summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorMisha Brukman <brukman+llvm@gmail.com>2004-10-08 18:12:14 +0000
committerMisha Brukman <brukman+llvm@gmail.com>2004-10-08 18:12:14 +0000
commitc8e049124e1e10475217d406990dbc1d34f2d15c (patch)
tree00dc7b99277bc80a3d108f81ab53146137a2dcc5
parent855ae5a8f77c05753c91c60c1f1b6d9efcd8138d (diff)
downloadllvm-c8e049124e1e10475217d406990dbc1d34f2d15c.tar.gz
llvm-c8e049124e1e10475217d406990dbc1d34f2d15c.tar.bz2
llvm-c8e049124e1e10475217d406990dbc1d34f2d15c.tar.xz
InstrSched is SparcV9-specific and so has been moved to lib/Target/SparcV9/
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@16849 91177308-0d34-0410-b5e6-96231b3b80d8
-rw-r--r--lib/CodeGen/InstrSched/InstrScheduling.cpp1499
-rw-r--r--lib/CodeGen/InstrSched/Makefile14
-rw-r--r--lib/CodeGen/InstrSched/SchedGraph.cpp737
-rw-r--r--lib/CodeGen/InstrSched/SchedGraph.h262
-rw-r--r--lib/CodeGen/InstrSched/SchedGraphCommon.cpp180
-rw-r--r--lib/CodeGen/InstrSched/SchedPriorities.cpp284
-rw-r--r--lib/CodeGen/InstrSched/SchedPriorities.h221
7 files changed, 0 insertions, 3197 deletions
diff --git a/lib/CodeGen/InstrSched/InstrScheduling.cpp b/lib/CodeGen/InstrSched/InstrScheduling.cpp
deleted file mode 100644
index 69ecb90f31..0000000000
--- a/lib/CodeGen/InstrSched/InstrScheduling.cpp
+++ /dev/null
@@ -1,1499 +0,0 @@
-//===- InstrScheduling.cpp - Generic Instruction Scheduling support -------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements the llvm/CodeGen/InstrScheduling.h interface, along with
-// generic support routines for instruction scheduling.
-//
-//===----------------------------------------------------------------------===//
-
-#include "SchedPriorities.h"
-#include "llvm/BasicBlock.h"
-#include "llvm/CodeGen/MachineInstr.h"
-#include "llvm/CodeGen/MachineFunction.h"
-#include "llvm/Target/TargetMachine.h"
-#include "../../Target/SparcV9/MachineCodeForInstruction.h"
-#include "../../Target/SparcV9/LiveVar/FunctionLiveVarInfo.h"
-#include "../../Target/SparcV9/SparcV9InstrInfo.h"
-#include "llvm/Support/CommandLine.h"
-#include <algorithm>
-#include <iostream>
-
-namespace llvm {
-
-SchedDebugLevel_t SchedDebugLevel;
-
-static cl::opt<bool> EnableFillingDelaySlots("sched-fill-delay-slots",
- cl::desc("Fill branch delay slots during local scheduling"));
-
-static cl::opt<SchedDebugLevel_t, true>
-SDL_opt("dsched", cl::Hidden, cl::location(SchedDebugLevel),
- cl::desc("enable instruction scheduling debugging information"),
- cl::values(
- clEnumValN(Sched_NoDebugInfo, "n", "disable debug output"),
- clEnumValN(Sched_PrintMachineCode, "y", "print machine code after scheduling"),
- clEnumValN(Sched_PrintSchedTrace, "t", "print trace of scheduling actions"),
- clEnumValN(Sched_PrintSchedGraphs, "g", "print scheduling graphs"),
- clEnumValEnd));
-
-
-//************************* Internal Data Types *****************************/
-
-class InstrSchedule;
-class SchedulingManager;
-
-
-//----------------------------------------------------------------------
-// class InstrGroup:
-//
-// Represents a group of instructions scheduled to be issued
-// in a single cycle.
-//----------------------------------------------------------------------
-
-class InstrGroup {
- InstrGroup(const InstrGroup&); // DO NOT IMPLEMENT
- void operator=(const InstrGroup&); // DO NOT IMPLEMENT
-
-public:
- inline const SchedGraphNode* operator[](unsigned int slotNum) const {
- assert(slotNum < group.size());
- return group[slotNum];
- }
-
-private:
- friend class InstrSchedule;
-
- inline void addInstr(const SchedGraphNode* node, unsigned int slotNum) {
- assert(slotNum < group.size());
- group[slotNum] = node;
- }
-
- /*ctor*/ InstrGroup(unsigned int nslots)
- : group(nslots, NULL) {}
-
- /*ctor*/ InstrGroup(); // disable: DO NOT IMPLEMENT
-
-private:
- std::vector<const SchedGraphNode*> group;
-};
-
-
-//----------------------------------------------------------------------
-// class ScheduleIterator:
-//
-// Iterates over the machine instructions in the for a single basic block.
