ISel::getFixedSizedAllocaFI(AllocaInst *AI) {
- // Already computed this?
- std::map<AllocaInst*, unsigned>::iterator I = AllocaMap.lower_bound(AI);
- if (I != AllocaMap.end() && I->first == AI) return I->second;
-
- const Type *Ty = AI->getAllocatedType();
- ConstantUInt *CUI = cast<ConstantUInt>(AI->getArraySize());
- unsigned TySize = TM.getTargetData().getTypeSize(Ty);
- TySize *= CUI->getValue(); // Get total allocated size...
- unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
-
- // Create a new stack object using the frame manager...
- int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
- AllocaMap.insert(I, std::make_pair(AI, FrameIdx));
- return FrameIdx;
-}
-
-
-/// copyConstantToRegister - Output the instructions required to put the
-/// specified constant into the specified register.
-///
-void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP,
- Constant *C, unsigned R) {
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
- unsigned Class = 0;
- switch (CE->getOpcode()) {
- case Instruction::GetElementPtr:
- emitGEPOperation(MBB, IP, CE->getOperand(0),
- CE->op_begin()+1, CE->op_end(), R);
- return;
- case Instruction::Cast:
- emitCastOperation(MBB, IP, CE->getOperand(0), CE->getType(), R);
- return;
-
- case Instruction::Xor: ++Class; // FALL THROUGH
- case Instruction::Or: ++Class; // FALL THROUGH
- case Instruction::And: ++Class; // FALL THROUGH
- case Instruction::Sub: ++Class; // FALL THROUGH
- case Instruction::Add:
- emitSimpleBinaryOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
- Class, R);
- return;
-
- case Instruction::Mul:
- emitMultiply(MBB, IP, CE->getOperand(0), CE->getOperand(1), R);
- return;
-
- case Instruction::Div:
- case Instruction::Rem:
- emitDivRemOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
- CE->getOpcode() == Instruction::Div, R);
- return;
-
- case Instruction::SetNE:
- case Instruction::SetEQ:
- case Instruction::SetLT:
- case Instruction::SetGT:
- case Instruction::SetLE:
- case Instruction::SetGE:
- emitSetCCOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
- CE->getOpcode(), R);
- return;
-
- case Instruction::Shl:
- case Instruction::Shr:
- emitShiftOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
- CE->getOpcode() == Instruction::Shl, CE->getType(), R);
- return;
-
- case Instruction::Select:
- emitSelectOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
- CE->getOperand(2), R);
- return;
-
- default:
- std::cerr << "Offending expr: " << *C << "\n";
- assert(0 && "Constant expression not yet handled!\n");
- }
- }
-
- if (C->getType()->isIntegral()) {
- unsigned Class = getClassB(C->getType());
-
- if (Class == cLong) {
- // Copy the value into the register pair.
- uint64_t Val = cast<ConstantInt>(C)->getRawValue();
- BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addImm(Val & 0xFFFFFFFF);
- BuildMI(*MBB, IP, X86::MOV32ri, 1, R+1).addImm(Val >> 32);
- return;
- }
-
- assert(Class <= cInt && "Type not handled yet!");
-
- static const unsigned IntegralOpcodeTab[] = {
- X86::MOV8ri, X86::MOV16ri, X86::MOV32ri
- };
-
- if (C->getType() == Type::BoolTy) {
- BuildMI(*MBB, IP, X86::MOV8ri, 1, R).addImm(C == ConstantBool::True);
- } else {
- ConstantInt *CI = cast<ConstantInt>(C);
- BuildMI(*MBB, IP, IntegralOpcodeTab[Class],1,R).addImm(CI->getRawValue());
- }
- } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
- if (CFP->isExactlyValue(+0.0))
- BuildMI(*MBB, IP, X86::FLD0, 0, R);
- else if (CFP->isExactlyValue(+1.0))
- BuildMI(*MBB, IP, X86::FLD1, 0, R);
- else {
- // Otherwise we need to spill the constant to memory...
- MachineConstantPool *CP = F->getConstantPool();
- unsigned CPI = CP->getConstantPoolIndex(CFP);
- const Type *Ty = CFP->getType();
-
- assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
- unsigned LoadOpcode = Ty == Type::FloatTy ? X86::FLD32m : X86::FLD64m;
- addConstantPoolReference(BuildMI(*MBB, IP, LoadOpcode, 4, R), CPI);
- }
-
- } else if (isa<ConstantPointerNull>(C)) {
- // Copy zero (null pointer) to the register.
- BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addImm(0);
- } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
- BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addGlobalAddress(GV);
- } else {
- std::cerr << "Offending constant: " << *C << "\n";
- assert(0 && "Type not handled yet!");
- }
-}
-
-/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
-/// the stack into virtual registers.
-///
-void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
- // Emit instructions to load the arguments... On entry to a function on the
- // X86, the stack frame looks like this:
- //
- // [ESP] -- return address
- // [ESP + 4] -- first argument (leftmost lexically)
- // [ESP + 8] -- second argument, if first argument is four bytes in size
- // ...
- //
- unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
- MachineFrameInfo *MFI = F->getFrameInfo();
-
- for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
- bool ArgLive = !I->use_empty();
- unsigned Reg = ArgLive ? getReg(*I) : 0;
- int FI; // Frame object index
-
- switch (getClassB(I->getType())) {
- case cByte:
- if (ArgLive) {
- FI = MFI->CreateFixedObject(1, ArgOffset);
- addFrameReference(BuildMI(BB, X86::MOV8rm, 4, Reg), FI);
- }
- break;
- case cShort:
- if (ArgLive) {
- FI = MFI->CreateFixedObject(2, ArgOffset);
- addFrameReference(BuildMI(BB, X86::MOV16rm, 4, Reg), FI);
- }
- break;
- case cInt:
- if (ArgLive) {
- FI = MFI->CreateFixedObject(4, ArgOffset);
- addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg), FI);
- }
- break;
- case cLong:
- if (ArgLive) {
- FI = MFI->CreateFixedObject(8, ArgOffset);
- addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg), FI);
- addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg+1), FI, 4);
- }
- ArgOffset += 4; // longs require 4 additional bytes
- break;
- case cFP:
- if (ArgLive) {
- unsigned Opcode;
- if (I->getType() == Type::FloatTy) {
- Opcode = X86::FLD32m;
- FI = MFI->CreateFixedObject(4, ArgOffset);
- } else {
- Opcode = X86::FLD64m;
- FI = MFI->CreateFixedObject(8, ArgOffset);
- }
- addFrameReference(BuildMI(BB, Opcode, 4, Reg), FI);
- }
- if (I->getType() == Type::DoubleTy)
- ArgOffset += 4; // doubles require 4 additional bytes
- break;
- default:
- assert(0 && "Unhandled argument type!");
- }
- ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
- }
-
- // If the function takes variable number of arguments, add a frame offset for
- // the start of the first vararg value... this is used to expand
- // llvm.va_start.
- if (Fn.getFunctionType()->isVarArg())
- VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
-}
-
-
-/// SelectPHINodes - Insert machine code to generate phis. This is tricky
-/// because we have to generate our sources into the source basic blocks, not
-/// the current one.
-///
-void ISel::SelectPHINodes() {
- const TargetInstrInfo &TII = *TM.getInstrInfo();
- const Function &LF = *F->getFunction(); // The LLVM function...
- for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
- const BasicBlock *BB = I;
- MachineBasicBlock &MBB = *MBBMap[I];
-
- // Loop over all of the PHI nodes in the LLVM basic block...
- MachineBasicBlock::iterator PHIInsertPoint = MBB.begin();
- for (BasicBlock::const_iterator I = BB->begin();
- PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) {
-
- // Create a new machine instr PHI node, and insert it.
- unsigned PHIReg = getReg(*PN);
- MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint,
- X86::PHI, PN->getNumOperands(), PHIReg);
-
- MachineInstr *LongPhiMI = 0;
- if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy)
- LongPhiMI = BuildMI(MBB, PHIInsertPoint,
- X86::PHI, PN->getNumOperands(), PHIReg+1);
-
- // PHIValues - Map of blocks to incoming virtual registers. We use this
- // so that we only initialize one incoming value for a particular block,
- // even if the block has multiple entries in the PHI node.
- //
- std::map<MachineBasicBlock*, unsigned> PHIValues;
-
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
- MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)];
- unsigned ValReg;
- std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
- PHIValues.lower_bound(PredMBB);
-
- if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
- // We already inserted an initialization of the register for this
- // predecessor. Recycle it.
- ValReg = EntryIt->second;
-
- } else {
- // Get the incoming value into a virtual register.
- //
- Value *Val = PN->getIncomingValue(i);
-
- // If this is a constant or GlobalValue, we may have to insert code
- // into the basic block to compute it into a virtual register.
- if ((isa<Constant>(Val) && !isa<ConstantExpr>(Val))) {
- // Simple constants get emitted at the end of the basic block,
- // before any terminator instructions. We "know" that the code to
- // move a constant into a register will never clobber any flags.
- ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator());
- } else {
- // Because we don't want to clobber any values which might be in
- // physical registers with the computation of this constant (which
- // might be arbitrarily complex if it is a constant expression),
- // just insert the computation at the top of the basic block.
- MachineBasicBlock::iterator PI = PredMBB->begin();
-
- // Skip over any PHI nodes though!
- while (PI != PredMBB->end() && PI->getOpcode() == X86::PHI)
- ++PI;
-
- ValReg = getReg(Val, PredMBB, PI);
- }
-
- // Remember that we inserted a value for this PHI for this predecessor
- PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
- }
-
- PhiMI->addRegOperand(ValReg);
- PhiMI->addMachineBasicBlockOperand(PredMBB);
- if (LongPhiMI) {
- LongPhiMI->addRegOperand(ValReg+1);
- LongPhiMI->addMachineBasicBlockOperand(PredMBB);
- }
- }
-
- // Now that we emitted all of the incoming values for the PHI node, make
- // sure to reposition the InsertPoint after the PHI that we just added.
- // This is needed because we might have inserted a constant into this
- // block, right after the PHI's which is before the old insert point!
- PHIInsertPoint = LongPhiMI ? LongPhiMI : PhiMI;
- ++PHIInsertPoint;
- }
- }
-}
-
-/// RequiresFPRegKill - The floating point stackifier pass cannot insert
-/// compensation code on critical edges. As such, it requires that we kill all
-/// FP registers on the exit from any blocks that either ARE critical edges, or
-/// branch to a block that has incoming critical edges.
-///
-/// Note that this kill instruction will eventually be eliminated when
-/// restrictions in the stackifier are relaxed.
-///
-static bool RequiresFPRegKill(const MachineBasicBlock *MBB) {
-#if 0
- const BasicBlock *BB = MBB->getBasicBlock ();
- for (succ_const_iterator SI = succ_begin(BB), E = succ_end(BB); SI!=E; ++SI) {
- const BasicBlock *Succ = *SI;
- pred_const_iterator PI = pred_begin(Succ), PE = pred_end(Succ);
- ++PI; // Block have at least one predecessory
- if (PI != PE) { // If it has exactly one, this isn't crit edge
- // If this block has more than one predecessor, check all of the
- // predecessors to see if they have multiple successors. If so, then the
- // block we are analyzing needs an FPRegKill.
- for (PI = pred_begin(Succ); PI != PE; ++PI) {
- const BasicBlock *Pred = *PI;
- succ_const_iterator SI2 = succ_begin(Pred);
- ++SI2; // There must be at least one successor of this block.
- if (SI2 != succ_end(Pred))
- return true; // Yes, we must insert the kill on this edge.
- }
- }
- }
- // If we got this far, there is no need to insert the kill instruction.
- return false;
-#else
- return true;
-#endif
-}
-
-// InsertFPRegKills - Insert FP_REG_KILL instructions into basic blocks that
-// need them. This only occurs due to the floating point stackifier not being
-// aggressive enough to handle arbitrary global stackification.
-//
-// Currently we insert an FP_REG_KILL instruction into each block that uses or
-// defines a floating point virtual register.
-//
-// When the global register allocators (like linear scan) finally update live
-// variable analysis, we can keep floating point values in registers across
-// portions of the CFG that do not involve critical edges. This will be a big
-// win, but we are waiting on the global allocators before we can do this.
-//
-// With a bit of work, the floating point stackifier pass can be enhanced to
-// break critical edges as needed (to make a place to put compensation code),
-// but this will require some infrastructure improvements as well.
-//
-void ISel::InsertFPRegKills() {
- SSARegMap &RegMap = *F->getSSARegMap();
-
- for (MachineFunction::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
- for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I!=E; ++I)
- for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
- MachineOperand& MO = I->getOperand(i);
- if (MO.isRegister() && MO.getReg()) {
- unsigned Reg = MO.getReg();
- if (MRegisterInfo::isVirtualRegister(Reg))
- if (RegMap.getRegClass(Reg)->getSize() == 10)
- goto UsesFPReg;
- }
- }
- // If we haven't found an FP register use or def in this basic block, check
- // to see if any of our successors has an FP PHI node, which will cause a
- // copy to be inserted into this block.
- for (MachineBasicBlock::const_succ_iterator SI = BB->succ_begin(),
- SE = BB->succ_end(); SI != SE; ++SI) {
- MachineBasicBlock *SBB = *SI;
- for (MachineBasicBlock::iterator I = SBB->begin();
- I != SBB->end() && I->getOpcode() == X86::PHI; ++I) {
- if (RegMap.getRegClass(I->getOperand(0).getReg())->getSize() == 10)
- goto UsesFPReg;
- }
- }
- continue;
- UsesFPReg:
- // Okay, this block uses an FP register. If the block has successors (ie,
- // it's not an unwind/return), insert the FP_REG_KILL instruction.
- if (BB->succ_size () && RequiresFPRegKill(BB)) {
- BuildMI(*BB, BB->getFirstTerminator(), X86::FP_REG_KILL, 0);
- ++NumFPKill;
- }
- }
-}
-
-
-void ISel::getAddressingMode(Value *Addr, unsigned &BaseReg, unsigned &Scale,
- unsigned &IndexReg, unsigned &Disp) {
- BaseReg = 0; Scale = 1; IndexReg = 0; Disp = 0;
- if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Addr)) {
- if (isGEPFoldable(BB, GEP->getOperand(0), GEP->op_begin()+1, GEP->op_end(),
- BaseReg, Scale, IndexReg, Disp))
- return;
- } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
- if (CE->getOpcode() == Instruction::GetElementPtr)
- if (isGEPFoldable(BB, CE->getOperand(0), CE->op_begin()+1, CE->op_end(),
- BaseReg, Scale, IndexReg, Disp))
- return;
- }
-
- // If it's not foldable, reset addr mode.
- BaseReg = getReg(Addr);
- Scale = 1; IndexReg = 0; Disp = 0;
-}
-
-// canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold
-// it into the conditional branch or select instruction which is the only user
-// of the cc instruction. This is the case if the conditional branch is the
-// only user of the setcc. We also don't handle long arguments below, so we
-// reject them here as well.
-//
-static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) {
- if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
- if (SCI->hasOneUse()) {
- Instruction *User = cast<Instruction>(SCI->use_back());
- if ((isa<BranchInst>(User) || isa<SelectInst>(User)) &&
- (getClassB(SCI->getOperand(0)->getType()) != cLong ||
- SCI->getOpcode() == Instruction::SetEQ ||
- SCI->getOpcode() == Instruction::SetNE))
- return SCI;
- }
- return 0;
-}
-
-// Return a fixed numbering for setcc instructions which does not depend on the
-// order of the opcodes.
-//
-static unsigned getSetCCNumber(unsigned Opcode) {
- switch(Opcode) {
- default: assert(0 && "Unknown setcc instruction!");
- case Instruction::SetEQ: return 0;
- case Instruction::SetNE: return 1;
- case Instruction::SetLT: return 2;
- case Instruction::SetGE: return 3;
- case Instruction::SetGT: return 4;
- case Instruction::SetLE: return 5;
- }
-}
-
-// LLVM -> X86 signed X86 unsigned
-// ----- ---------- ------------
-// seteq -> sete sete
-// setne -> setne setne
-// setlt -> setl setb
-// setge -> setge setae
-// setgt -> setg seta
-// setle -> setle setbe
-// ----
-// sets // Used by comparison with 0 optimization
-// setns
-static const unsigned SetCCOpcodeTab[2][8] = {
- { X86::SETEr, X86::SETNEr, X86::SETBr, X86::SETAEr, X86::SETAr, X86::SETBEr,
- 0, 0 },
- { X86::SETEr, X86::SETNEr, X86::SETLr, X86::SETGEr, X86::SETGr, X86::SETLEr,
- X86::SETSr, X86::SETNSr },
-};
-
-/// emitUCOMr - In the future when we support processors before the P6, this
-/// wraps the logic for emitting an FUCOMr vs FUCOMIr.
-void ISel::emitUCOMr(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
- unsigned LHS, unsigned RHS) {
- if (0) { // for processors prior to the P6
- BuildMI(*MBB, IP, X86::FUCOMr, 2).addReg(LHS).addReg(RHS);
- BuildMI(*MBB, IP, X86::FNSTSW8r, 0);
- BuildMI(*MBB, IP, X86::SAHF, 1);
- } else {
- BuildMI(*MBB, IP, X86::FUCOMIr, 2).addReg(LHS).addReg(RHS);
- }
-}
-
-// EmitComparison - This function emits a comparison of the two operands,
-// returning the extended setcc code to use.
-unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
- MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP) {
- // The arguments are already supposed to be of the same type.
- const Type *CompTy = Op0->getType();
- unsigned Class = getClassB(CompTy);
- unsigned Op0r = getReg(Op0, MBB, IP);
-
- // Special case handling of: cmp R, i
- if (isa<ConstantPointerNull>(Op1)) {
- if (OpNum < 2) // seteq/setne -> test
- BuildMI(*MBB, IP, X86::TEST32rr, 2).addReg(Op0r).addReg(Op0r);
- else
- BuildMI(*MBB, IP, X86::CMP32ri, 2).addReg(Op0r).addImm(0);
- return OpNum;
-
- } else if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
- if (Class == cByte || Class == cShort || Class == cInt) {
- unsigned Op1v = CI->getRawValue();
-
- // Mask off any upper bits of the constant, if there are any...
- Op1v &= (1ULL << (8 << Class)) - 1;
-
- // If this is a comparison against zero, emit more efficient code. We
- // can't handle unsigned comparisons against zero unless they are == or
- // !=. These should have been strength reduced already anyway.
- if (Op1v == 0 && (CompTy->isSigned() || OpNum < 2)) {
- static const unsigned TESTTab[] = {
- X86::TEST8rr, X86::TEST16rr, X86::TEST32rr
- };
- BuildMI(*MBB, IP, TESTTab[Class], 2).addReg(Op0r).addReg(Op0r);
-
- if (OpNum == 2) return 6; // Map jl -> js
- if (OpNum == 3) return 7; // Map jg -> jns
- return OpNum;
- }
-
- static const unsigned CMPTab[] = {
- X86::CMP8ri, X86::CMP16ri, X86::CMP32ri
- };
-
- BuildMI(*MBB, IP, CMPTab[Class], 2).addReg(Op0r).addImm(Op1v);
- return OpNum;
- } else {
- assert(Class == cLong && "Unknown integer class!");
- unsigned LowCst = CI->getRawValue();
- unsigned HiCst = CI->getRawValue() >> 32;
- if (OpNum < 2) { // seteq, setne
- unsigned LoTmp = Op0r;
- if (LowCst != 0) {
- LoTmp = makeAnotherReg(Type::IntTy);
- BuildMI(*MBB, IP, X86::XOR32ri, 2, LoTmp).addReg(Op0r).addImm(LowCst);
- }
- unsigned HiTmp = Op0r+1;
- if (HiCst != 0) {
- HiTmp = makeAnotherReg(Type::IntTy);
- BuildMI(*MBB, IP, X86::XOR32ri, 2,HiTmp).addReg(Op0r+1).addImm(HiCst);
- }
- unsigned FinalTmp = makeAnotherReg(Type::IntTy);
- BuildMI(*MBB, IP, X86::OR32rr, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
- return OpNum;
- } else {
- // Emit a sequence of code which compares the high and low parts once
- // each, then uses a conditional move to handle the overflow case. For
- // example, a setlt for long would generate code like this:
- //
- // AL = lo(op1) < lo(op2) // Always unsigned comparison
- // BL = hi(op1) < hi(op2) // Signedness depends on operands
- // dest = hi(op1) == hi(op2) ? BL : AL;
- //
-
- // FIXME: This would be much better if we had hierarchical register
- // classes! Until then, hardcode registers so that we can deal with
- // their aliases (because we don't have conditional byte moves).
- //
- BuildMI(*MBB, IP, X86::CMP32ri, 2).addReg(Op0r).addImm(LowCst);
- BuildMI(*MBB, IP, SetCCOpcodeTab[0][OpNum], 0, X86::AL);
- BuildMI(*MBB, IP, X86::CMP32ri, 2).addReg(Op0r+1).addImm(HiCst);
- BuildMI(*MBB, IP, SetCCOpcodeTab[CompTy->isSigned()][OpNum], 0,X86::BL);
- BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::BH);
- BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::AH);
- BuildMI(*MBB, IP, X86::CMOVE16rr, 2, X86::BX).addReg(X86::BX)
- .addReg(X86::AX);
- // NOTE: visitSetCondInst knows that the value is dumped into the BL
- // register at this point for long values...
- return OpNum;
- }
- }
- }
-
- // Special case handling of comparison against +/- 0.0
- if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op1))
- if (CFP->isExactlyValue(+0.0) || CFP->isExactlyValue(-0.0)) {
- BuildMI(*MBB, IP, X86::FTST, 1).addReg(Op0r);
- BuildMI(*MBB, IP, X86::FNSTSW8r, 0);
- BuildMI(*MBB, IP, X86::SAHF, 1);
- return OpNum;
- }
-
- unsigned Op1r = getReg(Op1, MBB, IP);
- switch (Class) {
- default: assert(0 && "Unknown type class!");
- // Emit: cmp <var1>, <var2> (do the comparison). We can
- // compare 8-bit with 8-bit, 16-bit with 16-bit, 32-bit with
- // 32-bit.
- case cByte:
- BuildMI(*MBB, IP, X86::CMP8rr, 2).addReg(Op0r).addReg(Op1r);
- break;
- case cShort:
- BuildMI(*MBB, IP, X86::CMP16rr, 2).addReg(Op0r).addReg(Op1r);
- break;
- case cInt:
- BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r).addReg(Op1r);
- break;
- case cFP:
- emitUCOMr(MBB, IP, Op0r, Op1r);
- break;
-
- case cLong:
- if (OpNum < 2) { // seteq, setne
- unsigned LoTmp = makeAnotherReg(Type::IntTy);
- unsigned HiTmp = makeAnotherReg(Type::IntTy);
- unsigned FinalTmp = makeAnotherReg(Type::IntTy);
- BuildMI(*MBB, IP, X86::XOR32rr, 2, LoTmp).addReg(Op0r).addReg(Op1r);
- BuildMI(*MBB, IP, X86::XOR32rr, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1);
- BuildMI(*MBB, IP, X86::OR32rr, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
- break; // Allow the sete or setne to be generated from flags set by OR
- } else {
- // Emit a sequence of code which compares the high and low parts once
- // each, then uses a conditional move to handle the overflow case. For
- // example, a setlt for long would generate code like this:
- //
- // AL = lo(op1) < lo(op2) // Signedness depends on operands
- // BL = hi(op1) < hi(op2) // Always unsigned comparison
- // dest = hi(op1) == hi(op2) ? BL : AL;
- //
-
- // FIXME: This would be much better if we had hierarchical register
- // classes! Until then, hardcode registers so that we can deal with their
- // aliases (because we don't have conditional byte moves).
- //
- BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r).addReg(Op1r);
- BuildMI(*MBB, IP, SetCCOpcodeTab[0][OpNum], 0, X86::AL);
- BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r+1).addReg(Op1r+1);
- BuildMI(*MBB, IP, SetCCOpcodeTab[CompTy->isSigned()][OpNum], 0, X86::BL);
- BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::BH);
- BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::AH);
- BuildMI(*MBB, IP, X86::CMOVE16rr, 2, X86::BX).addReg(X86::BX)
- .addReg(X86::AX);
- // NOTE: visitSetCondInst knows that the value is dumped into the BL
- // register at this point for long values...
- return OpNum;
- }
- }
- return OpNum;
-}
-
-/// SetCC instructions - Here we just emit boilerplate code to set a byte-sized
-/// register, then move it to wherever the result should be.
-///
-void ISel::visitSetCondInst(SetCondInst &I) {
- if (canFoldSetCCIntoBranchOrSelect(&I))
- return; // Fold this into a branch or select.
-
- unsigned DestReg = getReg(I);
- MachineBasicBlock::iterator MII = BB->end();
- emitSetCCOperation(BB, MII, I.getOperand(0), I.getOperand(1), I.getOpcode(),
- DestReg);
-}
-
-/// emitSetCCOperation - Common code shared between visitSetCondInst and
-/// constant expression support.
-///
-void ISel::emitSetCCOperation(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP,
- Value *Op0, Value *Op1, unsigned Opcode,
- unsigned TargetReg) {
- unsigned OpNum = getSetCCNumber(Opcode);
- OpNum = EmitComparison(OpNum, Op0, Op1, MBB, IP);
-
- const Type *CompTy = Op0->getType();
- unsigned CompClass = getClassB(CompTy);
- bool isSigned = CompTy->isSigned() && CompClass != cFP;
-
- if (CompClass != cLong || OpNum < 2) {
- // Handle normal comparisons with a setcc instruction...
- BuildMI(*MBB, IP, SetCCOpcodeTab[isSigned][OpNum], 0, TargetReg);
- } else {
- // Handle long comparisons by copying the value which is already in BL into
- // the register we want...
- BuildMI(*MBB, IP, X86::MOV8rr, 1, TargetReg).addReg(X86::BL);
- }
-}
-
-void ISel::visitSelectInst(SelectInst &SI) {
- unsigned DestReg = getReg(SI);
- MachineBasicBlock::iterator MII = BB->end();
- emitSelectOperation(BB, MII, SI.getCondition(), SI.getTrueValue(),
- SI.getFalseValue(), DestReg);
-}
-
-/// emitSelect - Common code shared between visitSelectInst and the constant
-/// expression support.
-void ISel::emitSelectOperation(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP,
- Value *Cond, Value *TrueVal, Value *FalseVal,
- unsigned DestReg) {
- unsigned SelectClass = getClassB(TrueVal->getType());
-
- // We don't support 8-bit conditional moves. If we have incoming constants,
- // transform them into 16-bit constants to avoid having a run-time conversion.
- if (SelectClass == cByte) {
- if (Constant *T = dyn_cast<Constant>(TrueVal))
- TrueVal = ConstantExpr::getCast(T, Type::ShortTy);
- if (Constant *F = dyn_cast<Constant>(FalseVal))
- FalseVal = ConstantExpr::getCast(F, Type::ShortTy);
- }
-
- unsigned TrueReg = getReg(TrueVal, MBB, IP);
- unsigned FalseReg = getReg(FalseVal, MBB, IP);
- if (TrueReg == FalseReg) {
- static const unsigned Opcode[] = {
- X86::MOV8rr, X86::MOV16rr, X86::MOV32rr, X86::FpMOV, X86::MOV32rr
- };
- BuildMI(*MBB, IP, Opcode[SelectClass], 1, DestReg).addReg(TrueReg);
- if (SelectClass == cLong)
- BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg+1).addReg(TrueReg+1);
- return;
- }
-
- unsigned Opcode;
- if (SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(Cond)) {
- // We successfully folded the setcc into the select instruction.
-
- unsigned OpNum = getSetCCNumber(SCI->getOpcode());
- OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), MBB,
- IP);
-
- const Type *CompTy = SCI->getOperand(0)->getType();
- bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP;
-
- // LLVM -> X86 signed X86 unsigned
- // ----- ---------- ------------
- // seteq -> cmovNE cmovNE
- // setne -> cmovE cmovE
- // setlt -> cmovGE cmovAE
- // setge -> cmovL cmovB
- // setgt -> cmovLE cmovBE
- // setle -> cmovG cmovA
- // ----
- // cmovNS // Used by comparison with 0 optimization
- // cmovS
-
- switch (SelectClass) {
- default: assert(0 && "Unknown value class!");
- case cFP: {
- // Annoyingly, we don't have a full set of floating point conditional
- // moves. :(
- static const unsigned OpcodeTab[2][8] = {
- { X86::FCMOVNE, X86::FCMOVE, X86::FCMOVAE, X86::FCMOVB,
- X86::FCMOVBE, X86::FCMOVA, 0, 0 },
- { X86::FCMOVNE, X86::FCMOVE, 0, 0, 0, 0, 0, 0 },
- };
- Opcode = OpcodeTab[isSigned][OpNum];
-
- // If opcode == 0, we hit a case that we don't support. Output a setcc
- // and compare the result against zero.
- if (Opcode == 0) {
- unsigned CompClass = getClassB(CompTy);
- unsigned CondReg;
- if (CompClass != cLong || OpNum < 2) {
- CondReg = makeAnotherReg(Type::BoolTy);
- // Handle normal comparisons with a setcc instruction...
- BuildMI(*MBB, IP, SetCCOpcodeTab[isSigned][OpNum], 0, CondReg);
- } else {
- // Long comparisons end up in the BL register.
- CondReg = X86::BL;
- }
-
- BuildMI(*MBB, IP, X86::TEST8rr, 2).addReg(CondReg).addReg(CondReg);
- Opcode = X86::FCMOVE;
- }
- break;
- }
- case cByte:
- case cShort: {
- static const unsigned OpcodeTab[2][8] = {
- { X86::CMOVNE16rr, X86::CMOVE16rr, X86::CMOVAE16rr, X86::CMOVB16rr,
- X86::CMOVBE16rr, X86::CMOVA16rr, 0, 0 },
- { X86::CMOVNE16rr, X86::CMOVE16rr, X86::CMOVGE16rr, X86::CMOVL16rr,
- X86::CMOVLE16rr, X86::CMOVG16rr, X86::CMOVNS16rr, X86::CMOVS16rr },
- };
- Opcode = OpcodeTab[isSigned][OpNum];
- break;
- }
- case cInt:
- case cLong: {
- static const unsigned OpcodeTab[2][8] = {
- { X86::CMOVNE32rr, X86::CMOVE32rr, X86::CMOVAE32rr, X86::CMOVB32rr,
- X86::CMOVBE32rr, X86::CMOVA32rr, 0, 0 },
- { X86::CMOVNE32rr, X86::CMOVE32rr, X86::CMOVGE32rr, X86::CMOVL32rr,
- X86::CMOVLE32rr, X86::CMOVG32rr, X86::CMOVNS32rr, X86::CMOVS32rr },
- };
- Opcode = OpcodeTab[isSigned][OpNum];
- break;
- }
- }
- } else {
- // Get the value being branched on, and use it to set the condition codes.
- unsigned CondReg = getReg(Cond, MBB, IP);
- BuildMI(*MBB, IP, X86::TEST8rr, 2).addReg(CondReg).addReg(CondReg);
- switch (SelectClass) {
- default: assert(0 && "Unknown value class!");
- case cFP: Opcode = X86::FCMOVE; break;
- case cByte:
- case cShort: Opcode = X86::CMOVE16rr; break;
- case cInt:
- case cLong: Opcode = X86::CMOVE32rr; break;
- }
- }
-
- unsigned RealDestReg = DestReg;
-
-
- // Annoyingly enough, X86 doesn't HAVE 8-bit conditional moves. Because of
- // this, we have to promote the incoming values to 16 bits, perform a 16-bit
- // cmove, then truncate the result.
- if (SelectClass == cByte) {
- DestReg = makeAnotherReg(Type::ShortTy);
- if (getClassB(TrueVal->getType()) == cByte) {
- // Promote the true value, by storing it into AL, and reading from AX.
- BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::AL).addReg(TrueReg);
- BuildMI(*MBB, IP, X86::MOV8ri, 1, X86::AH).addImm(0);
- TrueReg = makeAnotherReg(Type::ShortTy);
- BuildMI(*MBB, IP, X86::MOV16rr, 1, TrueReg).addReg(X86::AX);
- }
- if (getClassB(FalseVal->getType()) == cByte) {
- // Promote the true value, by storing it into CL, and reading from CX.
- BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::CL).addReg(FalseReg);
- BuildMI(*MBB, IP, X86::MOV8ri, 1, X86::CH).addImm(0);
- FalseReg = makeAnotherReg(Type::ShortTy);
- BuildMI(*MBB, IP, X86::MOV16rr, 1, FalseReg).addReg(X86::CX);
- }
- }
-
- BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(TrueReg).addReg(FalseReg);
-
- switch (SelectClass) {
- case cByte:
- // We did the computation with 16-bit registers. Truncate back to our
- // result by copying into AX then copying out AL.
- BuildMI(*MBB, IP, X86::MOV16rr, 1, X86::AX).addReg(DestReg);
- BuildMI(*MBB, IP, X86::MOV8rr, 1, RealDestReg).addReg(X86::AL);
- break;
- case cLong:
- // Move the upper half of the value as well.
- BuildMI(*MBB, IP, Opcode, 2,DestReg+1).addReg(TrueReg+1).addReg(FalseReg+1);
- break;
- }
-}
-
-
-
-/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
-/// operand, in the specified target register.
-///
-void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
- bool isUnsigned = VR.Ty->isUnsigned() || VR.Ty == Type::BoolTy;
-
- Value *Val = VR.Val;
- const Type *Ty = VR.Ty;
- if (Val) {
- if (Constant *C = dyn_cast<Constant>(Val)) {
- Val = ConstantExpr::getCast(C, Type::IntTy);
- Ty = Type::IntTy;
- }
-
- // If this is a simple constant, just emit a MOVri directly to avoid the
- // copy.
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
- int TheVal = CI->getRawValue() & 0xFFFFFFFF;
- BuildMI(BB, X86::MOV32ri, 1, targetReg).addImm(TheVal);
- return;
- }
- }
-
- // Make sure we have the register number for this value...
- unsigned Reg = Val ? getReg(Val) : VR.Reg;
-
- switch (getClassB(Ty)) {
- case cByte:
- // Extend value into target register (8->32)
- if (isUnsigned)
- BuildMI(BB, X86::MOVZX32rr8, 1, targetReg).addReg(Reg);
- else
- BuildMI(BB, X86::MOVSX32rr8, 1, targetReg).addReg(Reg);
- break;
- case cShort:
- // Extend value into target register (16->32)
- if (isUnsigned)
- BuildMI(BB, X86::MOVZX32rr16, 1, targetReg).addReg(Reg);
- else
- BuildMI(BB, X86::MOVSX32rr16, 1, targetReg).addReg(Reg);
- break;
- case cInt:
- // Move value into target register (32->32)
- BuildMI(BB, X86::MOV32rr, 1, targetReg).addReg(Reg);
- break;
- default:
- assert(0 && "Unpromotable operand class in promote32");
- }
-}
-
-/// 'ret' instruction - Here we are interested in meeting the x86 ABI. As such,
-/// we have the following possibilities:
-///
-/// ret void: No return value, simply emit a 'ret' instruction
-/// ret sbyte, ubyte : Extend value into EAX and return
-/// ret short, ushort: Extend value into EAX and return
-/// ret int, uint : Move value into EAX and return
-/// ret pointer : Move value into EAX and return
-/// ret long, ulong : Move value into EAX/EDX and return
-/// ret float/double : Top of FP stack
-///
-void ISel::visitReturnInst(ReturnInst &I) {
- if (I.getNumOperands() == 0) {
- BuildMI(BB, X86::RET, 0); // Just emit a 'ret' instruction
- return;
- }
-
- Value *RetVal = I.getOperand(0);
- switch (getClassB(RetVal->getType())) {
- case cByte: // integral return values: extend or move into EAX and return
- case cShort:
- case cInt:
- promote32(X86::EAX, ValueRecord(RetVal));
- // Declare that EAX is live on exit
- BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::EAX).addReg(X86::ESP);
- break;
- case cFP: { // Floats & Doubles: Return in ST(0)
- unsigned RetReg = getReg(RetVal);
- BuildMI(BB, X86::FpSETRESULT, 1).addReg(RetReg);
- // Declare that top-of-stack is live on exit
- BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::ST0).addReg(X86::ESP);
- break;
- }
- case cLong: {
- unsigned RetReg = getReg(RetVal);
- BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(RetReg);
- BuildMI(BB, X86::MOV32rr, 1, X86::EDX).addReg(RetReg+1);
- // Declare that EAX & EDX are live on exit
- BuildMI(BB, X86::IMPLICIT_USE, 3).addReg(X86::EAX).addReg(X86::EDX)
- .addReg(X86::ESP);
- break;
- }
- default:
- visitInstruction(I);
- }
- // Emit a 'ret' instruction
- BuildMI(BB, X86::RET, 0);
-}
-
-// getBlockAfter - Return the basic block which occurs lexically after the
-// specified one.
-static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
- Function::iterator I = BB; ++I; // Get iterator to next block
- return I != BB->getParent()->end() ? &*I : 0;
-}
-
-/// visitBranchInst - Handle conditional and unconditional branches here. Note
-/// that since code layout is frozen at this point, that if we are trying to
-/// jump to a block that is the immediate successor of the current block, we can
-/// just make a fall-through (but we don't currently).
-///
-void ISel::visitBranchInst(BranchInst &BI) {
- // Update machine-CFG edges
- BB->addSuccessor (MBBMap[BI.getSuccessor(0)]);
- if (BI.isConditional())
- BB->addSuccessor (MBBMap[BI.getSuccessor(1)]);
-
- BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
-
- if (!BI.isConditional()) { // Unconditional branch?
- if (BI.getSuccessor(0) != NextBB)
- BuildMI(BB, X86::JMP, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
- return;
- }
-
- // See if we can fold the setcc into the branch itself...
- SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(BI.getCondition());
- if (SCI == 0) {
- // Nope, cannot fold setcc into this branch. Emit a branch on a condition
- // computed some other way...
- unsigned condReg = getReg(BI.getCondition());
- BuildMI(BB, X86::TEST8rr, 2).addReg(condReg).addReg(condReg);
- if (BI.getSuccessor(1) == NextBB) {
- if (BI.getSuccessor(0) != NextBB)
- BuildMI(BB, X86::JNE, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
- } else {
- BuildMI(BB, X86::JE, 1).addMBB(MBBMap[BI.getSuccessor(1)]);
-
- if (BI.getSuccessor(0) != NextBB)
- BuildMI(BB, X86::JMP, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
- }
- return;
- }
-
- unsigned OpNum = getSetCCNumber(SCI->getOpcode());
- MachineBasicBlock::iterator MII = BB->end();
- OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);
-
- const Type *CompTy = SCI->getOperand(0)->getType();
- bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP;
-
-
- // LLVM -> X86 signed X86 unsigned
- // ----- ---------- ------------
- // seteq -> je je
- // setne -> jne jne
- // setlt -> jl jb
- // setge -> jge jae
- // setgt -> jg ja
- // setle -> jle jbe
- // ----
- // js // Used by comparison with 0 optimization
- // jns
-
- static const unsigned OpcodeTab[2][8] = {
- { X86::JE, X86::JNE, X86::JB, X86::JAE, X86::JA, X86::JBE, 0, 0 },
- { X86::JE, X86::JNE, X86::JL, X86::JGE, X86::JG, X86::JLE,
- X86::JS, X86::JNS },
- };
-
- if (BI.getSuccessor(0) != NextBB) {
- BuildMI(BB, OpcodeTab[isSigned][OpNum], 1)
- .addMBB(MBBMap[BI.getSuccessor(0)]);
- if (BI.getSuccessor(1) != NextBB)
- BuildMI(BB, X86::JMP, 1).addMBB(MBBMap[BI.getSuccessor(1)]);
- } else {
- // Change to the inverse condition...
- if (BI.getSuccessor(1) != NextBB) {
- OpNum ^= 1;
- BuildMI(BB, OpcodeTab[isSigned][OpNum], 1)
- .addMBB(MBBMap[BI.getSuccessor(1)]);
- }
- }
-}
-
-
-/// doCall - This emits an abstract call instruction, setting up the arguments
-/// and the return value as appropriate. For the actual function call itself,
-/// it inserts the specified CallMI instruction into the stream.
-///
-void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
- const std::vector<ValueRecord> &Args) {
-
- // Count how many bytes are to be pushed on the stack...
- unsigned NumBytes = 0;
-
- if (!Args.empty()) {
- for (unsigned i = 0, e = Args.size(); i != e; ++i)
- switch (getClassB(Args[i].Ty)) {
- case cByte: case cShort: case cInt:
- NumBytes += 4; break;
- case cLong:
- NumBytes += 8; break;
- case cFP:
- NumBytes += Args[i].Ty == Type::FloatTy ? 4 : 8;
- break;
- default: assert(0 && "Unknown class!");
- }
-
- // Adjust the stack pointer for the new arguments...
- BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addImm(NumBytes);
-
- // Arguments go on the stack in reverse order, as specified by the ABI.
- unsigned ArgOffset = 0;
- for (unsigned i = 0, e = Args.size(); i != e; ++i) {
- unsigned ArgReg;
- switch (getClassB(Args[i].Ty)) {
- case cByte:
- if (Args[i].Val && isa<ConstantBool>(Args[i].Val)) {
- addRegOffset(BuildMI(BB, X86::MOV32mi, 5), X86::ESP, ArgOffset)
- .addImm(Args[i].Val == ConstantBool::True);
- break;
- }
- // FALL THROUGH
- case cShort:
- if (Args[i].Val && isa<ConstantInt>(Args[i].Val)) {
- // Zero/Sign extend constant, then stuff into memory.
- ConstantInt *Val = cast<ConstantInt>(Args[i].Val);
- Val = cast<ConstantInt>(ConstantExpr::getCast(Val, Type::IntTy));
- addRegOffset(BuildMI(BB, X86::MOV32mi, 5), X86::ESP, ArgOffset)
- .addImm(Val->getRawValue() & 0xFFFFFFFF);
- } else {
- // Promote arg to 32 bits wide into a temporary register...
- ArgReg = makeAnotherReg(Type::UIntTy);
- promote32(ArgReg, Args[i]);
- addRegOffset(BuildMI(BB, X86::MOV32mr, 5),
- X86::ESP, ArgOffset).addReg(ArgReg);
- }
- break;
- case cInt:
- if (Args[i].Val && isa<ConstantInt>(Args[i].Val)) {
- unsigned Val = cast<ConstantInt>(Args[i].Val)->getRawValue();
- addRegOffset(BuildMI(BB, X86::MOV32mi, 5),
- X86::ESP, ArgOffset).addImm(Val);
- } else if (Args[i].Val && isa<ConstantPointerNull>(Args[i].Val)) {
- addRegOffset(BuildMI(BB, X86::MOV32mi, 5),
- X86::ESP, ArgOffset).addImm(0);
- } else {
- ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
- addRegOffset(BuildMI(BB, X86::MOV32mr, 5),
- X86::ESP, ArgOffset).addReg(ArgReg);
- }
- break;
- case cLong:
- if (Args[i].Val && isa<ConstantInt>(Args[i].Val)) {
- uint64_t Val = cast<ConstantInt>(Args[i].Val)->getRawValue();
- addRegOffset(BuildMI(BB, X86::MOV32mi, 5),
- X86::ESP, ArgOffset).addImm(Val & ~0U);
- addRegOffset(BuildMI(BB, X86::MOV32mi, 5),
- X86::ESP, ArgOffset+4).addImm(Val >> 32ULL);
- } else {
- ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
- addRegOffset(BuildMI(BB, X86::MOV32mr, 5),
- X86::ESP, ArgOffset).addReg(ArgReg);
- addRegOffset(BuildMI(BB, X86::MOV32mr, 5),
- X86::ESP, ArgOffset+4).addReg(ArgReg+1);
- }
- ArgOffset += 4; // 8 byte entry, not 4.
- break;
-
- case cFP:
- ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
- if (Args[i].Ty == Type::FloatTy) {
- addRegOffset(BuildMI(BB, X86::FST32m, 5),
- X86::ESP, ArgOffset).addReg(ArgReg);
- } else {
- assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!");
- addRegOffset(BuildMI(BB, X86::FST64m, 5),
- X86::ESP, ArgOffset).addReg(ArgReg);
- ArgOffset += 4; // 8 byte entry, not 4.
- }
- break;
-
- default: assert(0 && "Unknown class!");
- }
- ArgOffset += 4;
- }
- } else {
- BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addImm(0);
- }
-
- BB->push_back(CallMI);
-
- BuildMI(BB, X86::ADJCALLSTACKUP, 1).addImm(NumBytes);
-
- // If there is a return value, scavenge the result from the location the call
- // leaves it in...
- //
- if (Ret.Ty != Type::VoidTy) {
- unsigned DestClass = getClassB(Ret.Ty);
- switch (DestClass) {
- case cByte:
- case cShort:
- case cInt: {
- // Integral results are in %eax, or the appropriate portion
- // thereof.
- static const unsigned regRegMove[] = {
- X86::MOV8rr, X86::MOV16rr, X86::MOV32rr
- };
- static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX };
- BuildMI(BB, regRegMove[DestClass], 1, Ret.Reg).addReg(AReg[DestClass]);
- break;
- }
- case cFP: // Floating-point return values live in %ST(0)
- BuildMI(BB, X86::FpGETRESULT, 1, Ret.Reg);
- break;
- case cLong: // Long values are left in EDX:EAX
- BuildMI(BB, X86::MOV32rr, 1, Ret.Reg).addReg(X86::EAX);
- BuildMI(BB, X86::MOV32rr, 1, Ret.Reg+1).addReg(X86::EDX);
- break;
- default: assert(0 && "Unknown class!");
- }
- }
-}
-
-
-/// visitCallInst - Push args on stack and do a procedure call instruction.
-void ISel::visitCallInst(CallInst &CI) {
- MachineInstr *TheCall;
- if (Function *F = CI.getCalledFunction()) {
- // Is it an intrinsic function call?
- if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
- visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here
- return;
- }
-
- // Emit a CALL instruction with PC-relative displacement.
- TheCall = BuildMI(X86::CALLpcrel32, 1).addGlobalAddress(F, true);
- } else { // Emit an indirect call...
- unsigned Reg = getReg(CI.getCalledValue());
- TheCall = BuildMI(X86::CALL32r, 1).addReg(Reg);
- }
-
- std::vector<ValueRecord> Args;
- for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
- Args.push_back(ValueRecord(CI.getOperand(i)));
-
- unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
- doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args);
-}
-
-/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
-/// function, lowering any calls to unknown intrinsic functions into the
-/// equivalent LLVM code.
-///
-void ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
- for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
- for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
- if (CallInst *CI = dyn_cast<CallInst>(I++))
- if (Function *F = CI->getCalledFunction())
- switch (F->getIntrinsicID()) {
- case Intrinsic::not_intrinsic:
- case Intrinsic::vastart:
- case Intrinsic::vacopy:
- case Intrinsic::vaend:
- case Intrinsic::returnaddress:
- case Intrinsic::frameaddress:
- case Intrinsic::memcpy:
- case Intrinsic::memset:
- case Intrinsic::isunordered:
- case Intrinsic::readport:
- case Intrinsic::writeport:
- // We directly implement these intrinsics
- break;
- case Intrinsic::readio: {
- // On X86, memory operations are in-order. Lower this intrinsic
- // into a volatile load.
- Instruction *Before = CI->getPrev();
- LoadInst * LI = new LoadInst(CI->getOperand(1), "", true, CI);
- CI->replaceAllUsesWith(LI);
- BB->getInstList().erase(CI);
- break;
- }
- case Intrinsic::writeio: {
- // On X86, memory operations are in-order. Lower this intrinsic
- // into a volatile store.
- Instruction *Before = CI->getPrev();
- StoreInst *LI = new StoreInst(CI->getOperand(1),
- CI->getOperand(2), true, CI);
- CI->replaceAllUsesWith(LI);
- BB->getInstList().erase(CI);
- break;
- }
- default:
- // All other intrinsic calls we must lower.
- Instruction *Before = CI->getPrev();
- TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
- if (Before) { // Move iterator to instruction after call
- I = Before; ++I;
- } else {
- I = BB->begin();
- }
- }
-}
-
-void ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
- unsigned TmpReg1, TmpReg2;
- switch (ID) {
- case Intrinsic::vastart:
- // Get the address of the first vararg value...
- TmpReg1 = getReg(CI);
- addFrameReference(BuildMI(BB, X86::LEA32r, 5, TmpReg1), VarArgsFrameIndex);
- return;
-
- case Intrinsic::vacopy:
- TmpReg1 = getReg(CI);
- TmpReg2 = getReg(CI.getOperand(1));
- BuildMI(BB, X86::MOV32rr, 1, TmpReg1).addReg(TmpReg2);
- return;
- case Intrinsic::vaend: return; // Noop on X86
-
- case Intrinsic::returnaddress:
- case Intrinsic::frameaddress:
- TmpReg1 = getReg(CI);
- if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
- if (ID == Intrinsic::returnaddress) {
- // Just load the return address
- addFrameReference(BuildMI(BB, X86::MOV32rm, 4, TmpReg1),
- ReturnAddressIndex);
- } else {
- addFrameReference(BuildMI(BB, X86::LEA32r, 4, TmpReg1),
- ReturnAddressIndex, -4);
- }
- } else {
- // Values other than zero are not implemented yet.
- BuildMI(BB, X86::MOV32ri, 1, TmpReg1).addImm(0);
- }
- return;
-
- case Intrinsic::isunordered:
- TmpReg1 = getReg(CI.getOperand(1));
- TmpReg2 = getReg(CI.getOperand(2));
- emitUCOMr(BB, BB->end(), TmpReg2, TmpReg1);
- TmpReg2 = getReg(CI);
- BuildMI(BB, X86::SETPr, 0, TmpReg2);
- return;
-
- case Intrinsic::memcpy: {
- assert(CI.getNumOperands() == 5 && "Illegal llvm.memcpy call!");
- unsigned Align = 1;
- if (ConstantInt *AlignC = dyn_cast<ConstantInt>(CI.getOperand(4))) {
- Align = AlignC->getRawValue();
- if (Align == 0) Align = 1;
- }
-
- // Turn the byte code into # iterations
- unsigned CountReg;
- unsigned Opcode;
- switch (Align & 3) {
- case 2: // WORD aligned
- if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
- CountReg = getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/2));
- } else {
- CountReg = makeAnotherReg(Type::IntTy);
- unsigned ByteReg = getReg(CI.getOperand(3));
- BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(1);
- }
- Opcode = X86::REP_MOVSW;
- break;
- case 0: // DWORD aligned
- if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
- CountReg = getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/4));
- } else {
- CountReg = makeAnotherReg(Type::IntTy);
- unsigned ByteReg = getReg(CI.getOperand(3));
- BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(2);
- }
- Opcode = X86::REP_MOVSD;
- break;
- default: // BYTE aligned
- CountReg = getReg(CI.getOperand(3));
- Opcode = X86::REP_MOVSB;
- break;
- }
-
- // No matter what the alignment is, we put the source in ESI, the
- // destination in EDI, and the count in ECX.