-// The schedule is represented by an InstrSchedule object.
-//----------------------------------------------------------------------
-
-template<class _NodeType>
-class ScheduleIterator : public forward_iterator<_NodeType, ptrdiff_t> {
-private:
- unsigned cycleNum;
- unsigned slotNum;
- const InstrSchedule& S;
-public:
- typedef ScheduleIterator<_NodeType> _Self;
-
- /*ctor*/ inline ScheduleIterator(const InstrSchedule& _schedule,
- unsigned _cycleNum,
- unsigned _slotNum)
- : cycleNum(_cycleNum), slotNum(_slotNum), S(_schedule) {
- skipToNextInstr();
- }
-
- /*ctor*/ inline ScheduleIterator(const _Self& x)
- : cycleNum(x.cycleNum), slotNum(x.slotNum), S(x.S) {}
-
- inline bool operator==(const _Self& x) const {
- return (slotNum == x.slotNum && cycleNum== x.cycleNum && &S==&x.S);
- }
-
- inline bool operator!=(const _Self& x) const { return !operator==(x); }
-
- inline _NodeType* operator*() const;
- inline _NodeType* operator->() const { return operator*(); }
-
- _Self& operator++(); // Preincrement
- inline _Self operator++(int) { // Postincrement
- _Self tmp(*this); ++*this; return tmp;
- }
-
- static _Self begin(const InstrSchedule& _schedule);
- static _Self end( const InstrSchedule& _schedule);
-
-private:
- inline _Self& operator=(const _Self& x); // DISABLE -- DO NOT IMPLEMENT
- void skipToNextInstr();
-};
-
-
-//----------------------------------------------------------------------
-// class InstrSchedule:
-//
-// Represents the schedule of machine instructions for a single basic block.
-//----------------------------------------------------------------------
-
-class InstrSchedule {
- const unsigned int nslots;
- unsigned int numInstr;
- std::vector<InstrGroup*> groups; // indexed by cycle number
- std::vector<cycles_t> startTime; // indexed by node id
-
- InstrSchedule(InstrSchedule&); // DO NOT IMPLEMENT
- void operator=(InstrSchedule&); // DO NOT IMPLEMENT
-
-public: // iterators
- typedef ScheduleIterator<SchedGraphNode> iterator;
- typedef ScheduleIterator<const SchedGraphNode> const_iterator;
-
- iterator begin() { return iterator::begin(*this); }
- const_iterator begin() const { return const_iterator::begin(*this); }
- iterator end() { return iterator::end(*this); }
- const_iterator end() const { return const_iterator::end(*this); }
-
-public: // constructors and destructor
- /*ctor*/ InstrSchedule (unsigned int _nslots,
- unsigned int _numNodes);
- /*dtor*/ ~InstrSchedule ();
-
-public: // accessor functions to query chosen schedule
- const SchedGraphNode* getInstr (unsigned int slotNum,
- cycles_t c) const {
- const InstrGroup* igroup = this->getIGroup(c);
- return (igroup == NULL)? NULL : (*igroup)[slotNum];
- }
-
- inline InstrGroup* getIGroup (cycles_t c) {
- if ((unsigned)c >= groups.size())
- groups.resize(c+1);
- if (groups[c] == NULL)
- groups[c] = new InstrGroup(nslots);
- return groups[c];
- }
-
- inline const InstrGroup* getIGroup (cycles_t c) const {
- assert((unsigned)c < groups.size());
- return groups[c];
- }
-
- inline cycles_t getStartTime (unsigned int nodeId) const {
- assert(nodeId < startTime.size());
- return startTime[nodeId];
- }
-
- unsigned int getNumInstructions() const {
- return numInstr;
- }
-
- inline void scheduleInstr (const SchedGraphNode* node,
- unsigned int slotNum,
- cycles_t cycle) {
- InstrGroup* igroup = this->getIGroup(cycle);
- if (!((*igroup)[slotNum] == NULL)) {
- std::cerr << "Slot already filled?\n";
- abort();
- }
- igroup->addInstr(node, slotNum);
- assert(node->getNodeId() < startTime.size());
- startTime[node->getNodeId()] = cycle;
- ++numInstr;
- }
-
-private:
- friend class ScheduleIterator<SchedGraphNode>;
- friend class ScheduleIterator<const SchedGraphNode>;
- /*ctor*/ InstrSchedule (); // Disable: DO NOT IMPLEMENT.