- TmpReg1 = getReg(CI.getOperand(1));
- TmpReg2 = getReg(CI.getOperand(2));
- BuildMI(BB, X86::MOV32rr, 1, X86::ECX).addReg(CountReg);
- BuildMI(BB, X86::MOV32rr, 1, X86::EDI).addReg(TmpReg1);
- BuildMI(BB, X86::MOV32rr, 1, X86::ESI).addReg(TmpReg2);
- BuildMI(BB, Opcode, 0);
- return;
- }
- case Intrinsic::memset: {
- assert(CI.getNumOperands() == 5 && "Illegal llvm.memset call!");
- unsigned Align = 1;
- if (ConstantInt *AlignC = dyn_cast<ConstantInt>(CI.getOperand(4))) {
- Align = AlignC->getRawValue();
- if (Align == 0) Align = 1;
- }
-
- // Turn the byte code into # iterations
- unsigned CountReg;
- unsigned Opcode;
- if (ConstantInt *ValC = dyn_cast<ConstantInt>(CI.getOperand(2))) {
- unsigned Val = ValC->getRawValue() & 255;
-
- // If the value is a constant, then we can potentially use larger copies.
- switch (Align & 3) {
- case 2: // WORD aligned
- if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
- CountReg =getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/2));
- } else {
- CountReg = makeAnotherReg(Type::IntTy);
- unsigned ByteReg = getReg(CI.getOperand(3));
- BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(1);
- }
- BuildMI(BB, X86::MOV16ri, 1, X86::AX).addImm((Val << 8) | Val);
- Opcode = X86::REP_STOSW;
- break;
- case 0: // DWORD aligned
- if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
- CountReg =getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/4));
- } else {
- CountReg = makeAnotherReg(Type::IntTy);
- unsigned ByteReg = getReg(CI.getOperand(3));
- BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(2);
- }
- Val = (Val << 8) | Val;
- BuildMI(BB, X86::MOV32ri, 1, X86::EAX).addImm((Val << 16) | Val);
- Opcode = X86::REP_STOSD;
- break;
- default: // BYTE aligned
- CountReg = getReg(CI.getOperand(3));
- BuildMI(BB, X86::MOV8ri, 1, X86::AL).addImm(Val);
- Opcode = X86::REP_STOSB;
- break;
- }
- } else {
- // If it's not a constant value we are storing, just fall back. We could
- // try to be clever to form 16 bit and 32 bit values, but we don't yet.
- unsigned ValReg = getReg(CI.getOperand(2));
- BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(ValReg);
- CountReg = getReg(CI.getOperand(3));
- Opcode = X86::REP_STOSB;
- }
-
- // No matter what the alignment is, we put the source in ESI, the
- // destination in EDI, and the count in ECX.
- TmpReg1 = getReg(CI.getOperand(1));
- //TmpReg2 = getReg(CI.getOperand(2));
- BuildMI(BB, X86::MOV32rr, 1, X86::ECX).addReg(CountReg);
- BuildMI(BB, X86::MOV32rr, 1, X86::EDI).addReg(TmpReg1);
- BuildMI(BB, Opcode, 0);
- return;
- }
-
- case Intrinsic::readport: {
- // First, determine that the size of the operand falls within the acceptable
- // range for this architecture.
- //
- if (getClassB(CI.getOperand(1)->getType()) != cShort) {
- std::cerr << "llvm.readport: Address size is not 16 bits\n";
- exit(1);
- }
-
- // Now, move the I/O port address into the DX register and use the IN
- // instruction to get the input data.
- //
- unsigned Class = getClass(CI.getCalledFunction()->getReturnType());
- unsigned DestReg = getReg(CI);
-
- // If the port is a single-byte constant, use the immediate form.
- if (ConstantInt *C = dyn_cast<ConstantInt>(CI.getOperand(1)))
- if ((C->getRawValue() & 255) == C->getRawValue()) {
- switch (Class) {
- case cByte:
- BuildMI(BB, X86::IN8ri, 1).addImm((unsigned char)C->getRawValue());
- BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AL);
- return;
- case cShort:
- BuildMI(BB, X86::IN16ri, 1).addImm((unsigned char)C->getRawValue());
- BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AX);
- return;
- case cInt:
- BuildMI(BB, X86::IN32ri, 1).addImm((unsigned char)C->getRawValue());
- BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::EAX);
- return;
- }
- }
-
- unsigned Reg = getReg(CI.getOperand(1));
- BuildMI(BB, X86::MOV16rr, 1, X86::DX).addReg(Reg);
- switch (Class) {
- case cByte:
- BuildMI(BB, X86::IN8rr, 0);
- BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AL);
- break;
- case cShort:
- BuildMI(BB, X86::IN16rr, 0);
- BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AX);
- break;
- case cInt:
- BuildMI(BB, X86::IN32rr, 0);
- BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::EAX);
- break;
- default:
- std::cerr << "Cannot do input on this data type";
- exit (1);
- }
- return;
- }
-
- case Intrinsic::writeport: {
- // First, determine that the size of the operand falls within the
- // acceptable range for this architecture.
- if (getClass(CI.getOperand(2)->getType()) != cShort) {
- std::cerr << "llvm.writeport: Address size is not 16 bits\n";
- exit(1);
- }
-
- unsigned Class = getClassB(CI.getOperand(1)->getType());
- unsigned ValReg = getReg(CI.getOperand(1));
- switch (Class) {
- case cByte:
- BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(ValReg);
- break;
- case cShort:
- BuildMI(BB, X86::MOV16rr, 1, X86::AX).addReg(ValReg);
- break;
- case cInt:
- BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(ValReg);
- break;
- default:
- std::cerr << "llvm.writeport: invalid data type for X86 target";
- exit(1);
- }
-
-
- // If the port is a single-byte constant, use the immediate form.
- if (ConstantInt *C = dyn_cast<ConstantInt>(CI.getOperand(2)))
- if ((C->getRawValue() & 255) == C->getRawValue()) {
- static const unsigned O[] = { X86::OUT8ir, X86::OUT16ir, X86::OUT32ir };
- BuildMI(BB, O[Class], 1).addImm((unsigned char)C->getRawValue());
- return;
- }
-
- // Otherwise, move the I/O port address into the DX register and the value
- // to write into the AL/AX/EAX register.
- static const unsigned Opc[] = { X86::OUT8rr, X86::OUT16rr, X86::OUT32rr };
- unsigned Reg = getReg(CI.getOperand(2));
- BuildMI(BB, X86::MOV16rr, 1, X86::DX).addReg(Reg);
- BuildMI(BB, Opc[Class], 0);
- return;
- }
-
- default: assert(0 && "Error: unknown intrinsics should have been lowered!");
- }
-}
-
-static bool isSafeToFoldLoadIntoInstruction(LoadInst &LI, Instruction &User) {
- if (LI.getParent() != User.getParent())
- return false;
- BasicBlock::iterator It = &LI;
- // Check all of the instructions between the load and the user. We should
- // really use alias analysis here, but for now we just do something simple.
- for (++It; It != BasicBlock::iterator(&User); ++It) {
- switch (It->getOpcode()) {
- case Instruction::Free:
- case Instruction::Store:
- case Instruction::Call:
- case Instruction::Invoke:
- return false;
- case Instruction::Load:
- if (cast<LoadInst>(It)->isVolatile() && LI.isVolatile())
- return false;
- break;
- }
- }
- return true;
-}
-
-/// visitSimpleBinary - Implement simple binary operators for integral types...
-/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
-/// Xor.
-///
-void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
- unsigned DestReg = getReg(B);
- MachineBasicBlock::iterator MI = BB->end();
- Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1);
- unsigned Class = getClassB(B.getType());
-
- // Special case: op Reg, load [mem]
- if (isa<LoadInst>(Op0) && !isa<LoadInst>(Op1) && Class != cLong &&
- Op0->hasOneUse() &&
- isSafeToFoldLoadIntoInstruction(*cast<LoadInst>(Op0), B))
- if (!B.swapOperands())
- std::swap(Op0, Op1); // Make sure any loads are in the RHS.
-
- if (isa<LoadInst>(Op1) && Class != cLong && Op1->hasOneUse() &&
- isSafeToFoldLoadIntoInstruction(*cast<LoadInst>(Op1), B)) {
-
- unsigned Opcode;
- if (Class != cFP) {
- static const unsigned OpcodeTab[][3] = {
- // Arithmetic operators
- { X86::ADD8rm, X86::ADD16rm, X86::ADD32rm }, // ADD
- { X86::SUB8rm, X86::SUB16rm, X86::SUB32rm }, // SUB
-
- // Bitwise operators
- { X86::AND8rm, X86::AND16rm, X86::AND32rm }, // AND
- { X86:: OR8rm, X86:: OR16rm, X86:: OR32rm }, // OR
- { X86::XOR8rm, X86::XOR16rm, X86::XOR32rm }, // XOR
- };
- Opcode = OpcodeTab[OperatorClass][Class];
- } else {
- static const unsigned OpcodeTab[][2] = {
- { X86::FADD32m, X86::FADD64m }, // ADD
- { X86::FSUB32m, X86::FSUB64m }, // SUB
- };
- const Type *Ty = Op0->getType();
- assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
- Opcode = OpcodeTab[OperatorClass][Ty == Type::DoubleTy];
- }
-
- unsigned Op0r = getReg(Op0);
- if (AllocaInst *AI =
- dyn_castFixedAlloca(cast<LoadInst>(Op1)->getOperand(0))) {
- unsigned FI = getFixedSizedAllocaFI(AI);
- addFrameReference(BuildMI(BB, Opcode, 5, DestReg).addReg(Op0r), FI);
-
- } else {
- unsigned BaseReg, Scale, IndexReg, Disp;
- getAddressingMode(cast<LoadInst>(Op1)->getOperand(0), BaseReg,
- Scale, IndexReg, Disp);
-
- addFullAddress(BuildMI(BB, Opcode, 5, DestReg).addReg(Op0r),
- BaseReg, Scale, IndexReg, Disp);
- }
- return;
- }
-
- // If this is a floating point subtract, check to see if we can fold the first
- // operand in.
- if (Class == cFP && OperatorClass == 1 &&
- isa<LoadInst>(Op0) &&
- isSafeToFoldLoadIntoInstruction(*cast<LoadInst>(Op0), B)) {
- const Type *Ty = Op0->getType();
- assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
- unsigned Opcode = Ty == Type::FloatTy ? X86::FSUBR32m : X86::FSUBR64m;
-
- unsigned Op1r = getReg(Op1);
- if (AllocaInst *AI =
- dyn_castFixedAlloca(cast<LoadInst>(Op0)->getOperand(0))) {
- unsigned FI = getFixedSizedAllocaFI(AI);
- addFrameReference(BuildMI(BB, Opcode, 5, DestReg).addReg(Op1r), FI);
- } else {
- unsigned BaseReg, Scale, IndexReg, Disp;
- getAddressingMode(cast<LoadInst>(Op0)->getOperand(0), BaseReg,
- Scale, IndexReg, Disp);
-
- addFullAddress(BuildMI(BB, Opcode, 5, DestReg).addReg(Op1r),
- BaseReg, Scale, IndexReg, Disp);
- }
- return;
- }
-
- emitSimpleBinaryOperation(BB, MI, Op0, Op1, OperatorClass, DestReg);
-}
-
-
-/// emitBinaryFPOperation - This method handles emission of floating point
-/// Add (0), Sub (1), Mul (2), and Div (3) operations.
-void ISel::emitBinaryFPOperation(MachineBasicBlock *BB,
- MachineBasicBlock::iterator IP,
- Value *Op0, Value *Op1,
- unsigned OperatorClass, unsigned DestReg) {
-
- // Special case: op Reg, <const fp>
- if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1))
- if (!Op1C->isExactlyValue(+0.0) && !Op1C->isExactlyValue(+1.0)) {
- // Create a constant pool entry for this constant.
- MachineConstantPool *CP = F->getConstantPool();
- unsigned CPI = CP->getConstantPoolIndex(Op1C);
- const Type *Ty = Op1->getType();
-
- static const unsigned OpcodeTab[][4] = {
- { X86::FADD32m, X86::FSUB32m, X86::FMUL32m, X86::FDIV32m }, // Float
- { X86::FADD64m, X86::FSUB64m, X86::FMUL64m, X86::FDIV64m }, // Double
- };
-
- assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
- unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
- unsigned Op0r = getReg(Op0, BB, IP);
- addConstantPoolReference(BuildMI(*BB, IP, Opcode, 5,
- DestReg).addReg(Op0r), CPI);
- return;
- }
-
- // Special case: R1 = op <const fp>, R2
- if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op0))
- if (CFP->isExactlyValue(-0.0) && OperatorClass == 1) {
- // -0.0 - X === -X
- unsigned op1Reg = getReg(Op1, BB, IP);
- BuildMI(*BB, IP, X86::FCHS, 1, DestReg).addReg(op1Reg);
- return;
- } else if (!CFP->isExactlyValue(+0.0) && !CFP->isExactlyValue(+1.0)) {
- // R1 = op CST, R2 --> R1 = opr R2, CST
-
- // Create a constant pool entry for this constant.
- MachineConstantPool *CP = F->getConstantPool();
- unsigned CPI = CP->getConstantPoolIndex(CFP);
- const Type *Ty = CFP->getType();
-
- static const unsigned OpcodeTab[][4] = {
- { X86::FADD32m, X86::FSUBR32m, X86::FMUL32m, X86::FDIVR32m }, // Float
- { X86::FADD64m, X86::FSUBR64m, X86::FMUL64m, X86::FDIVR64m }, // Double
- };
-
- assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!");
- unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
- unsigned Op1r = getReg(Op1, BB, IP);
- addConstantPoolReference(BuildMI(*BB, IP, Opcode, 5,
- DestReg).addReg(Op1r), CPI);
- return;
- }
-
- // General case.
- static const unsigned OpcodeTab[4] = {
- X86::FpADD, X86::FpSUB, X86::FpMUL, X86::FpDIV
- };
-
- unsigned Opcode = OpcodeTab[OperatorClass];
- unsigned Op0r = getReg(Op0, BB, IP);
- unsigned Op1r = getReg(Op1, BB, IP);
- BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
-}
-
-/// emitSimpleBinaryOperation - Implement simple binary operators for integral
-/// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
-/// Or, 4 for Xor.
-///
-/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
-/// and constant expression support.
-///
-void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP,
- Value *Op0, Value *Op1,
- unsigned OperatorClass, unsigned DestReg) {
- unsigned Class = getClassB(Op0->getType());
-
- if (Class == cFP) {
- assert(OperatorClass < 2 && "No logical ops for FP!");
- emitBinaryFPOperation(MBB, IP, Op0, Op1, OperatorClass, DestReg);
- return;
- }
-
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0))
- if (OperatorClass == 1) {
- static unsigned const NEGTab[] = {
- X86::NEG8r, X86::NEG16r, X86::NEG32r, 0, X86::NEG32r
- };
-
- // sub 0, X -> neg X
- if (CI->isNullValue()) {
- unsigned op1Reg = getReg(Op1, MBB, IP);
- BuildMI(*MBB, IP, NEGTab[Class], 1, DestReg).addReg(op1Reg);
-
- if (Class == cLong) {
- // We just emitted: Dl = neg Sl
- // Now emit : T = addc Sh, 0
- // : Dh = neg T
- unsigned T = makeAnotherReg(Type::IntTy);
- BuildMI(*MBB, IP, X86::ADC32ri, 2, T).addReg(op1Reg+1).addImm(0);
- BuildMI(*MBB, IP, X86::NEG32r, 1, DestReg+1).addReg(T);
- }
- return;
- } else if (Op1->hasOneUse() && Class != cLong) {
- // sub C, X -> tmp = neg X; DestReg = add tmp, C. This is better
- // than copying C into a temporary register, because of register
- // pressure (tmp and destreg can share a register.
- static unsigned const ADDRITab[] = {
- X86::ADD8ri, X86::ADD16ri, X86::ADD32ri, 0, X86::ADD32ri
- };
- unsigned op1Reg = getReg(Op1, MBB, IP);
- unsigned Tmp = makeAnotherReg(Op0->getType());
- BuildMI(*MBB, IP, NEGTab[Class], 1, Tmp).addReg(op1Reg);
- BuildMI(*MBB, IP, ADDRITab[Class], 2,
- DestReg).addReg(Tmp).addImm(CI->getRawValue());
- return;
- }
- }
-
- // Special case: op Reg, <const int>
- if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
- unsigned Op0r = getReg(Op0, MBB, IP);
-
- // xor X, -1 -> not X
- if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
- static unsigned const NOTTab[] = {
- X86::NOT8r, X86::NOT16r, X86::NOT32r, 0, X86::NOT32r
- };
- BuildMI(*MBB, IP, NOTTab[Class], 1, DestReg).addReg(Op0r);
- if (Class == cLong) // Invert the top part too
- BuildMI(*MBB, IP, X86::NOT32r, 1, DestReg+1).addReg(Op0r+1);
- return;
- }
-
- // add X, -1 -> dec X
- if (OperatorClass == 0 && Op1C->isAllOnesValue() && Class != cLong) {
- // Note that we can't use dec for 64-bit decrements, because it does not
- // set the carry flag!
- static unsigned const DECTab[] = { X86::DEC8r, X86::DEC16r, X86::DEC32r };
- BuildMI(*MBB, IP, DECTab[Class], 1, DestReg).addReg(Op0r);
- return;
- }
-
- // add X, 1 -> inc X
- if (OperatorClass == 0 && Op1C->equalsInt(1) && Class != cLong) {
- // Note that we can't use inc for 64-bit increments, because it does not
- // set the carry flag!
- static unsigned const INCTab[] = { X86::INC8r, X86::INC16r, X86::INC32r };
- BuildMI(*MBB, IP, INCTab[Class], 1, DestReg).addReg(Op0r);
- return;
- }
-
- static const unsigned OpcodeTab[][5] = {
- // Arithmetic operators
- { X86::ADD8ri, X86::ADD16ri, X86::ADD32ri, 0, X86::ADD32ri }, // ADD
- { X86::SUB8ri, X86::SUB16ri, X86::SUB32ri, 0, X86::SUB32ri }, // SUB
-
- // Bitwise operators
- { X86::AND8ri, X86::AND16ri, X86::AND32ri, 0, X86::AND32ri }, // AND
- { X86:: OR8ri, X86:: OR16ri, X86:: OR32ri, 0, X86::OR32ri }, // OR
- { X86::XOR8ri, X86::XOR16ri, X86::XOR32ri, 0, X86::XOR32ri }, // XOR
- };
-
- unsigned Opcode = OpcodeTab[OperatorClass][Class];
- unsigned Op1l = cast<ConstantInt>(Op1C)->getRawValue();
-
- if (Class != cLong) {
- BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addImm(Op1l);
- return;
- }
-
- // If this is a long value and the high or low bits have a special
- // property, emit some special cases.
- unsigned Op1h = cast<ConstantInt>(Op1C)->getRawValue() >> 32LL;
-
- // If the constant is zero in the low 32-bits, just copy the low part
- // across and apply the normal 32-bit operation to the high parts. There
- // will be no carry or borrow into the top.
- if (Op1l == 0) {
- if (OperatorClass != 2) // All but and...
- BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg).addReg(Op0r);
- else
- BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg).addImm(0);
- BuildMI(*MBB, IP, OpcodeTab[OperatorClass][cLong], 2, DestReg+1)
- .addReg(Op0r+1).addImm(Op1h);
- return;
- }
-
- // If this is a logical operation and the top 32-bits are zero, just
- // operate on the lower 32.
- if (Op1h == 0 && OperatorClass > 1) {
- BuildMI(*MBB, IP, OpcodeTab[OperatorClass][cLong], 2, DestReg)
- .addReg(Op0r).addImm(Op1l);
- if (OperatorClass != 2) // All but and
- BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg+1).addReg(Op0r+1);
- else
- BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0);
- return;
- }
-
- // TODO: We could handle lots of other special cases here, such as AND'ing
- // with 0xFFFFFFFF00000000 -> noop, etc.
-
- // Otherwise, code generate the full operation with a constant.
- static const unsigned TopTab[] = {
- X86::ADC32ri, X86::SBB32ri, X86::AND32ri, X86::OR32ri, X86::XOR32ri
- };
-
- BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addImm(Op1l);
- BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1)
- .addReg(Op0r+1).addImm(Op1h);
- return;
- }
-
- // Finally, handle the general case now.
- static const unsigned OpcodeTab[][5] = {
- // Arithmetic operators
- { X86::ADD8rr, X86::ADD16rr, X86::ADD32rr, 0, X86::ADD32rr }, // ADD
- { X86::SUB8rr, X86::SUB16rr, X86::SUB32rr, 0, X86::SUB32rr }, // SUB
-
- // Bitwise operators
- { X86::AND8rr, X86::AND16rr, X86::AND32rr, 0, X86::AND32rr }, // AND
- { X86:: OR8rr, X86:: OR16rr, X86:: OR32rr, 0, X86:: OR32rr }, // OR
- { X86::XOR8rr, X86::XOR16rr, X86::XOR32rr, 0, X86::XOR32rr }, // XOR
- };
-
- unsigned Opcode = OpcodeTab[OperatorClass][Class];
- unsigned Op0r = getReg(Op0, MBB, IP);
- unsigned Op1r = getReg(Op1, MBB, IP);
- BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
-
- if (Class == cLong) { // Handle the upper 32 bits of long values...
- static const unsigned TopTab[] = {
- X86::ADC32rr, X86::SBB32rr, X86::AND32rr, X86::OR32rr, X86::XOR32rr
- };
- BuildMI(*MBB, IP, TopTab[OperatorClass], 2,
- DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
- }
-}
-
-/// doMultiply - Emit appropriate instructions to multiply together the
-/// registers op0Reg and op1Reg, and put the result in DestReg. The type of the
-/// result should be given as DestTy.
-///
-void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
- unsigned DestReg, const Type *DestTy,
- unsigned op0Reg, unsigned op1Reg) {
- unsigned Class = getClass(DestTy);
- switch (Class) {
- case cInt:
- case cShort:
- BuildMI(*MBB, MBBI, Class == cInt ? X86::IMUL32rr:X86::IMUL16rr, 2, DestReg)
- .addReg(op0Reg).addReg(op1Reg);
- return;
- case cByte:
- // Must use the MUL instruction, which forces use of AL...
- BuildMI(*MBB, MBBI, X86::MOV8rr, 1, X86::AL).addReg(op0Reg);
- BuildMI(*MBB, MBBI, X86::MUL8r, 1).addReg(op1Reg);
- BuildMI(*MBB, MBBI, X86::MOV8rr, 1, DestReg).addReg(X86::AL);
- return;
- default:
- case cLong: assert(0 && "doMultiply cannot operate on LONG values!");
- }
-}
-
-// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
-// returns zero when the input is not exactly a power of two.
-static unsigned ExactLog2(unsigned Val) {
- if (Val == 0 || (Val & (Val-1))) return 0;
- unsigned Count = 0;
- while (Val != 1) {
- Val >>= 1;
- ++Count;
- }
- return Count+1;
-}
-
-
-/// doMultiplyConst - This function is specialized to efficiently codegen an 8,
-/// 16, or 32-bit integer multiply by a constant.
-void ISel::doMultiplyConst(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP,
- unsigned DestReg, const Type *DestTy,
- unsigned op0Reg, unsigned ConstRHS) {
- static const unsigned MOVrrTab[] = {X86::MOV8rr, X86::MOV16rr, X86::MOV32rr};
- static const unsigned MOVriTab[] = {X86::MOV8ri, X86::MOV16ri, X86::MOV32ri};
- static const unsigned ADDrrTab[] = {X86::ADD8rr, X86::ADD16rr, X86::ADD32rr};
- static const unsigned NEGrTab[] = {X86::NEG8r , X86::NEG16r , X86::NEG32r };
-
- unsigned Class = getClass(DestTy);
- unsigned TmpReg;
-
- // Handle special cases here.
- switch (ConstRHS) {
- case -2:
- TmpReg = makeAnotherReg(DestTy);
- BuildMI(*MBB, IP, NEGrTab[Class], 1, TmpReg).addReg(op0Reg);
- BuildMI(*MBB, IP, ADDrrTab[Class], 1,DestReg).addReg(TmpReg).addReg(TmpReg);
- return;
- case -1:
- BuildMI(*MBB, IP, NEGrTab[Class], 1, DestReg).addReg(op0Reg);
- return;
- case 0:
- BuildMI(*MBB, IP, MOVriTab[Class], 1, DestReg).addImm(0);
- return;
- case 1:
- BuildMI(*MBB, IP, MOVrrTab[Class], 1, DestReg).addReg(op0Reg);
- return;
- case 2:
- BuildMI(*MBB, IP, ADDrrTab[Class], 1,DestReg).addReg(op0Reg).addReg(op0Reg);
- return;
- case 3:
- case 5:
- case 9:
- if (Class == cInt) {
- addFullAddress(BuildMI(*MBB, IP, X86::LEA32r, 5, DestReg),
- op0Reg, ConstRHS-1, op0Reg, 0);
- return;
- }
- case -3:
- case -5:
- case -9:
- if (Class == cInt) {
- TmpReg = makeAnotherReg(DestTy);
- addFullAddress(BuildMI(*MBB, IP, X86::LEA32r, 5, TmpReg),
- op0Reg, -ConstRHS-1, op0Reg, 0);
- BuildMI(*MBB, IP, NEGrTab[Class], 1, DestReg).addReg(TmpReg);
- return;
- }
- }
-
- // If the element size is exactly a power of 2, use a shift to get it.
- if (unsigned Shift = ExactLog2(ConstRHS)) {
- switch (Class) {
- default: assert(0 && "Unknown class for this function!");
- case cByte:
- BuildMI(*MBB, IP, X86::SHL8ri,2, DestReg).addReg(op0Reg).addImm(Shift-1);
- return;
- case cShort:
- BuildMI(*MBB, IP, X86::SHL16ri,2, DestReg).addReg(op0Reg).addImm(Shift-1);
- return;
- case cInt:
- BuildMI(*MBB, IP, X86::SHL32ri,2, DestReg).addReg(op0Reg).addImm(Shift-1);
- return;
- }
- }
-
- // If the element size is a negative power of 2, use a shift/neg to get it.
- if (unsigned Shift = ExactLog2(-ConstRHS)) {
- TmpReg = makeAnotherReg(DestTy);
- BuildMI(*MBB, IP, NEGrTab[Class], 1, TmpReg).addReg(op0Reg);
- switch (Class) {
- default: assert(0 && "Unknown class for this function!");
- case cByte:
- BuildMI(*MBB, IP, X86::SHL8ri,2, DestReg).addReg(TmpReg).addImm(Shift-1);
- return;
- case cShort:
- BuildMI(*MBB, IP, X86::SHL16ri,2, DestReg).addReg(TmpReg).addImm(Shift-1);
- return;
- case cInt:
- BuildMI(*MBB, IP, X86::SHL32ri,2, DestReg).addReg(TmpReg).addImm(Shift-1);
- return;
- }
- }
-
- if (Class == cShort) {
- BuildMI(*MBB, IP, X86::IMUL16rri,2,DestReg).addReg(op0Reg).addImm(ConstRHS);
- return;
- } else if (Class == cInt) {
- BuildMI(*MBB, IP, X86::IMUL32rri,2,DestReg).addReg(op0Reg).addImm(ConstRHS);
- return;
- }
-
- // Most general case, emit a normal multiply...
- TmpReg = makeAnotherReg(DestTy);
- BuildMI(*MBB, IP, MOVriTab[Class], 1, TmpReg).addImm(ConstRHS);
-
- // Emit a MUL to multiply the register holding the index by
- // elementSize, putting the result in OffsetReg.
- doMultiply(MBB, IP, DestReg, DestTy, op0Reg, TmpReg);
-}
-
-/// visitMul - Multiplies are not simple binary operators because they must deal
-/// with the EAX register explicitly.
-///
-void ISel::visitMul(BinaryOperator &I) {
- unsigned ResultReg = getReg(I);
-
- Value *Op0 = I.getOperand(0);
- Value *Op1 = I.getOperand(1);
-
- // Fold loads into floating point multiplies.
- if (getClass(Op0->getType()) == cFP) {
- if (isa<LoadInst>(Op0) && !isa<LoadInst>(Op1))
- if (!I.swapOperands())
- std::swap(Op0, Op1); // Make sure any loads are in the RHS.
- if (LoadInst *LI = dyn_cast<LoadInst>(Op1))
- if (isSafeToFoldLoadIntoInstruction(*LI, I)) {
- const Type *Ty = Op0->getType();
- assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!");
- unsigned Opcode = Ty == Type::FloatTy ? X86::FMUL32m : X86::FMUL64m;
-
- unsigned Op0r = getReg(Op0);
- if (AllocaInst *AI = dyn_castFixedAlloca(LI->getOperand(0))) {
- unsigned FI = getFixedSizedAllocaFI(AI);
- addFrameReference(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op0r), FI);
- } else {
- unsigned BaseReg, Scale, IndexReg, Disp;
- getAddressingMode(LI->getOperand(0), BaseReg,
- Scale, IndexReg, Disp);
-
- addFullAddress(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op0r),
- BaseReg, Scale, IndexReg, Disp);
- }
- return;
- }
- }
-
- MachineBasicBlock::iterator IP = BB->end();
- emitMultiply(BB, IP, Op0, Op1, ResultReg);
-}
-
-void ISel::emitMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
- Value *Op0, Value *Op1, unsigned DestReg) {
- MachineBasicBlock &BB = *MBB;
- TypeClass Class = getClass(Op0->getType());
-
- // Simple scalar multiply?
- unsigned Op0Reg = getReg(Op0, &BB, IP);
- switch (Class) {
- case cByte:
- case cShort:
- case cInt:
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
- unsigned Val = (unsigned)CI->getRawValue(); // Isn't a 64-bit constant
- doMultiplyConst(&BB, IP, DestReg, Op0->getType(), Op0Reg, Val);
- } else {
- unsigned Op1Reg = getReg(Op1, &BB, IP);
- doMultiply(&BB, IP, DestReg, Op1->getType(), Op0Reg, Op1Reg);
- }
- return;
- case cFP:
- emitBinaryFPOperation(MBB, IP, Op0, Op1, 2, DestReg);
- return;
- case cLong:
- break;
- }
-
- // Long value. We have to do things the hard way...
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
- unsigned CLow = CI->getRawValue();
- unsigned CHi = CI->getRawValue() >> 32;
-
- if (CLow == 0) {
- // If the low part of the constant is all zeros, things are simple.
- BuildMI(BB, IP, X86::MOV32ri, 1, DestReg).addImm(0);
- doMultiplyConst(&BB, IP, DestReg+1, Type::UIntTy, Op0Reg, CHi);
- return;
- }
-
- // Multiply the two low parts... capturing carry into EDX
- unsigned OverflowReg = 0;
- if (CLow == 1) {
- BuildMI(BB, IP, X86::MOV32rr, 1, DestReg).addReg(Op0Reg);
- } else {
- unsigned Op1RegL = makeAnotherReg(Type::UIntTy);
- OverflowReg = makeAnotherReg(Type::UIntTy);
- BuildMI(BB, IP, X86::MOV32ri, 1, Op1RegL).addImm(CLow);
- BuildMI(BB, IP, X86::MOV32rr, 1, X86::EAX).addReg(Op0Reg);
- BuildMI(BB, IP, X86::MUL32r, 1).addReg(Op1RegL); // AL*BL
-
- BuildMI(BB, IP, X86::MOV32rr, 1, DestReg).addReg(X86::EAX); // AL*BL
- BuildMI(BB, IP, X86::MOV32rr, 1,
- OverflowReg).addReg(X86::EDX); // AL*BL >> 32
- }
-
- unsigned AHBLReg = makeAnotherReg(Type::UIntTy); // AH*BL
- doMultiplyConst(&BB, IP, AHBLReg, Type::UIntTy, Op0Reg+1, CLow);
-
- unsigned AHBLplusOverflowReg;
- if (OverflowReg) {
- AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
- BuildMI(BB, IP, X86::ADD32rr, 2, // AH*BL+(AL*BL >> 32)
- AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
- } else {
- AHBLplusOverflowReg = AHBLReg;
- }
-
- if (CHi == 0) {
- BuildMI(BB, IP, X86::MOV32rr, 1, DestReg+1).addReg(AHBLplusOverflowReg);
- } else {
- unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
- doMultiplyConst(&BB, IP, ALBHReg, Type::UIntTy, Op0Reg, CHi);
-
- BuildMI(BB, IP, X86::ADD32rr, 2, // AL*BH + AH*BL + (AL*BL >> 32)
- DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
- }
- return;
- }
-
- // General 64x64 multiply
-
- unsigned Op1Reg = getReg(Op1, &BB, IP);
- // Multiply the two low parts... capturing carry into EDX
- BuildMI(BB, IP, X86::MOV32rr, 1, X86::EAX).addReg(Op0Reg);
- BuildMI(BB, IP, X86::MUL32r, 1).addReg(Op1Reg); // AL*BL
-
- unsigned OverflowReg = makeAnotherReg(Type::UIntTy);
- BuildMI(BB, IP, X86::MOV32rr, 1, DestReg).addReg(X86::EAX); // AL*BL
- BuildMI(BB, IP, X86::MOV32rr, 1,
- OverflowReg).addReg(X86::EDX); // AL*BL >> 32
-
- unsigned AHBLReg = makeAnotherReg(Type::UIntTy); // AH*BL
- BuildMI(BB, IP, X86::IMUL32rr, 2,
- AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg);
-
- unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
- BuildMI(BB, IP, X86::ADD32rr, 2, // AH*BL+(AL*BL >> 32)
- AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
-
- unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
- BuildMI(BB, IP, X86::IMUL32rr, 2,
- ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1);
-
- BuildMI(BB, IP, X86::ADD32rr, 2, // AL*BH + AH*BL + (AL*BL >> 32)
- DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
-}
-
-
-/// visitDivRem - Handle division and remainder instructions... these
-/// instruction both require the same instructions to be generated, they just
-/// select the result from a different register. Note that both of these
-/// instructions work differently for signed and unsigned operands.
-///
-void ISel::visitDivRem(BinaryOperator &I) {
- unsigned ResultReg = getReg(I);
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
-
- // Fold loads into floating point divides.
- if (getClass(Op0->getType()) == cFP) {
- if (LoadInst *LI = dyn_cast<LoadInst>(Op1))
- if (isSafeToFoldLoadIntoInstruction(*LI, I)) {
- const Type *Ty = Op0->getType();
- assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!");
- unsigned Opcode = Ty == Type::FloatTy ? X86::FDIV32m : X86::FDIV64m;
-
- unsigned Op0r = getReg(Op0);
- if (AllocaInst *AI = dyn_castFixedAlloca(LI->getOperand(0))) {
- unsigned FI = getFixedSizedAllocaFI(AI);
- addFrameReference(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op0r), FI);
- } else {
- unsigned BaseReg, Scale, IndexReg, Disp;
- getAddressingMode(LI->getOperand(0), BaseReg,
- Scale, IndexReg, Disp);
-
- addFullAddress(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op0r),
- BaseReg, Scale, IndexReg, Disp);
- }
- return;
- }
-
- if (LoadInst *LI = dyn_cast<LoadInst>(Op0))
- if (isSafeToFoldLoadIntoInstruction(*LI, I)) {
- const Type *Ty = Op0->getType();
- assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!");
- unsigned Opcode = Ty == Type::FloatTy ? X86::FDIVR32m : X86::FDIVR64m;
-
- unsigned Op1r = getReg(Op1);
- if (AllocaInst *AI = dyn_castFixedAlloca(LI->getOperand(0))) {
- unsigned FI = getFixedSizedAllocaFI(AI);
- addFrameReference(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op1r), FI);
- } else {
- unsigned BaseReg, Scale, IndexReg, Disp;
- getAddressingMode(LI->getOperand(0), BaseReg, Scale, IndexReg, Disp);
- addFullAddress(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op1r),
- BaseReg, Scale, IndexReg, Disp);
- }
- return;
- }
- }
-
-
- MachineBasicBlock::iterator IP = BB->end();
- emitDivRemOperation(BB, IP, Op0, Op1,
- I.getOpcode() == Instruction::Div, ResultReg);
-}
-
-void ISel::emitDivRemOperation(MachineBasicBlock *BB,
- MachineBasicBlock::iterator IP,
- Value *Op0, Value *Op1, bool isDiv,
- unsigned ResultReg) {
- const Type *Ty = Op0->getType();
- unsigned Class = getClass(Ty);
- switch (Class) {
- case cFP: // Floating point divide
- if (isDiv) {
- emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
- return;
- } else { // Floating point remainder...
- unsigned Op0Reg = getReg(Op0, BB, IP);
- unsigned Op1Reg = getReg(Op1, BB, IP);
- MachineInstr *TheCall =
- BuildMI(X86::CALLpcrel32, 1).addExternalSymbol("fmod", true);
- std::vector<ValueRecord> Args;
- Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
- Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
- doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args);
- }
- return;
- case cLong: {
- static const char *FnName[] =
- { "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" };
- unsigned Op0Reg = getReg(Op0, BB, IP);
- unsigned Op1Reg = getReg(Op1, BB, IP);
- unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
- MachineInstr *TheCall =
- BuildMI(X86::CALLpcrel32, 1).addExternalSymbol(FnName[NameIdx], true);
-
- std::vector<ValueRecord> Args;
- Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
- Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
- doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args);
- return;
- }
- case cByte: case cShort: case cInt:
- break; // Small integrals, handled below...
- default: assert(0 && "Unknown class!");
- }
-
- static const unsigned MovOpcode[]={ X86::MOV8rr, X86::MOV16rr, X86::MOV32rr };
- static const unsigned NEGOpcode[] = { X86::NEG8r, X86::NEG16r, X86::NEG32r };
- static const unsigned SAROpcode[]={ X86::SAR8ri, X86::SAR16ri, X86::SAR32ri };
- static const unsigned SHROpcode[]={ X86::SHR8ri, X86::SHR16ri, X86::SHR32ri };
- static const unsigned ADDOpcode[]={ X86::ADD8rr, X86::ADD16rr, X86::ADD32rr };
-
- // Special case signed division by power of 2.
- if (isDiv)
- if (ConstantSInt *CI = dyn_cast<ConstantSInt>(Op1)) {
- assert(Class != cLong && "This doesn't handle 64-bit divides!");
- int V = CI->getValue();
-
- if (V == 1) { // X /s 1 => X
- unsigned Op0Reg = getReg(Op0, BB, IP);
- BuildMI(*BB, IP, MovOpcode[Class], 1, ResultReg).addReg(Op0Reg);
- return;
- }
-
- if (V == -1) { // X /s -1 => -X
- unsigned Op0Reg = getReg(Op0, BB, IP);
- BuildMI(*BB, IP, NEGOpcode[Class], 1, ResultReg).addReg(Op0Reg);
- return;
- }
-
- bool isNeg = false;
- if (V < 0) { // Not a positive power of 2?
- V = -V;
- isNeg = true; // Maybe it's a negative power of 2.
- }
- if (unsigned Log = ExactLog2(V)) {
- --Log;
- unsigned Op0Reg = getReg(Op0, BB, IP);
- unsigned TmpReg = makeAnotherReg(Op0->getType());
- if (Log != 1)
- BuildMI(*BB, IP, SAROpcode[Class], 2, TmpReg)
- .addReg(Op0Reg).addImm(Log-1);
- else
- BuildMI(*BB, IP, MovOpcode[Class], 1, TmpReg).addReg(Op0Reg);
- unsigned TmpReg2 = makeAnotherReg(Op0->getType());
- BuildMI(*BB, IP, SHROpcode[Class], 2, TmpReg2)
- .addReg(TmpReg).addImm(32-Log);
- unsigned TmpReg3 = makeAnotherReg(Op0->getType());
- BuildMI(*BB, IP, ADDOpcode[Class], 2, TmpReg3)
- .addReg(Op0Reg).addReg(TmpReg2);
-
- unsigned TmpReg4 = isNeg ? makeAnotherReg(Op0->getType()) : ResultReg;
- BuildMI(*BB, IP, SAROpcode[Class], 2, TmpReg4)
- .addReg(Op0Reg).addImm(Log);
- if (isNeg)
- BuildMI(*BB, IP, NEGOpcode[Class], 1, ResultReg).addReg(TmpReg4);
- return;
- }
- }
-
- static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX };
- static const unsigned ClrOpcode[]={ X86::MOV8ri, X86::MOV16ri, X86::MOV32ri };
- static const unsigned ExtRegs[] ={ X86::AH , X86::DX , X86::EDX };
-
- static const unsigned DivOpcode[][4] = {
- { X86::DIV8r , X86::DIV16r , X86::DIV32r , 0 }, // Unsigned division
- { X86::IDIV8r, X86::IDIV16r, X86::IDIV32r, 0 }, // Signed division
- };
-
- unsigned Reg = Regs[Class];
- unsigned ExtReg = ExtRegs[Class];
-
- // Put the first operand into one of the A registers...
- unsigned Op0Reg = getReg(Op0, BB, IP);
- unsigned Op1Reg = getReg(Op1, BB, IP);
- BuildMI(*BB, IP, MovOpcode[Class], 1, Reg).addReg(Op0Reg);
-
- if (Ty->isSigned()) {
- // Emit a sign extension instruction...
- unsigned ShiftResult = makeAnotherReg(Op0->getType());
- BuildMI(*BB, IP, SAROpcode[Class], 2,ShiftResult).addReg(Op0Reg).addImm(31);
- BuildMI(*BB, IP, MovOpcode[Class], 1, ExtReg).addReg(ShiftResult);
-
- // Emit the appropriate divide or remainder instruction...
- BuildMI(*BB, IP, DivOpcode[1][Class], 1).addReg(Op1Reg);
- } else {
- // If unsigned, emit a zeroing instruction... (reg = 0)
- BuildMI(*BB, IP, ClrOpcode[Class], 2, ExtReg).addImm(0);
-
- // Emit the appropriate divide or remainder instruction...
- BuildMI(*BB, IP, DivOpcode[0][Class], 1).addReg(Op1Reg);
- }
-
- // Figure out which register we want to pick the result out of...
- unsigned DestReg = isDiv ? Reg : ExtReg;
-
- // Put the result into the destination register...
- BuildMI(*BB, IP, MovOpcode[Class], 1, ResultReg).addReg(DestReg);
-}
-
-
-/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
-/// for constant immediate shift values, and for constant immediate
-/// shift values equal to 1. Even the general case is sort of special,
-/// because the shift amount has to be in CL, not just any old register.
-///
-void ISel::visitShiftInst(ShiftInst &I) {
- MachineBasicBlock::iterator IP = BB->end ();
- emitShiftOperation (BB, IP, I.getOperand (0), I.getOperand (1),
- I.getOpcode () == Instruction::Shl, I.getType (),
- getReg (I));
-}
-
-/// emitShiftOperation - Common code shared between visitShiftInst and
-/// constant expression support.
-void ISel::emitShiftOperation(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP,
- Value *Op, Value *ShiftAmount, bool isLeftShift,
- const Type *ResultTy, unsigned DestReg) {
- unsigned SrcReg = getReg (Op, MBB, IP);
- bool isSigned = ResultTy->isSigned ();
- unsigned Class = getClass (ResultTy);
-
- static const unsigned ConstantOperand[][4] = {
- { X86::SHR8ri, X86::SHR16ri, X86::SHR32ri, X86::SHRD32rri8 }, // SHR
- { X86::SAR8ri, X86::SAR16ri, X86::SAR32ri, X86::SHRD32rri8 }, // SAR
- { X86::SHL8ri, X86::SHL16ri, X86::SHL32ri, X86::SHLD32rri8 }, // SHL
- { X86::SHL8ri, X86::SHL16ri, X86::SHL32ri, X86::SHLD32rri8 }, // SAL = SHL
- };
-
- static const unsigned NonConstantOperand[][4] = {
- { X86::SHR8rCL, X86::SHR16rCL, X86::SHR32rCL }, // SHR
- { X86::SAR8rCL, X86::SAR16rCL, X86::SAR32rCL }, // SAR
- { X86::SHL8rCL, X86::SHL16rCL, X86::SHL32rCL }, // SHL
- { X86::SHL8rCL, X86::SHL16rCL, X86::SHL32rCL }, // SAL = SHL
- };
-
- // Longs, as usual, are handled specially...
- if (Class == cLong) {
- // If we have a constant shift, we can generate much more efficient code
- // than otherwise...
- //
- if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
- unsigned Amount = CUI->getValue();
- if (Amount < 32) {
- const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
- if (isLeftShift) {
- BuildMI(*MBB, IP, Opc[3], 3,
- DestReg+1).addReg(SrcReg+1).addReg(SrcReg).addImm(Amount);
- BuildMI(*MBB, IP, Opc[2], 2, DestReg).addReg(SrcReg).addImm(Amount);
- } else {
- BuildMI(*MBB, IP, Opc[3], 3,
- DestReg).addReg(SrcReg ).addReg(SrcReg+1).addImm(Amount);
- BuildMI(*MBB, IP, Opc[2],2,DestReg+1).addReg(SrcReg+1).addImm(Amount);
- }
- } else { // Shifting more than 32 bits
- Amount -= 32;
- if (isLeftShift) {
- if (Amount != 0) {
- BuildMI(*MBB, IP, X86::SHL32ri, 2,
- DestReg + 1).addReg(SrcReg).addImm(Amount);
- } else {
- BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg+1).addReg(SrcReg);
- }
- BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg).addImm(0);
- } else {
- if (Amount != 0) {
- BuildMI(*MBB, IP, isSigned ? X86::SAR32ri : X86::SHR32ri, 2,
- DestReg).addReg(SrcReg+1).addImm(Amount);
- } else {
- BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg).addReg(SrcReg+1);
- }
- BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0);
- }
- }
- } else {
- unsigned TmpReg = makeAnotherReg(Type::IntTy);
-
- if (!isLeftShift && isSigned) {
- // If this is a SHR of a Long, then we need to do funny sign extension
- // stuff. TmpReg gets the value to use as the high-part if we are
- // shifting more than 32 bits.
- BuildMI(*MBB, IP, X86::SAR32ri, 2, TmpReg).addReg(SrcReg).addImm(31);
- } else {
- // Other shifts use a fixed zero value if the shift is more than 32
- // bits.
- BuildMI(*MBB, IP, X86::MOV32ri, 1, TmpReg).addImm(0);
- }
-
- // Initialize CL with the shift amount...
- unsigned ShiftAmountReg = getReg(ShiftAmount, MBB, IP);
- BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::CL).addReg(ShiftAmountReg);
-
- unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
- unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
- if (isLeftShift) {
- // TmpReg2 = shld inHi, inLo
- BuildMI(*MBB, IP, X86::SHLD32rrCL,2,TmpReg2).addReg(SrcReg+1)
- .addReg(SrcReg);
- // TmpReg3 = shl inLo, CL
- BuildMI(*MBB, IP, X86::SHL32rCL, 1, TmpReg3).addReg(SrcReg);
-
- // Set the flags to indicate whether the shift was by more than 32 bits.
- BuildMI(*MBB, IP, X86::TEST8ri, 2).addReg(X86::CL).addImm(32);
-
- // DestHi = (>32) ? TmpReg3 : TmpReg2;
- BuildMI(*MBB, IP, X86::CMOVNE32rr, 2,
- DestReg+1).addReg(TmpReg2).addReg(TmpReg3);
- // DestLo = (>32) ? TmpReg : TmpReg3;
- BuildMI(*MBB, IP, X86::CMOVNE32rr, 2,
- DestReg).addReg(TmpReg3).addReg(TmpReg);
- } else {
- // TmpReg2 = shrd inLo, inHi
- BuildMI(*MBB, IP, X86::SHRD32rrCL,2,TmpReg2).addReg(SrcReg)
- .addReg(SrcReg+1);
- // TmpReg3 = s[ah]r inHi, CL
- BuildMI(*MBB, IP, isSigned ? X86::SAR32rCL : X86::SHR32rCL, 1, TmpReg3)
- .addReg(SrcReg+1);
-
- // Set the flags to indicate whether the shift was by more than 32 bits.
- BuildMI(*MBB, IP, X86::TEST8ri, 2).addReg(X86::CL).addImm(32);
-
- // DestLo = (>32) ? TmpReg3 : TmpReg2;
- BuildMI(*MBB, IP, X86::CMOVNE32rr, 2,
- DestReg).addReg(TmpReg2).addReg(TmpReg3);
-
- // DestHi = (>32) ? TmpReg : TmpReg3;
- BuildMI(*MBB, IP, X86::CMOVNE32rr, 2,
- DestReg+1).addReg(TmpReg3).addReg(TmpReg);
- }
- }
- return;
- }
-
- if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
- // The shift amount is constant, guaranteed to be a ubyte. Get its value.
- assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
-
- const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
- BuildMI(*MBB, IP, Opc[Class], 2,
- DestReg).addReg(SrcReg).addImm(CUI->getValue());
- } else { // The shift amount is non-constant.
- unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
- BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::CL).addReg(ShiftAmountReg);
-
- const unsigned *Opc = NonConstantOperand[isLeftShift*2+isSigned];
- BuildMI(*MBB, IP, Opc[Class], 1, DestReg).addReg(SrcReg);
- }
-}
-
-
-/// visitLoadInst - Implement LLVM load instructions in terms of the x86 'mov'
-/// instruction. The load and store instructions are the only place where we
-/// need to worry about the memory layout of the target machine.