-};
-
-template<class NodeType>
-inline NodeType *ScheduleIterator<NodeType>::operator*() const {
- assert(cycleNum < S.groups.size());
- return (*S.groups[cycleNum])[slotNum];
-}
-
-
-/*ctor*/
-InstrSchedule::InstrSchedule(unsigned int _nslots, unsigned int _numNodes)
- : nslots(_nslots),
- numInstr(0),
- groups(2 * _numNodes / _nslots), // 2 x lower-bound for #cycles
- startTime(_numNodes, (cycles_t) -1) // set all to -1
-{
-}
-
-
-/*dtor*/
-InstrSchedule::~InstrSchedule()
-{
- for (unsigned c=0, NC=groups.size(); c < NC; c++)
- if (groups[c] != NULL)
- delete groups[c]; // delete InstrGroup objects
-}
-
-
-template<class _NodeType>
-inline
-void
-ScheduleIterator<_NodeType>::skipToNextInstr()
-{
- while(cycleNum < S.groups.size() && S.groups[cycleNum] == NULL)
- ++cycleNum; // skip cycles with no instructions
-
- while (cycleNum < S.groups.size() &&
- (*S.groups[cycleNum])[slotNum] == NULL)
- {
- ++slotNum;
- if (slotNum == S.nslots) {
- ++cycleNum;
- slotNum = 0;
- while(cycleNum < S.groups.size() && S.groups[cycleNum] == NULL)
- ++cycleNum; // skip cycles with no instructions
- }
- }
-}
-
-template<class _NodeType>
-inline
-ScheduleIterator<_NodeType>&
-ScheduleIterator<_NodeType>::operator++() // Preincrement
-{
- ++slotNum;
- if (slotNum == S.nslots) {
- ++cycleNum;
- slotNum = 0;
- }
- skipToNextInstr();
- return *this;
-}
-
-template<class _NodeType>
-ScheduleIterator<_NodeType>
-ScheduleIterator<_NodeType>::begin(const InstrSchedule& _schedule)
-{
- return _Self(_schedule, 0, 0);
-}
-
-template<class _NodeType>
-ScheduleIterator<_NodeType>
-ScheduleIterator<_NodeType>::end(const InstrSchedule& _schedule)
-{
- return _Self(_schedule, _schedule.groups.size(), 0);
-}
-
-
-//----------------------------------------------------------------------
-// class DelaySlotInfo:
-//
-// Record information about delay slots for a single branch instruction.
-// Delay slots are simply indexed by slot number 1 ... numDelaySlots
-//----------------------------------------------------------------------
-
-class DelaySlotInfo {
- const SchedGraphNode* brNode;
- unsigned ndelays;
- std::vector<const SchedGraphNode*> delayNodeVec;
- cycles_t delayedNodeCycle;
- unsigned delayedNodeSlotNum;
-
- DelaySlotInfo(const DelaySlotInfo &); // DO NOT IMPLEMENT
- void operator=(const DelaySlotInfo&); // DO NOT IMPLEMENT
-public:
- /*ctor*/ DelaySlotInfo (const SchedGraphNode* _brNode,
- unsigned _ndelays)
- : brNode(_brNode), ndelays(_ndelays),
- delayedNodeCycle(0), delayedNodeSlotNum(0) {}
-
- inline unsigned getNumDelays () {
- return ndelays;
- }
-
- inline const std::vector<const SchedGraphNode*>& getDelayNodeVec() {
- return delayNodeVec;
- }
-
- inline void addDelayNode (const SchedGraphNode* node) {
- delayNodeVec.push_back(node);
- assert(delayNodeVec.size() <= ndelays && "Too many delay slot instrs!");
- }
-
- inline void recordChosenSlot (cycles_t cycle, unsigned slotNum) {
- delayedNodeCycle = cycle;
- delayedNodeSlotNum = slotNum;
- }
-
- unsigned scheduleDelayedNode (SchedulingManager& S);
-};
-
-
-//----------------------------------------------------------------------
-// class SchedulingManager:
-//
-// Represents the schedule of machine instructions for a single basic block.