-///
-void ISel::visitLoadInst(LoadInst &I) {
- // Check to see if this load instruction is going to be folded into a binary
- // instruction, like add. If so, we don't want to emit it. Wouldn't a real
- // pattern matching instruction selector be nice?
- unsigned Class = getClassB(I.getType());
- if (I.hasOneUse()) {
- Instruction *User = cast<Instruction>(I.use_back());
- switch (User->getOpcode()) {
- case Instruction::Cast:
- // If this is a cast from a signed-integer type to a floating point type,
- // fold the cast here.
- if (getClassB(User->getType()) == cFP &&
- (I.getType() == Type::ShortTy || I.getType() == Type::IntTy ||
- I.getType() == Type::LongTy)) {
- unsigned DestReg = getReg(User);
- static const unsigned Opcode[] = {
- 0/*BYTE*/, X86::FILD16m, X86::FILD32m, 0/*FP*/, X86::FILD64m
- };
-
- if (AllocaInst *AI = dyn_castFixedAlloca(I.getOperand(0))) {
- unsigned FI = getFixedSizedAllocaFI(AI);
- addFrameReference(BuildMI(BB, Opcode[Class], 4, DestReg), FI);
- } else {
- unsigned BaseReg = 0, Scale = 1, IndexReg = 0, Disp = 0;
- getAddressingMode(I.getOperand(0), BaseReg, Scale, IndexReg, Disp);
- addFullAddress(BuildMI(BB, Opcode[Class], 4, DestReg),
- BaseReg, Scale, IndexReg, Disp);
- }
- return;
- } else {
- User = 0;
- }
- break;
-
- case Instruction::Add:
- case Instruction::Sub:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor:
- if (Class == cLong) User = 0;
- break;
- case Instruction::Mul:
- case Instruction::Div:
- if (Class != cFP) User = 0;
- break; // Folding only implemented for floating point.
- default: User = 0; break;
- }
-
- if (User) {
- // Okay, we found a user. If the load is the first operand and there is
- // no second operand load, reverse the operand ordering. Note that this
- // can fail for a subtract (ie, no change will be made).
- bool Swapped = false;
- if (!isa<LoadInst>(User->getOperand(1)))
- Swapped = !cast<BinaryOperator>(User)->swapOperands();
-
- // Okay, now that everything is set up, if this load is used by the second
- // operand, and if there are no instructions that invalidate the load
- // before the binary operator, eliminate the load.
- if (User->getOperand(1) == &I &&
- isSafeToFoldLoadIntoInstruction(I, *User))
- return; // Eliminate the load!
-
- // If this is a floating point sub or div, we won't be able to swap the
- // operands, but we will still be able to eliminate the load.
- if (Class == cFP && User->getOperand(0) == &I &&
- !isa<LoadInst>(User->getOperand(1)) &&
- (User->getOpcode() == Instruction::Sub ||
- User->getOpcode() == Instruction::Div) &&
- isSafeToFoldLoadIntoInstruction(I, *User))
- return; // Eliminate the load!
-
- // If we swapped the operands to the instruction, but couldn't fold the
- // load anyway, swap them back. We don't want to break add X, int
- // folding.
- if (Swapped) cast<BinaryOperator>(User)->swapOperands();
- }
- }
-
- static const unsigned Opcodes[] = {
- X86::MOV8rm, X86::MOV16rm, X86::MOV32rm, X86::FLD32m, X86::MOV32rm
- };
- unsigned Opcode = Opcodes[Class];
- if (I.getType() == Type::DoubleTy) Opcode = X86::FLD64m;
-
- unsigned DestReg = getReg(I);
-
- if (AllocaInst *AI = dyn_castFixedAlloca(I.getOperand(0))) {
- unsigned FI = getFixedSizedAllocaFI(AI);
- if (Class == cLong) {
- addFrameReference(BuildMI(BB, X86::MOV32rm, 4, DestReg), FI);
- addFrameReference(BuildMI(BB, X86::MOV32rm, 4, DestReg+1), FI, 4);
- } else {
- addFrameReference(BuildMI(BB, Opcode, 4, DestReg), FI);
- }
- } else {
- unsigned BaseReg = 0, Scale = 1, IndexReg = 0, Disp = 0;
- getAddressingMode(I.getOperand(0), BaseReg, Scale, IndexReg, Disp);
-
- if (Class == cLong) {
- addFullAddress(BuildMI(BB, X86::MOV32rm, 4, DestReg),
- BaseReg, Scale, IndexReg, Disp);
- addFullAddress(BuildMI(BB, X86::MOV32rm, 4, DestReg+1),
- BaseReg, Scale, IndexReg, Disp+4);
- } else {
- addFullAddress(BuildMI(BB, Opcode, 4, DestReg),
- BaseReg, Scale, IndexReg, Disp);
- }
- }
-}
-
-/// visitStoreInst - Implement LLVM store instructions in terms of the x86 'mov'
-/// instruction.
-///
-void ISel::visitStoreInst(StoreInst &I) {
- unsigned BaseReg = ~0U, Scale = ~0U, IndexReg = ~0U, Disp = ~0U;
- unsigned AllocaFrameIdx = ~0U;
-
- if (AllocaInst *AI = dyn_castFixedAlloca(I.getOperand(1)))
- AllocaFrameIdx = getFixedSizedAllocaFI(AI);
- else
- getAddressingMode(I.getOperand(1), BaseReg, Scale, IndexReg, Disp);
-
- const Type *ValTy = I.getOperand(0)->getType();
- unsigned Class = getClassB(ValTy);
-
- if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(0))) {
- uint64_t Val = CI->getRawValue();
- if (Class == cLong) {
- if (AllocaFrameIdx != ~0U) {
- addFrameReference(BuildMI(BB, X86::MOV32mi, 5),
- AllocaFrameIdx).addImm(Val & ~0U);
- addFrameReference(BuildMI(BB, X86::MOV32mi, 5),
- AllocaFrameIdx, 4).addImm(Val>>32);
- } else {
- addFullAddress(BuildMI(BB, X86::MOV32mi, 5),
- BaseReg, Scale, IndexReg, Disp).addImm(Val & ~0U);
- addFullAddress(BuildMI(BB, X86::MOV32mi, 5),
- BaseReg, Scale, IndexReg, Disp+4).addImm(Val>>32);
- }
- } else {
- static const unsigned Opcodes[] = {
- X86::MOV8mi, X86::MOV16mi, X86::MOV32mi
- };
- unsigned Opcode = Opcodes[Class];
- if (AllocaFrameIdx != ~0U)
- addFrameReference(BuildMI(BB, Opcode, 5), AllocaFrameIdx).addImm(Val);
- else
- addFullAddress(BuildMI(BB, Opcode, 5),
- BaseReg, Scale, IndexReg, Disp).addImm(Val);
- }
- } else if (isa<ConstantPointerNull>(I.getOperand(0))) {
- if (AllocaFrameIdx != ~0U)
- addFrameReference(BuildMI(BB, X86::MOV32mi, 5), AllocaFrameIdx).addImm(0);
- else
- addFullAddress(BuildMI(BB, X86::MOV32mi, 5),
- BaseReg, Scale, IndexReg, Disp).addImm(0);
-
- } else if (ConstantBool *CB = dyn_cast<ConstantBool>(I.getOperand(0))) {
- if (AllocaFrameIdx != ~0U)
- addFrameReference(BuildMI(BB, X86::MOV8mi, 5),
- AllocaFrameIdx).addImm(CB->getValue());
- else
- addFullAddress(BuildMI(BB, X86::MOV8mi, 5),
- BaseReg, Scale, IndexReg, Disp).addImm(CB->getValue());
- } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0))) {
- // Store constant FP values with integer instructions to avoid having to
- // load the constants from the constant pool then do a store.
- if (CFP->getType() == Type::FloatTy) {
- union {
- unsigned I;
- float F;
- } V;
- V.F = CFP->getValue();
- if (AllocaFrameIdx != ~0U)
- addFrameReference(BuildMI(BB, X86::MOV32mi, 5),
- AllocaFrameIdx).addImm(V.I);
- else
- addFullAddress(BuildMI(BB, X86::MOV32mi, 5),
- BaseReg, Scale, IndexReg, Disp).addImm(V.I);
- } else {
- union {
- uint64_t I;
- double F;
- } V;
- V.F = CFP->getValue();
- if (AllocaFrameIdx != ~0U) {
- addFrameReference(BuildMI(BB, X86::MOV32mi, 5),
- AllocaFrameIdx).addImm((unsigned)V.I);
- addFrameReference(BuildMI(BB, X86::MOV32mi, 5),
- AllocaFrameIdx, 4).addImm(unsigned(V.I >> 32));
- } else {
- addFullAddress(BuildMI(BB, X86::MOV32mi, 5),
- BaseReg, Scale, IndexReg, Disp).addImm((unsigned)V.I);
- addFullAddress(BuildMI(BB, X86::MOV32mi, 5),
- BaseReg, Scale, IndexReg, Disp+4).addImm(
- unsigned(V.I >> 32));
- }
- }
-
- } else if (Class == cLong) {
- unsigned ValReg = getReg(I.getOperand(0));
- if (AllocaFrameIdx != ~0U) {
- addFrameReference(BuildMI(BB, X86::MOV32mr, 5),
- AllocaFrameIdx).addReg(ValReg);
- addFrameReference(BuildMI(BB, X86::MOV32mr, 5),
- AllocaFrameIdx, 4).addReg(ValReg+1);
- } else {
- addFullAddress(BuildMI(BB, X86::MOV32mr, 5),
- BaseReg, Scale, IndexReg, Disp).addReg(ValReg);
- addFullAddress(BuildMI(BB, X86::MOV32mr, 5),
- BaseReg, Scale, IndexReg, Disp+4).addReg(ValReg+1);
- }
- } else {
- unsigned ValReg = getReg(I.getOperand(0));
- static const unsigned Opcodes[] = {
- X86::MOV8mr, X86::MOV16mr, X86::MOV32mr, X86::FST32m
- };
- unsigned Opcode = Opcodes[Class];
- if (ValTy == Type::DoubleTy) Opcode = X86::FST64m;
-
- if (AllocaFrameIdx != ~0U)
- addFrameReference(BuildMI(BB, Opcode, 5), AllocaFrameIdx).addReg(ValReg);
- else
- addFullAddress(BuildMI(BB, Opcode, 1+4),
- BaseReg, Scale, IndexReg, Disp).addReg(ValReg);
- }
-}
-
-
-/// visitCastInst - Here we have various kinds of copying with or without sign
-/// extension going on.
-///
-void ISel::visitCastInst(CastInst &CI) {
- Value *Op = CI.getOperand(0);
-
- unsigned SrcClass = getClassB(Op->getType());
- unsigned DestClass = getClassB(CI.getType());
- // Noop casts are not emitted: getReg will return the source operand as the
- // register to use for any uses of the noop cast.
- if (DestClass == SrcClass) {
- // The only detail in this plan is that casts from double -> float are
- // truncating operations that we have to codegen through memory (despite
- // the fact that the source/dest registers are the same class).
- if (CI.getType() != Type::FloatTy || Op->getType() != Type::DoubleTy)
- return;
- }
-
- // If this is a cast from a 32-bit integer to a Long type, and the only uses
- // of the case are GEP instructions, then the cast does not need to be
- // generated explicitly, it will be folded into the GEP.
- if (DestClass == cLong && SrcClass == cInt) {
- bool AllUsesAreGEPs = true;
- for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
- if (!isa<GetElementPtrInst>(*I)) {
- AllUsesAreGEPs = false;
- break;
- }
-
- // No need to codegen this cast if all users are getelementptr instrs...
- if (AllUsesAreGEPs) return;
- }
-
- // If this cast converts a load from a short,int, or long integer to a FP
- // value, we will have folded this cast away.
- if (DestClass == cFP && isa<LoadInst>(Op) && Op->hasOneUse() &&
- (Op->getType() == Type::ShortTy || Op->getType() == Type::IntTy ||
- Op->getType() == Type::LongTy))
- return;
-
-
- unsigned DestReg = getReg(CI);
- MachineBasicBlock::iterator MI = BB->end();
- emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
-}
-
-/// emitCastOperation - Common code shared between visitCastInst and constant
-/// expression cast support.
-///
-void ISel::emitCastOperation(MachineBasicBlock *BB,
- MachineBasicBlock::iterator IP,
- Value *Src, const Type *DestTy,
- unsigned DestReg) {
- const Type *SrcTy = Src->getType();
- unsigned SrcClass = getClassB(SrcTy);
- unsigned DestClass = getClassB(DestTy);
- unsigned SrcReg = getReg(Src, BB, IP);
-
- // Implement casts to bool by using compare on the operand followed by set if
- // not zero on the result.
- if (DestTy == Type::BoolTy) {
- switch (SrcClass) {
- case cByte:
- BuildMI(*BB, IP, X86::TEST8rr, 2).addReg(SrcReg).addReg(SrcReg);
- break;
- case cShort:
- BuildMI(*BB, IP, X86::TEST16rr, 2).addReg(SrcReg).addReg(SrcReg);
- break;
- case cInt:
- BuildMI(*BB, IP, X86::TEST32rr, 2).addReg(SrcReg).addReg(SrcReg);
- break;
- case cLong: {
- unsigned TmpReg = makeAnotherReg(Type::IntTy);
- BuildMI(*BB, IP, X86::OR32rr, 2, TmpReg).addReg(SrcReg).addReg(SrcReg+1);
- break;
- }
- case cFP:
- BuildMI(*BB, IP, X86::FTST, 1).addReg(SrcReg);
- BuildMI(*BB, IP, X86::FNSTSW8r, 0);
- BuildMI(*BB, IP, X86::SAHF, 1);
- break;
- }
-
- // If the zero flag is not set, then the value is true, set the byte to
- // true.
- BuildMI(*BB, IP, X86::SETNEr, 1, DestReg);
- return;
- }
-
- static const unsigned RegRegMove[] = {
- X86::MOV8rr, X86::MOV16rr, X86::MOV32rr, X86::FpMOV, X86::MOV32rr
- };
-
- // Implement casts between values of the same type class (as determined by
- // getClass) by using a register-to-register move.
- if (SrcClass == DestClass) {
- if (SrcClass <= cInt || (SrcClass == cFP && SrcTy == DestTy)) {
- BuildMI(*BB, IP, RegRegMove[SrcClass], 1, DestReg).addReg(SrcReg);
- } else if (SrcClass == cFP) {
- if (SrcTy == Type::FloatTy) { // double -> float
- assert(DestTy == Type::DoubleTy && "Unknown cFP member!");
- BuildMI(*BB, IP, X86::FpMOV, 1, DestReg).addReg(SrcReg);
- } else { // float -> double
- assert(SrcTy == Type::DoubleTy && DestTy == Type::FloatTy &&
- "Unknown cFP member!");
- // Truncate from double to float by storing to memory as short, then
- // reading it back.
- unsigned FltAlign = TM.getTargetData().getFloatAlignment();
- int FrameIdx = F->getFrameInfo()->CreateStackObject(4, FltAlign);
- addFrameReference(BuildMI(*BB, IP, X86::FST32m, 5), FrameIdx).addReg(SrcReg);
- addFrameReference(BuildMI(*BB, IP, X86::FLD32m, 5, DestReg), FrameIdx);
- }
- } else if (SrcClass == cLong) {
- BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg).addReg(SrcReg);
- BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg+1).addReg(SrcReg+1);
- } else {
- assert(0 && "Cannot handle this type of cast instruction!");
- abort();
- }
- return;
- }
-
- // Handle cast of SMALLER int to LARGER int using a move with sign extension
- // or zero extension, depending on whether the source type was signed.
- if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) &&
- SrcClass < DestClass) {
- bool isLong = DestClass == cLong;
- if (isLong) DestClass = cInt;
-
- static const unsigned Opc[][4] = {
- { X86::MOVSX16rr8, X86::MOVSX32rr8, X86::MOVSX32rr16, X86::MOV32rr }, // s
- { X86::MOVZX16rr8, X86::MOVZX32rr8, X86::MOVZX32rr16, X86::MOV32rr } // u
- };
-
- bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
- BuildMI(*BB, IP, Opc[isUnsigned][SrcClass + DestClass - 1], 1,
- DestReg).addReg(SrcReg);
-
- if (isLong) { // Handle upper 32 bits as appropriate...
- if (isUnsigned) // Zero out top bits...
- BuildMI(*BB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0);
- else // Sign extend bottom half...
- BuildMI(*BB, IP, X86::SAR32ri, 2, DestReg+1).addReg(DestReg).addImm(31);
- }
- return;
- }
-
- // Special case long -> int ...
- if (SrcClass == cLong && DestClass == cInt) {
- BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg).addReg(SrcReg);
- return;
- }
-
- // Handle cast of LARGER int to SMALLER int using a move to EAX followed by a
- // move out of AX or AL.
- if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt
- && SrcClass > DestClass) {
- static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX, 0, X86::EAX };
- BuildMI(*BB, IP, RegRegMove[SrcClass], 1, AReg[SrcClass]).addReg(SrcReg);
- BuildMI(*BB, IP, RegRegMove[DestClass], 1, DestReg).addReg(AReg[DestClass]);
- return;
- }
-
- // Handle casts from integer to floating point now...
- if (DestClass == cFP) {
- // Promote the integer to a type supported by FLD. We do this because there
- // are no unsigned FLD instructions, so we must promote an unsigned value to
- // a larger signed value, then use FLD on the larger value.
- //
- const Type *PromoteType = 0;
- unsigned PromoteOpcode = 0;
- unsigned RealDestReg = DestReg;
- switch (SrcTy->getTypeID()) {
- case Type::BoolTyID:
- case Type::SByteTyID:
- // We don't have the facilities for directly loading byte sized data from
- // memory (even signed). Promote it to 16 bits.
- PromoteType = Type::ShortTy;
- PromoteOpcode = X86::MOVSX16rr8;
- break;
- case Type::UByteTyID:
- PromoteType = Type::ShortTy;
- PromoteOpcode = X86::MOVZX16rr8;
- break;
- case Type::UShortTyID:
- PromoteType = Type::IntTy;
- PromoteOpcode = X86::MOVZX32rr16;
- break;
- case Type::UIntTyID: {
- // Make a 64 bit temporary... and zero out the top of it...
- unsigned TmpReg = makeAnotherReg(Type::LongTy);
- BuildMI(*BB, IP, X86::MOV32rr, 1, TmpReg).addReg(SrcReg);
- BuildMI(*BB, IP, X86::MOV32ri, 1, TmpReg+1).addImm(0);
- SrcTy = Type::LongTy;
- SrcClass = cLong;
- SrcReg = TmpReg;
- break;
- }
- case Type::ULongTyID:
- // Don't fild into the read destination.
- DestReg = makeAnotherReg(Type::DoubleTy);
- break;
- default: // No promotion needed...
- break;
- }
-
- if (PromoteType) {
- unsigned TmpReg = makeAnotherReg(PromoteType);
- BuildMI(*BB, IP, PromoteOpcode, 1, TmpReg).addReg(SrcReg);
- SrcTy = PromoteType;
- SrcClass = getClass(PromoteType);
- SrcReg = TmpReg;
- }
-
- // Spill the integer to memory and reload it from there...
- int FrameIdx =
- F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
-
- if (SrcClass == cLong) {
- addFrameReference(BuildMI(*BB, IP, X86::MOV32mr, 5),
- FrameIdx).addReg(SrcReg);
- addFrameReference(BuildMI(*BB, IP, X86::MOV32mr, 5),
- FrameIdx, 4).addReg(SrcReg+1);
- } else {
- static const unsigned Op1[] = { X86::MOV8mr, X86::MOV16mr, X86::MOV32mr };
- addFrameReference(BuildMI(*BB, IP, Op1[SrcClass], 5),
- FrameIdx).addReg(SrcReg);
- }
-
- static const unsigned Op2[] =
- { 0/*byte*/, X86::FILD16m, X86::FILD32m, 0/*FP*/, X86::FILD64m };
- addFrameReference(BuildMI(*BB, IP, Op2[SrcClass], 5, DestReg), FrameIdx);
-
- // We need special handling for unsigned 64-bit integer sources. If the
- // input number has the "sign bit" set, then we loaded it incorrectly as a
- // negative 64-bit number. In this case, add an offset value.
- if (SrcTy == Type::ULongTy) {
- // Emit a test instruction to see if the dynamic input value was signed.
- BuildMI(*BB, IP, X86::TEST32rr, 2).addReg(SrcReg+1).addReg(SrcReg+1);
-
- // If the sign bit is set, get a pointer to an offset, otherwise get a
- // pointer to a zero.
- MachineConstantPool *CP = F->getConstantPool();
- unsigned Zero = makeAnotherReg(Type::IntTy);
- Constant *Null = Constant::getNullValue(Type::UIntTy);
- addConstantPoolReference(BuildMI(*BB, IP, X86::LEA32r, 5, Zero),
- CP->getConstantPoolIndex(Null));
- unsigned Offset = makeAnotherReg(Type::IntTy);
- Constant *OffsetCst = ConstantUInt::get(Type::UIntTy, 0x5f800000);
-
- addConstantPoolReference(BuildMI(*BB, IP, X86::LEA32r, 5, Offset),
- CP->getConstantPoolIndex(OffsetCst));
- unsigned Addr = makeAnotherReg(Type::IntTy);
- BuildMI(*BB, IP, X86::CMOVS32rr, 2, Addr).addReg(Zero).addReg(Offset);
-
- // Load the constant for an add. FIXME: this could make an 'fadd' that
- // reads directly from memory, but we don't support these yet.
- unsigned ConstReg = makeAnotherReg(Type::DoubleTy);
- addDirectMem(BuildMI(*BB, IP, X86::FLD32m, 4, ConstReg), Addr);
-
- BuildMI(*BB, IP, X86::FpADD, 2, RealDestReg)
- .addReg(ConstReg).addReg(DestReg);
- }
-
- return;
- }
-
- // Handle casts from floating point to integer now...
- if (SrcClass == cFP) {
- // Change the floating point control register to use "round towards zero"
- // mode when truncating to an integer value.
- //
- int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
- addFrameReference(BuildMI(*BB, IP, X86::FNSTCW16m, 4), CWFrameIdx);
-
- // Load the old value of the high byte of the control word...
- unsigned HighPartOfCW = makeAnotherReg(Type::UByteTy);
- addFrameReference(BuildMI(*BB, IP, X86::MOV8rm, 4, HighPartOfCW),
- CWFrameIdx, 1);
-
- // Set the high part to be round to zero...
- addFrameReference(BuildMI(*BB, IP, X86::MOV8mi, 5),
- CWFrameIdx, 1).addImm(12);
-
- // Reload the modified control word now...
- addFrameReference(BuildMI(*BB, IP, X86::FLDCW16m, 4), CWFrameIdx);
-
- // Restore the memory image of control word to original value
- addFrameReference(BuildMI(*BB, IP, X86::MOV8mr, 5),
- CWFrameIdx, 1).addReg(HighPartOfCW);
-
- // We don't have the facilities for directly storing byte sized data to
- // memory. Promote it to 16 bits. We also must promote unsigned values to
- // larger classes because we only have signed FP stores.
- unsigned StoreClass = DestClass;
- const Type *StoreTy = DestTy;
- if (StoreClass == cByte || DestTy->isUnsigned())
- switch (StoreClass) {
- case cByte: StoreTy = Type::ShortTy; StoreClass = cShort; break;
- case cShort: StoreTy = Type::IntTy; StoreClass = cInt; break;
- case cInt: StoreTy = Type::LongTy; StoreClass = cLong; break;
- // The following treatment of cLong may not be perfectly right,
- // but it survives chains of casts of the form
- // double->ulong->double.
- case cLong: StoreTy = Type::LongTy; StoreClass = cLong; break;
- default: assert(0 && "Unknown store class!");
- }
-
- // Spill the integer to memory and reload it from there...
- int FrameIdx =
- F->getFrameInfo()->CreateStackObject(StoreTy, TM.getTargetData());
-
- static const unsigned Op1[] =
- { 0, X86::FIST16m, X86::FIST32m, 0, X86::FISTP64m };
- addFrameReference(BuildMI(*BB, IP, Op1[StoreClass], 5),
- FrameIdx).addReg(SrcReg);
-
- if (DestClass == cLong) {
- addFrameReference(BuildMI(*BB, IP, X86::MOV32rm, 4, DestReg), FrameIdx);
- addFrameReference(BuildMI(*BB, IP, X86::MOV32rm, 4, DestReg+1),
- FrameIdx, 4);
- } else {
- static const unsigned Op2[] = { X86::MOV8rm, X86::MOV16rm, X86::MOV32rm };
- addFrameReference(BuildMI(*BB, IP, Op2[DestClass], 4, DestReg), FrameIdx);
- }
-
- // Reload the original control word now...
- addFrameReference(BuildMI(*BB, IP, X86::FLDCW16m, 4), CWFrameIdx);
- return;
- }
-
- // Anything we haven't handled already, we can't (yet) handle at all.
- assert(0 && "Unhandled cast instruction!");
- abort();
-}
-
-/// visitVANextInst - Implement the va_next instruction...
-///
-void ISel::visitVANextInst(VANextInst &I) {
- unsigned VAList = getReg(I.getOperand(0));
- unsigned DestReg = getReg(I);
-
- unsigned Size;
- switch (I.getArgType()->getTypeID()) {
- default:
- std::cerr << I;
- assert(0 && "Error: bad type for va_next instruction!");
- return;
- case Type::PointerTyID:
- case Type::UIntTyID:
- case Type::IntTyID:
- Size = 4;
- break;
- case Type::ULongTyID:
- case Type::LongTyID:
- case Type::DoubleTyID:
- Size = 8;
- break;
- }
-
- // Increment the VAList pointer...
- BuildMI(BB, X86::ADD32ri, 2, DestReg).addReg(VAList).addImm(Size);
-}
-
-void ISel::visitVAArgInst(VAArgInst &I) {
- unsigned VAList = getReg(I.getOperand(0));
- unsigned DestReg = getReg(I);
-
- switch (I.getType()->getTypeID()) {
- default:
- std::cerr << I;
- assert(0 && "Error: bad type for va_next instruction!");
- return;
- case Type::PointerTyID:
- case Type::UIntTyID:
- case Type::IntTyID:
- addDirectMem(BuildMI(BB, X86::MOV32rm, 4, DestReg), VAList);
- break;
- case Type::ULongTyID:
- case Type::LongTyID:
- addDirectMem(BuildMI(BB, X86::MOV32rm, 4, DestReg), VAList);
- addRegOffset(BuildMI(BB, X86::MOV32rm, 4, DestReg+1), VAList, 4);
- break;
- case Type::DoubleTyID:
- addDirectMem(BuildMI(BB, X86::FLD64m, 4, DestReg), VAList);
- break;
- }
-}
-
-/// visitGetElementPtrInst - instruction-select GEP instructions
-///
-void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
- // If this GEP instruction will be folded into all of its users, we don't need
- // to explicitly calculate it!
- unsigned A, B, C, D;
- if (isGEPFoldable(0, I.getOperand(0), I.op_begin()+1, I.op_end(), A,B,C,D)) {
- // Check all of the users of the instruction to see if they are loads and
- // stores.
- bool AllWillFold = true;
- for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E; ++UI)
- if (cast<Instruction>(*UI)->getOpcode() != Instruction::Load)
- if (cast<Instruction>(*UI)->getOpcode() != Instruction::Store ||
- cast<Instruction>(*UI)->getOperand(0) == &I) {
- AllWillFold = false;
- break;
- }
-
- // If the instruction is foldable, and will be folded into all users, don't
- // emit it!
- if (AllWillFold) return;
- }
-
- unsigned outputReg = getReg(I);
- emitGEPOperation(BB, BB->end(), I.getOperand(0),
- I.op_begin()+1, I.op_end(), outputReg);
-}
-
-/// getGEPIndex - Inspect the getelementptr operands specified with GEPOps and
-/// GEPTypes (the derived types being stepped through at each level). On return
-/// from this function, if some indexes of the instruction are representable as
-/// an X86 lea instruction, the machine operands are put into the Ops
-/// instruction and the consumed indexes are poped from the GEPOps/GEPTypes
-/// lists. Otherwise, GEPOps.size() is returned. If this returns a an
-/// addressing mode that only partially consumes the input, the BaseReg input of
-/// the addressing mode must be left free.
-///
-/// Note that there is one fewer entry in GEPTypes than there is in GEPOps.
-///
-void ISel::getGEPIndex(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
- std::vector<Value*> &GEPOps,
- std::vector<const Type*> &GEPTypes, unsigned &BaseReg,
- unsigned &Scale, unsigned &IndexReg, unsigned &Disp) {
- const TargetData &TD = TM.getTargetData();
-
- // Clear out the state we are working with...
- BaseReg = 0; // No base register
- Scale = 1; // Unit scale
- IndexReg = 0; // No index register
- Disp = 0; // No displacement
-
- // While there are GEP indexes that can be folded into the current address,
- // keep processing them.
- while (!GEPTypes.empty()) {
- if (const StructType *StTy = dyn_cast<StructType>(GEPTypes.back())) {
- // It's a struct access. CUI is the index into the structure,
- // which names the field. This index must have unsigned type.
- const ConstantUInt *CUI = cast<ConstantUInt>(GEPOps.back());
-
- // Use the TargetData structure to pick out what the layout of the
- // structure is in memory. Since the structure index must be constant, we
- // can get its value and use it to find the right byte offset from the
- // StructLayout class's list of structure member offsets.
- Disp += TD.getStructLayout(StTy)->MemberOffsets[CUI->getValue()];
- GEPOps.pop_back(); // Consume a GEP operand
- GEPTypes.pop_back();
- } else {
- // It's an array or pointer access: [ArraySize x ElementType].
- const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back());
- Value *idx = GEPOps.back();
-
- // idx is the index into the array. Unlike with structure
- // indices, we may not know its actual value at code-generation
- // time.
-
- // If idx is a constant, fold it into the offset.
- unsigned TypeSize = TD.getTypeSize(SqTy->getElementType());
- if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(idx)) {
- Disp += TypeSize*CSI->getValue();
- } else if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(idx)) {
- Disp += TypeSize*CUI->getValue();
- } else {
- // If the index reg is already taken, we can't handle this index.
- if (IndexReg) return;
-
- // If this is a size that we can handle, then add the index as
- switch (TypeSize) {
- case 1: case 2: case 4: case 8:
- // These are all acceptable scales on X86.
- Scale = TypeSize;
- break;
- default:
- // Otherwise, we can't handle this scale
- return;
- }
-
- if (CastInst *CI = dyn_cast<CastInst>(idx))
- if (CI->getOperand(0)->getType() == Type::IntTy ||
- CI->getOperand(0)->getType() == Type::UIntTy)
- idx = CI->getOperand(0);
-
- IndexReg = MBB ? getReg(idx, MBB, IP) : 1;
- }
-
- GEPOps.pop_back(); // Consume a GEP operand
- GEPTypes.pop_back();
- }
- }
-
- // GEPTypes is empty, which means we have a single operand left. Set it as
- // the base register.
- //
- assert(BaseReg == 0);
-
-#if 0 // FIXME: TODO!
- if (AllocaInst *AI = dyn_castFixedAlloca(V)) {
- // FIXME: When we can add FrameIndex values as the first operand, we can
- // make GEP's of allocas MUCH more efficient!
- unsigned FI = getFixedSizedAllocaFI(AI);
- GEPOps.pop_back();
- return;
- } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
- // FIXME: When addressing modes are more powerful/correct, we could load
- // global addresses directly as 32-bit immediates.
- }
-#endif
-
- BaseReg = MBB ? getReg(GEPOps[0], MBB, IP) : 1;
- GEPOps.pop_back(); // Consume the last GEP operand
-}
-
-
-/// isGEPFoldable - Return true if the specified GEP can be completely
-/// folded into the addressing mode of a load/store or lea instruction.
-bool ISel::isGEPFoldable(MachineBasicBlock *MBB,
- Value *Src, User::op_iterator IdxBegin,
- User::op_iterator IdxEnd, unsigned &BaseReg,
- unsigned &Scale, unsigned &IndexReg, unsigned &Disp) {
-
- std::vector<Value*> GEPOps;
- GEPOps.resize(IdxEnd-IdxBegin+1);
- GEPOps[0] = Src;
- std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1);
-
- std::vector<const Type*>
- GEPTypes(gep_type_begin(Src->getType(), IdxBegin, IdxEnd),
- gep_type_end(Src->getType(), IdxBegin, IdxEnd));
-
- MachineBasicBlock::iterator IP;
- if (MBB) IP = MBB->end();
- getGEPIndex(MBB, IP, GEPOps, GEPTypes, BaseReg, Scale, IndexReg, Disp);
-
- // We can fold it away iff the getGEPIndex call eliminated all operands.
- return GEPOps.empty();
-}
-
-void ISel::emitGEPOperation(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP,
- Value *Src, User::op_iterator IdxBegin,
- User::op_iterator IdxEnd, unsigned TargetReg) {
- const TargetData &TD = TM.getTargetData();
-
- // If this is a getelementptr null, with all constant integer indices, just
- // replace it with TargetReg = 42.
- if (isa<ConstantPointerNull>(Src)) {
- User::op_iterator I = IdxBegin;
- for (; I != IdxEnd; ++I)
- if (!isa<ConstantInt>(*I))
- break;
- if (I == IdxEnd) { // All constant indices
- unsigned Offset = TD.getIndexedOffset(Src->getType(),
- std::vector<Value*>(IdxBegin, IdxEnd));
- BuildMI(*MBB, IP, X86::MOV32ri, 1, TargetReg).addImm(Offset);
- return;
- }
- }
-
- std::vector<Value*> GEPOps;
- GEPOps.resize(IdxEnd-IdxBegin+1);
- GEPOps[0] = Src;
- std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1);
-
- std::vector<const Type*> GEPTypes;
- GEPTypes.assign(gep_type_begin(Src->getType(), IdxBegin, IdxEnd),
- gep_type_end(Src->getType(), IdxBegin, IdxEnd));
-
- // Keep emitting instructions until we consume the entire GEP instruction.
- while (!GEPOps.empty()) {
- unsigned OldSize = GEPOps.size();
- unsigned BaseReg, Scale, IndexReg, Disp;
- getGEPIndex(MBB, IP, GEPOps, GEPTypes, BaseReg, Scale, IndexReg, Disp);
-
- if (GEPOps.size() != OldSize) {
- // getGEPIndex consumed some of the input. Build an LEA instruction here.
- unsigned NextTarget = 0;
- if (!GEPOps.empty()) {
- assert(BaseReg == 0 &&
- "getGEPIndex should have left the base register open for chaining!");
- NextTarget = BaseReg = makeAnotherReg(Type::UIntTy);
- }
-
- if (IndexReg == 0 && Disp == 0)
- BuildMI(*MBB, IP, X86::MOV32rr, 1, TargetReg).addReg(BaseReg);
- else
- addFullAddress(BuildMI(*MBB, IP, X86::LEA32r, 5, TargetReg),
- BaseReg, Scale, IndexReg, Disp);
- --IP;
- TargetReg = NextTarget;
- } else if (GEPTypes.empty()) {
- // The getGEPIndex operation didn't want to build an LEA. Check to see if
- // all operands are consumed but the base pointer. If so, just load it
- // into the register.
- if (GlobalValue *GV = dyn_cast<GlobalValue>(GEPOps[0])) {
- BuildMI(*MBB, IP, X86::MOV32ri, 1, TargetReg).addGlobalAddress(GV);
- } else {
- unsigned BaseReg = getReg(GEPOps[0], MBB, IP);
- BuildMI(*MBB, IP, X86::MOV32rr, 1, TargetReg).addReg(BaseReg);
- }
- break; // we are now done
-
- } else {
- // It's an array or pointer access: [ArraySize x ElementType].
- const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back());
- Value *idx = GEPOps.back();
- GEPOps.pop_back(); // Consume a GEP operand
- GEPTypes.pop_back();
-
- // Many GEP instructions use a [cast (int/uint) to LongTy] as their
- // operand on X86. Handle this case directly now...
- if (CastInst *CI = dyn_cast<CastInst>(idx))
- if (CI->getOperand(0)->getType() == Type::IntTy ||
- CI->getOperand(0)->getType() == Type::UIntTy)
- idx = CI->getOperand(0);
-
- // We want to add BaseReg to(idxReg * sizeof ElementType). First, we
- // must find the size of the pointed-to type (Not coincidentally, the next
- // type is the type of the elements in the array).
- const Type *ElTy = SqTy->getElementType();
- unsigned elementSize = TD.getTypeSize(ElTy);
-
- // If idxReg is a constant, we don't need to perform the multiply!
- if (ConstantInt *CSI = dyn_cast<ConstantInt>(idx)) {
- if (!CSI->isNullValue()) {
- unsigned Offset = elementSize*CSI->getRawValue();
- unsigned Reg = makeAnotherReg(Type::UIntTy);
- BuildMI(*MBB, IP, X86::ADD32ri, 2, TargetReg)
- .addReg(Reg).addImm(Offset);
- --IP; // Insert the next instruction before this one.
- TargetReg = Reg; // Codegen the rest of the GEP into this
- }
- } else if (elementSize == 1) {
- // If the element size is 1, we don't have to multiply, just add
- unsigned idxReg = getReg(idx, MBB, IP);
- unsigned Reg = makeAnotherReg(Type::UIntTy);
- BuildMI(*MBB, IP, X86::ADD32rr, 2,TargetReg).addReg(Reg).addReg(idxReg);
- --IP; // Insert the next instruction before this one.
- TargetReg = Reg; // Codegen the rest of the GEP into this
- } else {
- unsigned idxReg = getReg(idx, MBB, IP);
- unsigned OffsetReg = makeAnotherReg(Type::UIntTy);
-
- // Make sure we can back the iterator up to point to the first
- // instruction emitted.
- MachineBasicBlock::iterator BeforeIt = IP;
- if (IP == MBB->begin())
- BeforeIt = MBB->end();
- else
- --BeforeIt;
- doMultiplyConst(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSize);
-
- // Emit an ADD to add OffsetReg to the basePtr.
- unsigned Reg = makeAnotherReg(Type::UIntTy);
- BuildMI(*MBB, IP, X86::ADD32rr, 2, TargetReg)
- .addReg(Reg).addReg(OffsetReg);
-
- // Step to the first instruction of the multiply.
- if (BeforeIt == MBB->end())
- IP = MBB->begin();
- else
- IP = ++BeforeIt;
-
- TargetReg = Reg; // Codegen the rest of the GEP into this
- }
- }
- }
-}
-
-/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
-/// frame manager, otherwise do it the hard way.
-///
-void ISel::visitAllocaInst(AllocaInst &I) {
- // If this is a fixed size alloca in the entry block for the function, we
- // statically stack allocate the space, so we don't need to do anything here.
- //
- if (dyn_castFixedAlloca(&I)) return;
-
- // Find the data size of the alloca inst's getAllocatedType.
- const Type *Ty = I.getAllocatedType();
- unsigned TySize = TM.getTargetData().getTypeSize(Ty);
-
- // Create a register to hold the temporary result of multiplying the type size
- // constant by the variable amount.
- unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
- unsigned SrcReg1 = getReg(I.getArraySize());
-
- // TotalSizeReg = mul <numelements>, <TypeSize>
- MachineBasicBlock::iterator MBBI = BB->end();
- doMultiplyConst(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, TySize);
-
- // AddedSize = add <TotalSizeReg>, 15
- unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
- BuildMI(BB, X86::ADD32ri, 2, AddedSizeReg).addReg(TotalSizeReg).addImm(15);
-
- // AlignedSize = and <AddedSize>, ~15
- unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
- BuildMI(BB, X86::AND32ri, 2, AlignedSize).addReg(AddedSizeReg).addImm(~15);
-
- // Subtract size from stack pointer, thereby allocating some space.
- BuildMI(BB, X86::SUB32rr, 2, X86::ESP).addReg(X86::ESP).addReg(AlignedSize);
-
- // Put a pointer to the space into the result register, by copying
- // the stack pointer.
- BuildMI(BB, X86::MOV32rr, 1, getReg(I)).addReg(X86::ESP);
-
- // Inform the Frame Information that we have just allocated a variable-sized
- // object.
- F->getFrameInfo()->CreateVariableSizedObject();
-}
-
-/// visitMallocInst - Malloc instructions are code generated into direct calls
-/// to the library malloc.
-///
-void ISel::visitMallocInst(MallocInst &I) {
- unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
- unsigned Arg;
-
- if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
- Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
- } else {
- Arg = makeAnotherReg(Type::UIntTy);
- unsigned Op0Reg = getReg(I.getOperand(0));
- MachineBasicBlock::iterator MBBI = BB->end();
- doMultiplyConst(BB, MBBI, Arg, Type::UIntTy, Op0Reg, AllocSize);
- }
-
- std::vector<ValueRecord> Args;
- Args.push_back(ValueRecord(Arg, Type::UIntTy));
- MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
- 1).addExternalSymbol("malloc", true);
- doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args);
-}
-
-
-/// visitFreeInst - Free instructions are code gen'd to call the free libc
-/// function.
-///
-void ISel::visitFreeInst(FreeInst &I) {
- std::vector<ValueRecord> Args;
- Args.push_back(ValueRecord(I.getOperand(0)));
- MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
- 1).addExternalSymbol("free", true);
- doCall(ValueRecord(0, Type::VoidTy), TheCall, Args);
-}
-
-/// createX86SimpleInstructionSelector - This pass converts an LLVM function
-/// into a machine code representation is a very simple peep-hole fashion. The
-/// generated code sucks but the implementation is nice and simple.
-///
-FunctionPass *llvm::createX86SimpleInstructionSelector(TargetMachine &TM) {
- return new ISel(TM);
-}
diff --git a/lib/Target/X86/PeepholeOptimizer.cpp b/lib/Target/X86/PeepholeOptimizer.cpp
deleted file mode 100644
index 8e3b831f94..0000000000
--- a/lib/Target/X86/PeepholeOptimizer.cpp
+++ /dev/null
@@ -1,515 +0,0 @@
-//===-- PeepholeOptimizer.cpp - X86 Peephole Optimizer --------------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file contains a peephole optimizer for the X86.
-//
-//===----------------------------------------------------------------------===//
-
-#include "X86.h"
-#include "llvm/CodeGen/MachineFunctionPass.h"
-#include "llvm/CodeGen/MachineInstrBuilder.h"
-#include "llvm/Target/MRegisterInfo.h"
-#include "llvm/Target/TargetInstrInfo.h"
-#include "llvm/Target/TargetMachine.h"
-#include "Support/Statistic.h"
-#include "Support/STLExtras.h"
-
-using namespace llvm;
-
-namespace {
- Statistic<> NumPHOpts("x86-peephole",
- "Number of peephole optimization performed");
- Statistic<> NumPHMoves("x86-peephole", "Number of peephole moves folded");
- struct PH : public MachineFunctionPass {
- virtual bool runOnMachineFunction(MachineFunction &MF);
-
- bool PeepholeOptimize(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator &I);
-
- virtual const char *getPassName() const { return "X86 Peephole Optimizer"; }
- };
-}
-
-FunctionPass *llvm::createX86PeepholeOptimizerPass() { return new PH(); }
-
-bool PH::runOnMachineFunction(MachineFunction &MF) {
- bool Changed = false;
-
- for (MachineFunction::iterator BI = MF.begin(), E = MF.end(); BI != E; ++BI)
- for (MachineBasicBlock::iterator I = BI->begin(); I != BI->end(); )
- if (PeepholeOptimize(*BI, I)) {
- Changed = true;
- ++NumPHOpts;
- } else
- ++I;
-
- return Changed;
-}
-
-
-bool PH::PeepholeOptimize(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator &I) {
- assert(I != MBB.end());
- MachineBasicBlock::iterator NextI = next(I);
-
- MachineInstr *MI = I;
- MachineInstr *Next = (NextI != MBB.end()) ? &*NextI : (MachineInstr*)0;
- unsigned Size = 0;
- switch (MI->getOpcode()) {
- case X86::MOV8rr:
- case X86::MOV16rr:
- case X86::MOV32rr: // Destroy X = X copies...
- if (MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
- I = MBB.erase(I);
- return true;
- }
- return false;
-
- // A large number of X86 instructions have forms which take an 8-bit
- // immediate despite the fact that the operands are 16 or 32 bits. Because
- // this can save three bytes of code size (and icache space), we want to
- // shrink them if possible.
- case X86::IMUL16rri: case X86::IMUL32rri:
- assert(MI->getNumOperands() == 3 && "These should all have 3 operands!");
- if (MI->getOperand(2).isImmediate()) {
- int Val = MI->getOperand(2).getImmedValue();
- // If the value is the same when signed extended from 8 bits...
- if (Val == (signed int)(signed char)Val) {
- unsigned Opcode;
- switch (MI->getOpcode()) {
- default: assert(0 && "Unknown opcode value!");
- case X86::IMUL16rri: Opcode = X86::IMUL16rri8; break;
- case X86::IMUL32rri: Opcode = X86::IMUL32rri8; break;
- }
- unsigned R0 = MI->getOperand(0).getReg();
- unsigned R1 = MI->getOperand(1).getReg();
- I = MBB.insert(MBB.erase(I),
- BuildMI(Opcode, 2, R0).addReg(R1).addZImm((char)Val));
- return true;
- }
- }
- return false;
-
-#if 0
- case X86::IMUL16rmi: case X86::IMUL32rmi:
- assert(MI->getNumOperands() == 6 && "These should all have 6 operands!");
- if (MI->getOperand(5).isImmediate()) {
- int Val = MI->getOperand(5).getImmedValue();
- // If the value is the same when signed extended from 8 bits...
- if (Val == (signed int)(signed char)Val) {
- unsigned Opcode;
- switch (MI->getOpcode()) {
- default: assert(0 && "Unknown opcode value!");
- case X86::IMUL16rmi: Opcode = X86::IMUL16rmi8; break;
- case X86::IMUL32rmi: Opcode = X86::IMUL32rmi8; break;
- }
- unsigned R0 = MI->getOperand(0).getReg();
- unsigned R1 = MI->getOperand(1).getReg();
- unsigned Scale = MI->getOperand(2).getImmedValue();
- unsigned R2 = MI->getOperand(3).getReg();
- unsigned Offset = MI->getOperand(4).getImmedValue();
- I = MBB.insert(MBB.erase(I),
- BuildMI(Opcode, 5, R0).addReg(R1).addZImm(Scale).
- addReg(R2).addSImm(Offset).addZImm((char)Val));
- return true;
- }
- }
- return false;
-#endif
-
- case X86::ADD16ri: case X86::ADD32ri: case X86::ADC32ri:
- case X86::SUB16ri: case X86::SUB32ri: case X86::SBB32ri:
- case X86::AND16ri: case X86::AND32ri:
- case X86::OR16ri: case X86::OR32ri:
- case X86::XOR16ri: case X86::XOR32ri:
- assert(MI->getNumOperands() == 2 && "These should all have 2 operands!");
- if (MI->getOperand(1).isImmediate()) {
- int Val = MI->getOperand(1).getImmedValue();
- // If the value is the same when signed extended from 8 bits...
- if (Val == (signed int)(signed char)Val) {
- unsigned Opcode;
- switch (MI->getOpcode()) {
- default: assert(0 && "Unknown opcode value!");
- case X86::ADD16ri: Opcode = X86::ADD16ri8; break;
- case X86::ADD32ri: Opcode = X86::ADD32ri8; break;
- case X86::ADC32ri: Opcode = X86::ADC32ri8; break;
- case X86::SUB16ri: Opcode = X86::SUB16ri8; break;
- case X86::SUB32ri: Opcode = X86::SUB32ri8; break;
- case X86::SBB32ri: Opcode = X86::SBB32ri8; break;
- case X86::AND16ri: Opcode = X86::AND16ri8; break;
- case X86::AND32ri: Opcode = X86::AND32ri8; break;
- case X86::OR16ri: Opcode = X86::OR16ri8; break;
- case X86::OR32ri: Opcode = X86::OR32ri8; break;
- case X86::XOR16ri: Opcode = X86::XOR16ri8; break;
- case X86::XOR32ri: Opcode = X86::XOR32ri8; break;
- }
- unsigned R0 = MI->getOperand(0).getReg();
- I = MBB.insert(MBB.erase(I),
- BuildMI(Opcode, 1, R0, MachineOperand::UseAndDef)
- .addZImm((char)Val));
- return true;
- }
- }
- return false;
-
- case X86::ADD16mi: case X86::ADD32mi: case X86::ADC32mi:
- case X86::SUB16mi: case X86::SUB32mi: case X86::SBB32mi:
- case X86::AND16mi: case X86::AND32mi:
- case X86::OR16mi: case X86::OR32mi:
- case X86::XOR16mi: case X86::XOR32mi:
- assert(MI->getNumOperands() == 5 && "These should all have 5 operands!");
- if (MI->getOperand(4).isImmediate()) {
- int Val = MI->getOperand(4).getImmedValue();
- // If the value is the same when signed extended from 8 bits...
- if (Val == (signed int)(signed char)Val) {
- unsigned Opcode;
- switch (MI->getOpcode()) {
- default: assert(0 && "Unknown opcode value!");
- case X86::ADD16mi: Opcode = X86::ADD16mi8; break;
- case X86::ADD32mi: Opcode = X86::ADD32mi8; break;
- case X86::ADC32mi: Opcode = X86::ADC32mi8; break;
- case X86::SUB16mi: Opcode = X86::SUB16mi8; break;
- case X86::SUB32mi: Opcode = X86::SUB32mi8; break;
- case X86::SBB32mi: Opcode = X86::SBB32mi8; break;
- case X86::AND16mi: Opcode = X86::AND16mi8; break;
- case X86::AND32mi: Opcode = X86::AND32mi8; break;
- case X86::OR16mi: Opcode = X86::OR16mi8; break;
- case X86::OR32mi: Opcode = X86::OR32mi8; break;
- case X86::XOR16mi: Opcode = X86::XOR16mi8; break;
- case X86::XOR32mi: Opcode = X86::XOR32mi8; break;
- }
- unsigned R0 = MI->getOperand(0).getReg();
- unsigned Scale = MI->getOperand(1).getImmedValue();
- unsigned R1 = MI->getOperand(2).getReg();
- unsigned Offset = MI->getOperand(3).getImmedValue();
- I = MBB.insert(MBB.erase(I),
- BuildMI(Opcode, 5).addReg(R0).addZImm(Scale).
- addReg(R1).addSImm(Offset).addZImm((char)Val));
- return true;
- }
- }
- return false;
-
-#if 0
- case X86::MOV32ri: Size++;
- case X86::MOV16ri: Size++;
- case X86::MOV8ri:
- // FIXME: We can only do this transformation if we know that flags are not
- // used here, because XOR clobbers the flags!
- if (MI->getOperand(1).isImmediate()) { // avoid mov EAX, <value>
- int Val = MI->getOperand(1).getImmedValue();
- if (Val == 0) { // mov EAX, 0 -> xor EAX, EAX
- static const unsigned Opcode[] ={X86::XOR8rr,X86::XOR16rr,X86::XOR32rr};
- unsigned Reg = MI->getOperand(0).getReg();
- I = MBB.insert(MBB.erase(I),
- BuildMI(Opcode[Size], 2, Reg).addReg(Reg).addReg(Reg));
- return true;
- } else if (Val == -1) { // mov EAX, -1 -> or EAX, -1
- // TODO: 'or Reg, -1' has a smaller encoding than 'mov Reg, -1'
- }
- }
- return false;
-#endif
- case X86::BSWAP32r: // Change bswap EAX, bswap EAX into nothing
- if (Next->getOpcode() == X86::BSWAP32r &&
- MI->getOperand(0).getReg() == Next->getOperand(0).getReg()) {
- I = MBB.erase(MBB.erase(I));
- return true;
- }
- return false;
- default:
- return false;
- }
-}
-
-namespace {
- class UseDefChains : public MachineFunctionPass {
- std::vector<MachineInstr*> DefiningInst;
- public:
- // getDefinition - Return the machine instruction that defines the specified
- // SSA virtual register.
- MachineInstr *getDefinition(unsigned Reg) {
- assert(MRegisterInfo::isVirtualRegister(Reg) &&
- "use-def chains only exist for SSA registers!");
- assert(Reg - MRegisterInfo::FirstVirtualRegister < DefiningInst.size() &&
- "Unknown register number!");
- assert(DefiningInst[Reg-MRegisterInfo::FirstVirtualRegister] &&
- "Unknown register number!");
- return DefiningInst[Reg-MRegisterInfo::FirstVirtualRegister];
- }
-
- // setDefinition - Update the use-def chains to indicate that MI defines
- // register Reg.
- void setDefinition(unsigned Reg, MachineInstr *MI) {
- if (Reg-MRegisterInfo::FirstVirtualRegister >= DefiningInst.size())
- DefiningInst.resize(Reg-MRegisterInfo::FirstVirtualRegister+1);
- DefiningInst[Reg-MRegisterInfo::FirstVirtualRegister] = MI;
- }
-
- // removeDefinition - Update the use-def chains to forget about Reg
- // entirely.
- void removeDefinition(unsigned Reg) {
- assert(getDefinition(Reg)); // Check validity
- DefiningInst[Reg-MRegisterInfo::FirstVirtualRegister] = 0;
- }
-
- virtual bool runOnMachineFunction(MachineFunction &MF) {
- for (MachineFunction::iterator BI = MF.begin(), E = MF.end(); BI!=E; ++BI)
- for (MachineBasicBlock::iterator I = BI->begin(); I != BI->end(); ++I) {
- for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
- MachineOperand &MO = I->getOperand(i);
- if (MO.isRegister() && MO.isDef() && !MO.isUse() &&
- MRegisterInfo::isVirtualRegister(MO.getReg()))
- setDefinition(MO.getReg(), I);
- }
- }
- return false;
- }
-
- virtual void getAnalysisUsage(AnalysisUsage &AU) const {
- AU.setPreservesAll();
- MachineFunctionPass::getAnalysisUsage(AU);
- }
-
- virtual void releaseMemory() {
- std::vector<MachineInstr*>().swap(DefiningInst);
- }
- };
-
- RegisterAnalysis<UseDefChains> X("use-def-chains",
- "use-def chain construction for machine code");
-}
-
-
-namespace {
- Statistic<> NumSSAPHOpts("x86-ssa-peephole",
- "Number of SSA peephole optimization performed");
-
- /// SSAPH - This pass is an X86-specific, SSA-based, peephole optimizer. This
- /// pass is really a bad idea: a better instruction selector should completely
- /// supersume it. However, that will take some time to develop, and the
- /// simple things this can do are important now.
- class SSAPH : public MachineFunctionPass {
- UseDefChains *UDC;
- public:
- virtual bool runOnMachineFunction(MachineFunction &MF);
-
- bool PeepholeOptimize(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator &I);
-
- virtual const char *getPassName() const {
- return "X86 SSA-based Peephole Optimizer";
- }
-
- /// Propagate - Set MI[DestOpNo] = Src[SrcOpNo], optionally change the
- /// opcode of the instruction, then return true.
- bool Propagate(MachineInstr *MI, unsigned DestOpNo,
- MachineInstr *Src, unsigned SrcOpNo, unsigned NewOpcode = 0){
- MI->getOperand(DestOpNo) = Src->getOperand(SrcOpNo);
- if (NewOpcode) MI->setOpcode(NewOpcode);
- return true;
- }
-
- /// OptimizeAddress - If we can fold the addressing arithmetic for this
- /// memory instruction into the instruction itself, do so and return true.
- bool OptimizeAddress(MachineInstr *MI, unsigned OpNo);
-
- /// getDefininingInst - If the specified operand is a read of an SSA
- /// register, return the machine instruction defining it, otherwise, return
- /// null.
- MachineInstr *getDefiningInst(MachineOperand &MO) {
- if (MO.isDef() || !MO.isRegister() ||
- !MRegisterInfo::isVirtualRegister(MO.getReg())) return 0;
- return UDC->getDefinition(MO.getReg());
- }
-
- virtual void getAnalysisUsage(AnalysisUsage &AU) const {
- AU.addRequired<UseDefChains>();
- AU.addPreserved<UseDefChains>();
- MachineFunctionPass::getAnalysisUsage(AU);
- }
- };
-}
-
-FunctionPass *llvm::createX86SSAPeepholeOptimizerPass() { return new SSAPH(); }
-
-bool SSAPH::runOnMachineFunction(MachineFunction &MF) {
- bool Changed = false;
- bool LocalChanged;
-
- UDC = &getAnalysis<UseDefChains>();
-
- do {
- LocalChanged = false;
-
- for (MachineFunction::iterator BI = MF.begin(), E = MF.end(); BI != E; ++BI)
- for (MachineBasicBlock::iterator I = BI->begin(); I != BI->end(); )
- if (PeepholeOptimize(*BI, I)) {
- LocalChanged = true;
- ++NumSSAPHOpts;
- } else
- ++I;
- Changed |= LocalChanged;
- } while (LocalChanged);
-
- return Changed;
-}
-
-static bool isValidScaleAmount(unsigned Scale) {
- return Scale == 1 || Scale == 2 || Scale == 4 || Scale == 8;
-}
-
-/// OptimizeAddress - If we can fold the addressing arithmetic for this
-/// memory instruction into the instruction itself, do so and return true.
-bool SSAPH::OptimizeAddress(MachineInstr *MI, unsigned OpNo) {
- MachineOperand &BaseRegOp = MI->getOperand(OpNo+0);
- MachineOperand &ScaleOp = MI->getOperand(OpNo+1);
- MachineOperand &IndexRegOp = MI->getOperand(OpNo+2);
- MachineOperand &DisplacementOp = MI->getOperand(OpNo+3);
-
- unsigned BaseReg = BaseRegOp.hasAllocatedReg() ? BaseRegOp.getReg() : 0;
- unsigned Scale = ScaleOp.getImmedValue();
- unsigned IndexReg = IndexRegOp.hasAllocatedReg() ? IndexRegOp.getReg() : 0;
-
- bool Changed = false;
-
- // If the base register is unset, and the index register is set with a scale
- // of 1, move it to be the base register.
- if (BaseRegOp.hasAllocatedReg() && BaseReg == 0 &&
- Scale == 1 && IndexReg != 0) {
- BaseRegOp.setReg(IndexReg);
- IndexRegOp.setReg(0);
- return true;
- }
-
- // Attempt to fold instructions used by the base register into the instruction
- if (MachineInstr *DefInst = getDefiningInst(BaseRegOp)) {
- switch (DefInst->getOpcode()) {
- case X86::MOV32ri:
- // If there is no displacement set for this instruction set one now.
- // FIXME: If we can fold two immediates together, we should do so!
- if (DisplacementOp.isImmediate() && !DisplacementOp.getImmedValue()) {
- if (DefInst->getOperand(1).isImmediate()) {
- BaseRegOp.setReg(0);
- return Propagate(MI, OpNo+3, DefInst, 1);
- }
- }
- break;
-
- case X86::ADD32rr:
- // If the source is a register-register add, and we do not yet have an
- // index register, fold the add into the memory address.
- if (IndexReg == 0) {
- BaseRegOp = DefInst->getOperand(1);
- IndexRegOp = DefInst->getOperand(2);
- ScaleOp.setImmedValue(1);
- return true;
- }
- break;
-
- case X86::SHL32ri:
- // If this shift could be folded into the index portion of the address if
- // it were the index register, move it to the index register operand now,
- // so it will be folded in below.
- if ((Scale == 1 || (IndexReg == 0 && IndexRegOp.hasAllocatedReg())) &&
- DefInst->getOperand(2).getImmedValue() < 4) {
- std::swap(BaseRegOp, IndexRegOp);
- ScaleOp.setImmedValue(1); Scale = 1;
- std::swap(IndexReg, BaseReg);
- Changed = true;
- break;
- }
- }
- }
-
- // Attempt to fold instructions used by the index into the instruction
- if (MachineInstr *DefInst = getDefiningInst(IndexRegOp)) {
- switch (DefInst->getOpcode()) {
- case X86::SHL32ri: {
- // Figure out what the resulting scale would be if we folded this shift.
- unsigned ResScale = Scale * (1 << DefInst->getOperand(2).getImmedValue());
- if (isValidScaleAmount(ResScale)) {
- IndexRegOp = DefInst->getOperand(1);
- ScaleOp.setImmedValue(ResScale);
- return true;
- }
- break;
- }
- }
- }
-
- return Changed;
-}
-
-bool SSAPH::PeepholeOptimize(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator &I) {
- MachineBasicBlock::iterator NextI = next(I);
-
- MachineInstr *MI = I;
- MachineInstr *Next = (NextI != MBB.end()) ? &*NextI : (MachineInstr*)0;
-
- bool Changed = false;
-
- const TargetInstrInfo &TII = *MBB.getParent()->getTarget().getInstrInfo();
-
- // Scan the operands of this instruction. If any operands are
- // register-register copies, replace the operand with the source.
- for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
- // Is this an SSA register use?
- if (MachineInstr *DefInst = getDefiningInst(MI->getOperand(i))) {
- // If the operand is a vreg-vreg copy, it is always safe to replace the
- // source value with the input operand.
- unsigned Source, Dest;
- if (TII.isMoveInstr(*DefInst, Source, Dest)) {
- // Don't propagate physical registers into any instructions.
- if (DefInst->getOperand(1).isRegister() &&
- MRegisterInfo::isVirtualRegister(Source)) {
- MI->getOperand(i).setReg(Source);
- Changed = true;
- ++NumPHMoves;
- }
- }
- }
-
-
- // Perform instruction specific optimizations.
- switch (MI->getOpcode()) {
-
- // Register to memory stores. Format: <base,scale,indexreg,immdisp>, srcreg
- case X86::MOV32mr: case X86::MOV16mr: case X86::MOV8mr:
- case X86::MOV32mi: case X86::MOV16mi: case X86::MOV8mi:
- // Check to see if we can fold the source instruction into this one...
- if (MachineInstr *SrcInst = getDefiningInst(MI->getOperand(4))) {
- switch (SrcInst->getOpcode()) {
- // Fold the immediate value into the store, if possible.
- case X86::MOV8ri: return Propagate(MI, 4, SrcInst, 1, X86::MOV8mi);
- case X86::MOV16ri: return Propagate(MI, 4, SrcInst, 1, X86::MOV16mi);
- case X86::MOV32ri: return Propagate(MI, 4, SrcInst, 1, X86::MOV32mi);
- default: break;
- }
- }
-
- // If we can optimize the addressing expression, do so now.
- if (OptimizeAddress(MI, 0))
- return true;
- break;
-
- case X86::MOV32rm:
- case X86::MOV16rm:
- case X86::MOV8rm:
- // If we can optimize the addressing expression, do so now.
- if (OptimizeAddress(MI, 1))
- return true;
- break;
-
- default: break;
- }
-
- return Changed;
-}
diff --git a/lib/Target/X86/Printer.cpp b/lib/Target/X86/Printer.cpp
deleted file mode 100644
index 9ac981f2b9..0000000000
--- a/lib/Target/X86/Printer.cpp
+++ /dev/null
@@ -1,1033 +0,0 @@
-//===-- X86/Printer.cpp - Convert X86 LLVM code to Intel assembly ---------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file contains a printer that converts from our internal representation
-// of machine-dependent LLVM code to Intel-format assembly language. This
-// printer is the output mechanism used by `llc' and `lli -print-machineinstrs'
-// on X86.
-//
-//===----------------------------------------------------------------------===//
-
-#include "X86.h"
-#include "X86InstrInfo.h"
-#include "X86TargetMachine.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Module.h"
-#include "llvm/Assembly/Writer.h"
-#include "llvm/CodeGen/MachineCodeEmitter.h"
-#include "llvm/CodeGen/MachineConstantPool.h"
-#include "llvm/CodeGen/MachineFunctionPass.h"
-#include "llvm/CodeGen/MachineInstr.h"
-#include "llvm/Target/TargetMachine.h"
-#include "llvm/Support/Mangler.h"
-#include "Support/Statistic.h"
-#include "Support/StringExtras.h"
-#include "Support/CommandLine.h"
-using namespace llvm;
-
-namespace {
- Statistic<> EmittedInsts("asm-printer", "Number of machine instrs printed");
-
- // FIXME: This should be automatically picked up by autoconf from the C
- // frontend
- cl::opt<bool> EmitCygwin("enable-cygwin-compatible-output", cl::Hidden,
- cl::desc("Emit X86 assembly code suitable for consumption by cygwin"));
-
- struct GasBugWorkaroundEmitter : public MachineCodeEmitter {
- GasBugWorkaroundEmitter(std::ostream& o)
- : O(o), OldFlags(O.flags()), firstByte(true) {
- O << std::hex;
- }
-
- ~GasBugWorkaroundEmitter() {
- O.flags(OldFlags);
- O << "\t# ";
- }
-
- virtual void emitByte(unsigned char B) {
- if (!firstByte) O << "\n\t";
- firstByte = false;
- O << ".byte 0x" << (unsigned) B;
- }
-
- // These should never be called
- virtual void emitWord(unsigned W) { assert(0); }
- virtual uint64_t getGlobalValueAddress(GlobalValue *V) { abort(); }
- virtual uint64_t getGlobalValueAddress(const std::string &Name) { abort(); }
- virtual uint64_t getConstantPoolEntryAddress(unsigned Index) { abort(); }
- virtual uint64_t getCurrentPCValue() { abort(); }
- virtual uint64_t forceCompilationOf(Function *F) { abort(); }
-
- private:
- std::ostream& O;
- std::ios::fmtflags OldFlags;
- bool firstByte;
- };
-
- struct Printer : public MachineFunctionPass {
- /// Output stream on which we're printing assembly code.
- ///
- std::ostream &O;
-
- /// Target machine description which we query for reg. names, data
- /// layout, etc.
- ///
- TargetMachine &TM;
-
- /// Name-mangler for global names.
- ///
- Mangler *Mang;
-
- Printer(std::ostream &o, TargetMachine &tm) : O(o), TM(tm) { }
-
- /// Cache of mangled name for current function. This is
- /// recalculated at the beginning of each call to
- /// runOnMachineFunction().
- ///
- std::string CurrentFnName;
-
- virtual const char *getPassName() const {
- return "X86 Assembly Printer";
- }
-
- void printImplUsesBefore(const TargetInstrDescriptor &Desc);
- bool printImplDefsBefore(const TargetInstrDescriptor &Desc);
- bool printImplUsesAfter(const TargetInstrDescriptor &Desc, const bool LC);
- bool printImplDefsAfter(const TargetInstrDescriptor &Desc, const bool LC);
- void printMachineInstruction(const MachineInstr *MI);
- void printOp(const MachineOperand &MO, bool elideOffsetKeyword = false);
- void printMemReference(const MachineInstr *MI, unsigned Op);
- void printConstantPool(MachineConstantPool *MCP);
- bool runOnMachineFunction(MachineFunction &F);
- bool doInitialization(Module &M);
- bool doFinalization(Module &M);
- void emitGlobalConstant(const Constant* CV);
- void emitConstantValueOnly(const Constant *CV);
- };
-} // end of anonymous namespace
-
-/// createX86CodePrinterPass - Returns a pass that prints the X86
-/// assembly code for a MachineFunction to the given output stream,
-/// using the given target machine description. This should work
-/// regardless of whether the function is in SSA form.
-///
-FunctionPass *llvm::createX86CodePrinterPass(std::ostream &o,TargetMachine &tm){
- return new Printer(o, tm);
-}
-
-/// toOctal - Convert the low order bits of X into an octal digit.
-///
-static inline char toOctal(int X) {
- return (X&7)+'0';
-}
-
-/// getAsCString - Return the specified array as a C compatible
-/// string, only if the predicate isStringCompatible is true.
-///
-static void printAsCString(std::ostream &O, const ConstantArray *CVA) {
- assert(CVA->isString() && "Array is not string compatible!");
-
- O << "\"";
- for (unsigned i = 0; i != CVA->getNumOperands(); ++i) {
- unsigned char C = cast<ConstantInt>(CVA->getOperand(i))->getRawValue();
-
- if (C == '"') {
- O << "\\\"";
- } else if (C == '\\') {
- O << "\\\\";
- } else if (isprint(C)) {
- O << C;
- } else {
- switch(C) {
- case '\b': O << "\\b"; break;
- case '\f': O << "\\f"; break;
- case '\n': O << "\\n"; break;
- case '\r': O << "\\r"; break;
- case '\t': O << "\\t"; break;
- default:
- O << '\\';
- O << toOctal(C >> 6);
- O << toOctal(C >> 3);
- O << toOctal(C >> 0);
- break;
- }
- }
- }
- O << "\"";
-}
-
-// Print out the specified constant, without a storage class. Only the
-// constants valid in constant expressions can occur here.
-void Printer::emitConstantValueOnly(const Constant *CV) {
- if (CV->isNullValue())
- O << "0";
- else if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV)) {
- assert(CB == ConstantBool::True);
- O << "1";
- } else if (const ConstantSInt *CI = dyn_cast<ConstantSInt>(CV))
- if (((CI->getValue() << 32) >> 32) == CI->getValue())
- O << CI->getValue();
- else
- O << (unsigned long long)CI->getValue();
- else if (const ConstantUInt *CI = dyn_cast<ConstantUInt>(CV))
- O << CI->getValue();
- else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
- // This is a constant address for a global variable or function. Use the
- // name of the variable or function as the address value.
- O << Mang->getValueName(GV);
- else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
- const TargetData &TD = TM.getTargetData();
- switch(CE->getOpcode()) {
- case Instruction::GetElementPtr: {
- // generate a symbolic expression for the byte address
- const Constant *ptrVal = CE->getOperand(0);
- std::vector<Value*> idxVec(CE->op_begin()+1, CE->op_end());
- if (unsigned Offset = TD.getIndexedOffset(ptrVal->getType(), idxVec)) {
- O << "(";
- emitConstantValueOnly(ptrVal);
- O << ") + " << Offset;
- } else {
- emitConstantValueOnly(ptrVal);
- }
- break;
- }
- case Instruction::Cast: {
- // Support only non-converting or widening casts for now, that is, ones
- // that do not involve a change in value. This assertion is really gross,
- // and may not even be a complete check.
- Constant *Op = CE->getOperand(0);
- const Type *OpTy = Op->getType(), *Ty = CE->getType();
-
- // Remember, kids, pointers on x86 can be losslessly converted back and
- // forth into 32-bit or wider integers, regardless of signedness. :-P
- assert(((isa<PointerType>(OpTy)
- && (Ty == Type::LongTy || Ty == Type::ULongTy
- || Ty == Type::IntTy || Ty == Type::UIntTy))
- || (isa<PointerType>(Ty)
- && (OpTy == Type::LongTy || OpTy == Type::ULongTy
- || OpTy == Type::IntTy || OpTy == Type::UIntTy))
- || (((TD.getTypeSize(Ty) >= TD.getTypeSize(OpTy))
- && OpTy->isLosslesslyConvertibleTo(Ty))))
- && "FIXME: Don't yet support this kind of constant cast expr");
- O << "(";
- emitConstantValueOnly(Op);
- O << ")";
- break;
- }
- case Instruction::Add:
- O << "(";
- emitConstantValueOnly(CE->getOperand(0));
- O << ") + (";
- emitConstantValueOnly(CE->getOperand(1));
- O << ")";
- break;
- default:
- assert(0 && "Unsupported operator!");
- }
- } else {
- assert(0 && "Unknown constant value!");
- }
-}
-
-// Print a constant value or values, with the appropriate storage class as a
-// prefix.
-void Printer::emitGlobalConstant(const Constant *CV) {
- const TargetData &TD = TM.getTargetData();
-
- if (CV->isNullValue()) {
- O << "\t.zero\t " << TD.getTypeSize(CV->getType()) << "\n";
- return;
- } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
- if (CVA->isString()) {
- O << "\t.ascii\t";
- printAsCString(O, CVA);
- O << "\n";
- } else { // Not a string. Print the values in successive locations
- const std::vector<Use> &constValues = CVA->getValues();
- for (unsigned i=0; i < constValues.size(); i++)
- emitGlobalConstant(cast<Constant>(constValues[i].get()));
- }
- return;
- } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
- // Print the fields in successive locations. Pad to align if needed!
- const StructLayout *cvsLayout = TD.getStructLayout(CVS->getType());
- const std::vector<Use>& constValues = CVS->getValues();
- unsigned sizeSoFar = 0;
- for (unsigned i=0, N = constValues.size(); i < N; i++) {
- const Constant* field = cast<Constant>(constValues[i].get());
-
- // Check if padding is needed and insert one or more 0s.
- unsigned fieldSize = TD.getTypeSize(field->getType());
- unsigned padSize = ((i == N-1? cvsLayout->StructSize
- : cvsLayout->MemberOffsets[i+1])
- - cvsLayout->MemberOffsets[i]) - fieldSize;
- sizeSoFar += fieldSize + padSize;
-
- // Now print the actual field value
- emitGlobalConstant(field);
-
- // Insert the field padding unless it's zero bytes...
- if (padSize)
- O << "\t.zero\t " << padSize << "\n";
- }
- assert(sizeSoFar == cvsLayout->StructSize &&
- "Layout of constant struct may be incorrect!");
- return;
- } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
- // FP Constants are printed as integer constants to avoid losing
- // precision...
- double Val = CFP->getValue();
- switch (CFP->getType()->getTypeID()) {
- default: assert(0 && "Unknown floating point type!");
- case Type::FloatTyID: {
- union FU { // Abide by C TBAA rules
- float FVal;
- unsigned UVal;
- } U;
- U.FVal = Val;
- O << ".long\t" << U.UVal << "\t# float " << Val << "\n";
- return;
- }
- case Type::DoubleTyID: {
- union DU { // Abide by C TBAA rules
- double FVal;
- uint64_t UVal;
- } U;
- U.FVal = Val;
- O << ".quad\t" << U.UVal << "\t# double " << Val << "\n";
- return;
- }
- }
- }
-
- const Type *type = CV->getType();
- O << "\t";
- switch (type->getTypeID()) {
- case Type::BoolTyID: case Type::UByteTyID: case Type::SByteTyID:
- O << ".byte";
- break;
- case Type::UShortTyID: case Type::ShortTyID:
- O << ".word";
- break;
- case Type::FloatTyID: case Type::PointerTyID:
- case Type::UIntTyID: case Type::IntTyID:
- O << ".long";
- break;
- case Type::DoubleTyID:
- case Type::ULongTyID: case Type::LongTyID:
- O << ".quad";
- break;
- default:
- assert (0 && "Can't handle printing this type of thing");
- break;
- }
- O << "\t";
- emitConstantValueOnly(CV);
- O << "\n";
-}
-
-/// printConstantPool - Print to the current output stream assembly
-/// representations of the constants in the constant pool MCP. This is
-/// used to print out constants which have been "spilled to memory" by
-/// the code generator.
-///
-void Printer::printConstantPool(MachineConstantPool *MCP) {
- const std::vector<Constant*> &CP = MCP->getConstants();
- const TargetData &TD = TM.getTargetData();
-
- if (CP.empty()) return;
-
- for (unsigned i = 0, e = CP.size(); i != e; ++i) {
- O << "\t.section .rodata\n";
- O << "\t.align " << (unsigned)TD.getTypeAlignment(CP[i]->getType())
- << "\n";
- O << ".CPI" << CurrentFnName << "_" << i << ":\t\t\t\t\t#"
- << *CP[i] << "\n";
- emitGlobalConstant(CP[i]);
- }
-}
-
-/// runOnMachineFunction - This uses the printMachineInstruction()
-/// method to print assembly for each instruction.
-///
-bool Printer::runOnMachineFunction(MachineFunction &MF) {
- O << "\n\n";
- // What's my mangled name?
- CurrentFnName = Mang->getValueName(MF.getFunction());
-
- // Print out constants referenced by the function
- printConstantPool(MF.getConstantPool());
-
- // Print out labels for the function.
- O << "\t.text\n";
- O << "\t.align 16\n";
- O << "\t.globl\t" << CurrentFnName << "\n";
- if (!EmitCygwin)
- O << "\t.type\t" << CurrentFnName << ", @function\n";
- O << CurrentFnName << ":\n";
-
- // Print out code for the function.
- for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
- I != E; ++I) {
- // Print a label for the basic block.
- O << ".LBB" << CurrentFnName << "_" << I->getNumber() << ":\t# "
- << I->getBasicBlock()->getName() << "\n";
- for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end();
- II != E; ++II) {
- // Print the assembly for the instruction.
- O << "\t";
- printMachineInstruction(II);
- }
- }
-
- // We didn't modify anything.
- return false;
-}
-
-static bool isScale(const MachineOperand &MO) {
- return MO.isImmediate() &&
- (MO.getImmedValue() == 1 || MO.getImmedValue() == 2 ||
- MO.getImmedValue() == 4 || MO.getImmedValue() == 8);
-}
-
-static bool isMem(const MachineInstr *MI, unsigned Op) {
- if (MI->getOperand(Op).isFrameIndex()) return true;
- if (MI->getOperand(Op).isConstantPoolIndex()) return true;
- return Op+4 <= MI->getNumOperands() &&
- MI->getOperand(Op ).isRegister() &&isScale(MI->getOperand(Op+1)) &&
- MI->getOperand(Op+2).isRegister() &&MI->getOperand(Op+3).isImmediate();
-}
-
-
-
-void Printer::printOp(const MachineOperand &MO,
- bool elideOffsetKeyword /* = false */) {
- const MRegisterInfo &RI = *TM.getRegisterInfo();
- switch (MO.getType()) {
- case MachineOperand::MO_VirtualRegister:
- if (Value *V = MO.getVRegValueOrNull()) {
- O << "<" << V->getName() << ">";
- return;
- }
- // FALLTHROUGH
- case MachineOperand::MO_MachineRegister:
- if (MRegisterInfo::isPhysicalRegister(MO.getReg()))
- // Bug Workaround: See note in Printer::doInitialization about %.
- O << "%" << RI.get(MO.getReg()).Name;
- else
- O << "%reg" << MO.getReg();
- return;
-
- case MachineOperand::MO_SignExtendedImmed:
- case MachineOperand::MO_UnextendedImmed:
- O << (int)MO.getImmedValue();
- return;
- case MachineOperand::MO_MachineBasicBlock: {
- MachineBasicBlock *MBBOp = MO.getMachineBasicBlock();
- O << ".LBB" << Mang->getValueName(MBBOp->getParent()->getFunction())
- << "_" << MBBOp->getNumber () << "\t# "
- << MBBOp->getBasicBlock ()->getName ();
- return;
- }
- case MachineOperand::MO_PCRelativeDisp:
- std::cerr << "Shouldn't use addPCDisp() when building X86 MachineInstrs";
- abort ();
- return;
- case MachineOperand::MO_GlobalAddress:
- if (!elideOffsetKeyword)
- O << "OFFSET ";
- O << Mang->getValueName(MO.getGlobal());
- return;
- case MachineOperand::MO_ExternalSymbol:
- O << MO.getSymbolName();
- return;
- default:
- O << "<unknown operand type>"; return;
- }
-}
-
-static const char* const sizePtr(const TargetInstrDescriptor &Desc) {
- switch (Desc.TSFlags & X86II::MemMask) {
- default: assert(0 && "Unknown arg size!");
- case X86II::Mem8: return "BYTE PTR";
- case X86II::Mem16: return "WORD PTR";
- case X86II::Mem32: return "DWORD PTR";
- case X86II::Mem64: return "QWORD PTR";
- case X86II::Mem80: return "XWORD PTR";
- }
-}
-
-void Printer::printMemReference(const MachineInstr *MI, unsigned Op) {
- assert(isMem(MI, Op) && "Invalid memory reference!");
-
- if (MI->getOperand(Op).isFrameIndex()) {
- O << "[frame slot #" << MI->getOperand(Op).getFrameIndex();
- if (MI->getOperand(Op+3).getImmedValue())
- O << " + " << MI->getOperand(Op+3).getImmedValue();
- O << "]";
- return;
- } else if (MI->getOperand(Op).isConstantPoolIndex()) {
- O << "[.CPI" << CurrentFnName << "_"
- << MI->getOperand(Op).getConstantPoolIndex();
- if (MI->getOperand(Op+3).getImmedValue())
- O << " + " << MI->getOperand(Op+3).getImmedValue();
- O << "]";
- return;
- }
-
- const MachineOperand &BaseReg = MI->getOperand(Op);
- int ScaleVal = MI->getOperand(Op+1).getImmedValue();
- const MachineOperand &IndexReg = MI->getOperand(Op+2);
- int DispVal = MI->getOperand(Op+3).getImmedValue();
-
- O << "[";
- bool NeedPlus = false;
- if (BaseReg.getReg()) {
- printOp(BaseReg);
- NeedPlus = true;
- }
-
- if (IndexReg.getReg()) {
- if (NeedPlus) O << " + ";
- if (ScaleVal != 1)
- O << ScaleVal << "*";
- printOp(IndexReg);
- NeedPlus = true;
- }
-
- if (DispVal) {
- if (NeedPlus)
- if (DispVal > 0)
- O << " + ";
- else {
- O << " - ";
- DispVal = -DispVal;
- }
- O << DispVal;
- }
- O << "]";
-}
-
-
-/// printImplUsesBefore - Emit the implicit-use registers for the instruction
-/// described by DESC, if its PrintImplUsesBefore flag is set.
-///
-void Printer::printImplUsesBefore(const TargetInstrDescriptor &Desc) {
- const MRegisterInfo &RI = *TM.getRegisterInfo();
- if (Desc.TSFlags & X86II::PrintImplUsesBefore) {
- for (const unsigned *p = Desc.ImplicitUses; *p; ++p) {
- // Bug Workaround: See note in Printer::doInitialization about %.
- O << "%" << RI.get(*p).Name << ", ";
- }
- }
-}
-
-/// printImplDefsBefore - Emit the implicit-def registers for the instruction
-/// described by DESC, if its PrintImplUsesBefore flag is set. Return true if
-/// we printed any registers.
-///
-bool Printer::printImplDefsBefore(const TargetInstrDescriptor &Desc) {
- bool Printed = false;
- const MRegisterInfo &RI = *TM.getRegisterInfo();
- if (Desc.TSFlags & X86II::PrintImplDefsBefore) {
- const unsigned *p = Desc.ImplicitDefs;
- if (*p) {
- O << (Printed ? ", %" : "%") << RI.get (*p).Name;
- Printed = true;
- ++p;
- }
- while (*p) {
- // Bug Workaround: See note in Printer::doInitialization about %.
- O << ", %" << RI.get(*p).Name;
- ++p;
- }
- }
- return Printed;
-}
-
-
-/// printImplUsesAfter - Emit the implicit-use registers for the instruction
-/// described by DESC, if its PrintImplUsesAfter flag is set.
-///
-/// Inputs:
-/// Comma - List of registers will need a leading comma.
-/// Desc - Description of the Instruction.
-///
-/// Return value:
-/// true - Emitted one or more registers.
-/// false - Emitted no registers.
-///
-bool Printer::printImplUsesAfter(const TargetInstrDescriptor &Desc,
- const bool Comma = true) {
- const MRegisterInfo &RI = *TM.getRegisterInfo();
- if (Desc.TSFlags & X86II::PrintImplUsesAfter) {
- bool emitted = false;
- const unsigned *p = Desc.ImplicitUses;
- if (*p) {
- O << (Comma ? ", %" : "%") << RI.get (*p).Name;
- emitted = true;
- ++p;
- }
- while (*p) {
- // Bug Workaround: See note in Printer::doInitialization about %.
- O << ", %" << RI.get(*p).Name;
- ++p;
- }
- return emitted;
- }
- return false;
-}
-
-/// printImplDefsAfter - Emit the implicit-definition registers for the
-/// instruction described by DESC, if its PrintImplDefsAfter flag is set.
-///
-/// Inputs:
-/// Comma - List of registers will need a leading comma.
-/// Desc - Description of the Instruction
-///
-/// Return value:
-/// true - Emitted one or more registers.
-/// false - Emitted no registers.
-///
-bool Printer::printImplDefsAfter(const TargetInstrDescriptor &Desc,
- const bool Comma = true) {
- const MRegisterInfo &RI = *TM.getRegisterInfo();
- if (Desc.TSFlags & X86II::PrintImplDefsAfter) {
- bool emitted = false;
- const unsigned *p = Desc.ImplicitDefs;
- if (*p) {
- O << (Comma ? ", %" : "%") << RI.get (*p).Name;
- emitted = true;
- ++p;
- }
- while (*p) {
- // Bug Workaround: See note in Printer::doInitialization about %.
- O << ", %" << RI.get(*p).Name;
- ++p;
- }
- return emitted;
- }
- return false;
-}
-
-/// printMachineInstruction -- Print out a single X86 LLVM instruction
-/// MI in Intel syntax to the current output stream.
-///
-void Printer::printMachineInstruction(const MachineInstr *MI) {
- unsigned Opcode = MI->getOpcode();
- const TargetInstrInfo &TII = *TM.getInstrInfo();
- const TargetInstrDescriptor &Desc = TII.get(Opcode);
-
- ++EmittedInsts;
- switch (Desc.TSFlags & X86II::FormMask) {
- case X86II::Pseudo:
- // Print pseudo-instructions as comments; either they should have been
- // turned into real instructions by now, or they don't need to be
- // seen by the assembler (e.g., IMPLICIT_USEs.)
- O << "# ";
- if (Opcode == X86::PHI) {
- printOp(MI->getOperand(0));
- O << " = phi ";
- for (unsigned i = 1, e = MI->getNumOperands(); i != e; i+=2) {
- if (i != 1) O << ", ";
- O << "[";
- printOp(MI->getOperand(i));
- O << ", ";
- printOp(MI->getOperand(i+1));
- O << "]";
- }
- } else {
- unsigned i = 0;
- if (MI->getNumOperands() && MI->getOperand(0).isDef()) {
- printOp(MI->getOperand(0));
- O << " = ";
- ++i;
- }
- O << TII.getName(MI->getOpcode());
-
- for (unsigned e = MI->getNumOperands(); i != e; ++i) {
- O << " ";
- if (MI->getOperand(i).isDef()) O << "*";
- printOp(MI->getOperand(i));
- if (MI->getOperand(i).isDef()) O << "*";
- }
- }
- O << "\n";
- return;
-
- case X86II::RawFrm:
- {
- // The accepted forms of Raw instructions are:
- // 1. nop - No operand required
- // 2. jmp foo - MachineBasicBlock operand
- // 3. call bar - GlobalAddress Operand or External Symbol Operand
- // 4. in AL, imm - Immediate operand
- //
- assert(MI->getNumOperands() == 0 ||
- (MI->getNumOperands() == 1 &&
- (MI->getOperand(0).isMachineBasicBlock() ||
- MI->getOperand(0).isGlobalAddress() ||
- MI->getOperand(0).isExternalSymbol() ||
- MI->getOperand(0).isImmediate())) &&
- "Illegal raw instruction!");
- O << TII.getName(MI->getOpcode()) << " ";
-
- bool LeadingComma = printImplDefsBefore(Desc);
-
- if (MI->getNumOperands() == 1) {
- if (LeadingComma) O << ", ";
- printOp(MI->getOperand(0), true); // Don't print "OFFSET"...
- LeadingComma = true;
- }
- LeadingComma = printImplDefsAfter(Desc, LeadingComma) || LeadingComma;
- printImplUsesAfter(Desc, LeadingComma);
- O << "\n";
- return;
- }
-
- case X86II::AddRegFrm: {
- // There are currently two forms of acceptable AddRegFrm instructions.
- // Either the instruction JUST takes a single register (like inc, dec, etc),
- // or it takes a register and an immediate of the same size as the register
- // (move immediate f.e.). Note that this immediate value might be stored as
- // an LLVM value, to represent, for example, loading the address of a global
- // into a register. The initial register might be duplicated if this is a
- // M_2_ADDR_REG instruction
- //
- assert(MI->getOperand(0).isRegister() &&
- (MI->getNumOperands() == 1 ||
- (MI->getNumOperands() == 2 &&
- (MI->getOperand(1).getVRegValueOrNull() ||
- MI->getOperand(1).isImmediate() ||
- MI->getOperand(1).isRegister() ||
- MI->getOperand(1).isGlobalAddress() ||
- MI->getOperand(1).isExternalSymbol()))) &&
- "Illegal form for AddRegFrm instruction!");
-
- unsigned Reg = MI->getOperand(0).getReg();
-
- O << TII.getName(MI->getOpcode()) << " ";
-
- printImplUsesBefore(Desc); // fcmov*
-
- printOp(MI->getOperand(0));
- if (MI->getNumOperands() == 2 &&
- (!MI->getOperand(1).isRegister() ||
- MI->getOperand(1).getVRegValueOrNull() ||
- MI->getOperand(1).isGlobalAddress() ||
- MI->getOperand(1).isExternalSymbol())) {
- O << ", ";
- printOp(MI->getOperand(1));
- }
- printImplUsesAfter(Desc);
- O << "\n";
- return;
- }
- case X86II::MRMDestReg: {
- // There are three forms of MRMDestReg instructions, those with 2
- // or 3 operands:
- //
- // 2 Operands: this is for things like mov that do not read a
- // second input.
- //
- // 2 Operands: two address instructions which def&use the first
- // argument and use the second as input.
- //
- // 3 Operands: in this form, two address instructions are the same
- // as in 2 but have a constant argument as well.
- //
- bool isTwoAddr = TII.isTwoAddrInstr(Opcode);
- assert(MI->getOperand(0).isRegister() &&
- (MI->getNumOperands() == 2 ||
- (MI->getNumOperands() == 3 && MI->getOperand(2).isImmediate()))
- && "Bad format for MRMDestReg!");
-
- O << TII.getName(MI->getOpcode()) << " ";
- printOp(MI->getOperand(0));
- O << ", ";
- printOp(MI->getOperand(1));
- if (MI->getNumOperands() == 3) {
- O << ", ";
- printOp(MI->getOperand(2));
- }
- printImplUsesAfter(Desc);
- O << "\n";
- return;
- }
-
- case X86II::MRMDestMem: {
- // These instructions are the same as MRMDestReg, but instead of having a
- // register reference for the mod/rm field, it's a memory reference.
- //
- assert(isMem(MI, 0) &&
- (MI->getNumOperands() == 4+1 ||
- (MI->getNumOperands() == 4+2 && MI->getOperand(5).isImmediate()))
- && "Bad format for MRMDestMem!");
-
- O << TII.getName(MI->getOpcode()) << " " << sizePtr(Desc) << " ";
- printMemReference(MI, 0);
- O << ", ";
- printOp(MI->getOperand(4));
- if (MI->getNumOperands() == 4+2) {
- O << ", ";
- printOp(MI->getOperand(5));
- }
- printImplUsesAfter(Desc);
- O << "\n";
- return;
- }
-
- case X86II::MRMSrcReg: {
- // There are three forms that are acceptable for MRMSrcReg
- // instructions, those with 2 or 3 operands:
- //
- // 2 Operands: this is for things like mov that do not read a
- // second input.
- //
- // 2 Operands: in this form, the last register is the ModR/M
- // input. The first operand is a def&use. This is for things
- // like: add r32, r/m32
- //
- // 3 Operands: in this form, we can have 'INST R1, R2, imm', which is used
- // for instructions like the IMULrri instructions.
- //
- //
- assert(MI->getOperand(0).isRegister() &&
- MI->getOperand(1).isRegister() &&
- (MI->getNumOperands() == 2 ||
- (MI->getNumOperands() == 3 &&
- (MI->getOperand(2).isImmediate())))
- && "Bad format for MRMSrcReg!");
-
- O << TII.getName(MI->getOpcode()) << " ";
- printOp(MI->getOperand(0));
- O << ", ";
- printOp(MI->getOperand(1));
- if (MI->getNumOperands() == 3) {
- O << ", ";
- printOp(MI->getOperand(2));
- }
- O << "\n";
- return;
- }
-
- case X86II::MRMSrcMem: {
- // These instructions are the same as MRMSrcReg, but instead of having a
- // register reference for the mod/rm field, it's a memory reference.
- //
- assert(MI->getOperand(0).isRegister() &&
- ((MI->getNumOperands() == 1+4 && isMem(MI, 1)) ||
- (MI->getNumOperands() == 2+4 && MI->getOperand(5).isImmediate() &&
- isMem(MI, 1)))
- && "Bad format for MRMSrcMem!");
- O << TII.getName(MI->getOpcode()) << " ";
- printOp(MI->getOperand(0));
- O << ", " << sizePtr(Desc) << " ";
- printMemReference(MI, 1);
- if (MI->getNumOperands() == 2+4) {
- O << ", ";
- printOp(MI->getOperand(5));
- }
- O << "\n";
- return;
- }
-
- case X86II::MRM0r: case X86II::MRM1r:
- case X86II::MRM2r: case X86II::MRM3r:
- case X86II::MRM4r: case X86II::MRM5r:
- case X86II::MRM6r: case X86II::MRM7r: {
- // In this form, the following are valid formats:
- // 1. sete r
- // 2. cmp reg, immediate
- // 2. shl rdest, rinput <implicit CL or 1>
- // 3. sbb rdest, rinput, immediate [rdest = rinput]
- //
- assert(MI->getNumOperands() > 0 && MI->getNumOperands() < 4 &&
- MI->getOperand(0).isRegister() && "Bad MRMSxR format!");
- assert((MI->getNumOperands() != 2 ||
- MI->getOperand(1).isRegister() || MI->getOperand(1).isImmediate())&&
- "Bad MRMSxR format!");
- assert((MI->getNumOperands() < 3 ||
- (MI->getOperand(1).isRegister() && MI->getOperand(2).isImmediate())) &&
- "Bad MRMSxR format!");
-
- if (MI->getNumOperands() > 1 && MI->getOperand(1).isRegister() &&
- MI->getOperand(0).getReg() != MI->getOperand(1).getReg())
- O << "**";
-
- O << TII.getName(MI->getOpcode()) << " ";
- printOp(MI->getOperand(0));
- if (MI->getOperand(MI->getNumOperands()-1).isImmediate()) {
- O << ", ";
- printOp(MI->getOperand(MI->getNumOperands()-1));
- }
- printImplUsesAfter(Desc);
- O << "\n";
-
- return;
- }
-
- case X86II::MRM0m: case X86II::MRM1m:
- case X86II::MRM2m: case X86II::MRM3m:
- case X86II::MRM4m: case X86II::MRM5m:
- case X86II::MRM6m: case X86II::MRM7m: {
- // In this form, the following are valid formats:
- // 1. sete [m]
- // 2. cmp [m], immediate
- // 2. shl [m], rinput <implicit CL or 1>
- // 3. sbb [m], immediate
- //
- assert(MI->getNumOperands() >= 4 && MI->getNumOperands() <= 5 &&
- isMem(MI, 0) && "Bad MRMSxM format!");
- assert((MI->getNumOperands() != 5 ||
- (MI->getOperand(4).isImmediate() ||
- MI->getOperand(4).isGlobalAddress())) &&
- "Bad MRMSxM format!");
-
- const MachineOperand &Op3 = MI->getOperand(3);
-
- // gas bugs:
- //
- // The 80-bit FP store-pop instruction "fstp XWORD PTR [...]"
- // is misassembled by gas in intel_syntax mode as its 32-bit
- // equivalent "fstp DWORD PTR [...]". Workaround: Output the raw
- // opcode bytes instead of the instruction.
- //
- // The 80-bit FP load instruction "fld XWORD PTR [...]" is
- // misassembled by gas in intel_syntax mode as its 32-bit
- // equivalent "fld DWORD PTR [...]". Workaround: Output the raw
- // opcode bytes instead of the instruction.
- //
- // gas intel_syntax mode treats "fild QWORD PTR [...]" as an
- // invalid opcode, saying "64 bit operations are only supported in
- // 64 bit modes." libopcodes disassembles it as "fild DWORD PTR
- // [...]", which is wrong. Workaround: Output the raw opcode bytes
- // instead of the instruction.
- //
- // gas intel_syntax mode treats "fistp QWORD PTR [...]" as an
- // invalid opcode, saying "64 bit operations are only supported in
- // 64 bit modes." libopcodes disassembles it as "fistpll DWORD PTR
- // [...]", which is wrong. Workaround: Output the raw opcode bytes
- // instead of the instruction.
- if (MI->getOpcode() == X86::FSTP80m ||
- MI->getOpcode() == X86::FLD80m ||
- MI->getOpcode() == X86::FILD64m ||
- MI->getOpcode() == X86::FISTP64m) {
- GasBugWorkaroundEmitter gwe(O);
- X86::emitInstruction(gwe, (X86InstrInfo&)*TM.getInstrInfo(), *MI);
- }
-
- O << TII.getName(MI->getOpcode()) << " ";
- O << sizePtr(Desc) << " ";
- printMemReference(MI, 0);
- if (MI->getNumOperands() == 5) {
- O << ", ";
- printOp(MI->getOperand(4));
- }
- printImplUsesAfter(Desc);
- O << "\n";
- return;
- }
- default:
- O << "\tUNKNOWN FORM:\t\t-"; MI->print(O, &TM); break;
- }
-}
-
-bool Printer::doInitialization(Module &M) {
- // Tell gas we are outputting Intel syntax (not AT&T syntax) assembly.
- //
- // Bug: gas in `intel_syntax noprefix' mode interprets the symbol `Sp' in an
- // instruction as a reference to the register named sp, and if you try to
- // reference a symbol `Sp' (e.g. `mov ECX, OFFSET Sp') then it gets lowercased
- // before being looked up in the symbol table. This creates spurious
- // `undefined symbol' errors when linking. Workaround: Do not use `noprefix'
- // mode, and decorate all register names with percent signs.
- O << "\t.intel_syntax\n";
- Mang = new Mangler(M, EmitCygwin);
- return false; // success
-}
-
-// SwitchSection - Switch to the specified section of the executable if we are
-// not already in it!
-//
-static void SwitchSection(std::ostream &OS, std::string &CurSection,
- const char *NewSection) {
- if (CurSection != NewSection) {
- CurSection = NewSection;
- if (!CurSection.empty())
- OS << "\t" << NewSection << "\n";
- }
-}
-
-bool Printer::doFinalization(Module &M) {
- const TargetData &TD = TM.getTargetData();
- std::string CurSection;
-
- // Print out module-level global variables here.
- for (Module::const_giterator I = M.gbegin(), E = M.gend(); I != E; ++I)
- if (I->hasInitializer()) { // External global require no code
- O << "\n\n";
- std::string name = Mang->getValueName(I);
- Constant *C = I->getInitializer();
- unsigned Size = TD.getTypeSize(C->getType());
- unsigned Align = TD.getTypeAlignment(C->getType());
-
- if (C->isNullValue() &&
- (I->hasLinkOnceLinkage() || I->hasInternalLinkage() ||
- I->hasWeakLinkage() /* FIXME: Verify correct */)) {
- SwitchSection(O, CurSection, ".data");
- if (I->hasInternalLinkage())
- O << "\t.local " << name << "\n";
-
- O << "\t.comm " << name << "," << TD.getTypeSize(C->getType())
- << "," << (unsigned)TD.getTypeAlignment(C->getType());
- O << "\t\t# ";
- WriteAsOperand(O, I, true, true, &M);
- O << "\n";
- } else {
- switch (I->getLinkage()) {
- case GlobalValue::LinkOnceLinkage:
- case GlobalValue::WeakLinkage: // FIXME: Verify correct for weak.
- // Nonnull linkonce -> weak
- O << "\t.weak " << name << "\n";
- SwitchSection(O, CurSection, "");
- O << "\t.section\t.llvm.linkonce.d." << name << ",\"aw\",@progbits\n";
- break;
-
- case GlobalValue::AppendingLinkage:
- // FIXME: appending linkage variables should go into a section of
- // their name or something. For now, just emit them as external.
- case GlobalValue::ExternalLinkage:
- // If external or appending, declare as a global symbol
- O << "\t.globl " << name << "\n";
- // FALL THROUGH
- case GlobalValue::InternalLinkage:
- if (C->isNullValue())
- SwitchSection(O, CurSection, ".bss");
- else
- SwitchSection(O, CurSection, ".data");
- break;
- }
-
- O << "\t.align " << Align << "\n";
- O << "\t.type " << name << ",@object\n";
- O << "\t.size " << name << "," << Size << "\n";
- O << name << ":\t\t\t\t# ";
- WriteAsOperand(O, I, true, true, &M);
- O << " = ";
- WriteAsOperand(O, C, false, false, &M);
- O << "\n";
- emitGlobalConstant(C);
- }
- }
-
- delete Mang;
- return false; // success
-}