-//----------------------------------------------------------------------
-
-class SchedulingManager {
- SchedulingManager(SchedulingManager &); // DO NOT IMPLEMENT
- void operator=(const SchedulingManager &); // DO NOT IMPLEMENT
-public: // publicly accessible data members
- const unsigned nslots;
- const TargetSchedInfo& schedInfo;
- SchedPriorities& schedPrio;
- InstrSchedule isched;
-
-private:
- unsigned totalInstrCount;
- cycles_t curTime;
- cycles_t nextEarliestIssueTime; // next cycle we can issue
- // indexed by slot#
- std::vector<hash_set<const SchedGraphNode*> > choicesForSlot;
- std::vector<const SchedGraphNode*> choiceVec; // indexed by node ptr
- std::vector<int> numInClass; // indexed by sched class
- std::vector<cycles_t> nextEarliestStartTime; // indexed by opCode
- hash_map<const SchedGraphNode*, DelaySlotInfo*> delaySlotInfoForBranches;
- // indexed by branch node ptr
-
-public:
- SchedulingManager(const TargetMachine& _target, const SchedGraph* graph,
- SchedPriorities& schedPrio);
- ~SchedulingManager() {
- for (hash_map<const SchedGraphNode*,
- DelaySlotInfo*>::iterator I = delaySlotInfoForBranches.begin(),
- E = delaySlotInfoForBranches.end(); I != E; ++I)
- delete I->second;
- }
-
- //----------------------------------------------------------------------
- // Simplify access to the machine instruction info
- //----------------------------------------------------------------------
-
- inline const TargetInstrInfo& getInstrInfo () const {
- return schedInfo.getInstrInfo();
- }
-
- //----------------------------------------------------------------------
- // Interface for checking and updating the current time
- //----------------------------------------------------------------------
-
- inline cycles_t getTime () const {
- return curTime;
- }
-
- inline cycles_t getEarliestIssueTime() const {
- return nextEarliestIssueTime;
- }
-
- inline cycles_t getEarliestStartTimeForOp(MachineOpCode opCode) const {
- assert(opCode < (int) nextEarliestStartTime.size());
- return nextEarliestStartTime[opCode];
- }
-
- // Update current time to specified cycle
- inline void updateTime (cycles_t c) {
- curTime = c;
- schedPrio.updateTime(c);
- }
-
- //----------------------------------------------------------------------
- // Functions to manage the choices for the current cycle including:
- // -- a vector of choices by priority (choiceVec)
- // -- vectors of the choices for each instruction slot (choicesForSlot[])
- // -- number of choices in each sched class, used to check issue conflicts
- // between choices for a single cycle
- //----------------------------------------------------------------------
-
- inline unsigned int getNumChoices () const {
- return choiceVec.size();
- }
-
- inline unsigned getNumChoicesInClass (const InstrSchedClass& sc) const {
- assert(sc < numInClass.size() && "Invalid op code or sched class!");
- return numInClass[sc];
- }
-
- inline const SchedGraphNode* getChoice(unsigned int i) const {
- // assert(i < choiceVec.size()); don't check here.
- return choiceVec[i];
- }
-
- inline hash_set<const SchedGraphNode*>& getChoicesForSlot(unsigned slotNum) {
- assert(slotNum < nslots);
- return choicesForSlot[slotNum];
- }
-
- inline void addChoice (const SchedGraphNode* node) {
- // Append the instruction to the vector of choices for current cycle.
- // Increment numInClass[c] for the sched class to which the instr belongs.
- choiceVec.push_back(node);
- const InstrSchedClass& sc = schedInfo.getSchedClass(node->getOpcode());
- assert(sc < numInClass.size());
- numInClass[sc]++;
- }
-
- inline void addChoiceToSlot (unsigned int slotNum,
- const SchedGraphNode* node) {
- // Add the instruction to the choice set for the specified slot
- assert(slotNum < nslots);
- choicesForSlot[slotNum].insert(node);
- }
-
- inline void resetChoices () {
- choiceVec.clear();
- for (unsigned int s=0; s < nslots; s++)
- choicesForSlot[s].clear();
- for (unsigned int c=0; c < numInClass.size(); c++)
- numInClass[c] = 0;
- }
-
- //----------------------------------------------------------------------
- // Code to query and manage the partial instruction schedule so far
- //----------------------------------------------------------------------
-
- inline unsigned int getNumScheduled () const {
- return isched.getNumInstructions();
- }
-
- inline unsigned int getNumUnscheduled() const {
- return totalInstrCount - isched.getNumInstructions();
- }
-
- inline bool isScheduled (const SchedGraphNode* node) const {
- return (isched.getStartTime(node->getNodeId()) >= 0);
- }
-
- inline void scheduleInstr (const SchedGraphNode* node,
- unsigned int slotNum,
- cycles_t cycle)
- {
- assert(! isScheduled(node) && "Instruction already scheduled?");
-
- // add the instruction to the schedule
- isched.scheduleInstr(node, slotNum, cycle);
-
- // update the earliest start times of all nodes that conflict with `node'
- // and the next-earliest time anything can issue if `node' causes bubbles
- updateEarliestStartTimes(node, cycle);
-
- // remove the instruction from the choice sets for all slots
- for (unsigned s=0; s < nslots; s++)
- choicesForSlot[s].erase(node);
-
- // and decrement the instr count for the sched class to which it belongs
- const InstrSchedClass& sc = schedInfo.getSchedClass(node->getOpcode());
- assert(sc < numInClass.size());
- numInClass[sc]--;
- }
-
- //----------------------------------------------------------------------
- // Create and retrieve delay slot info for delayed instructions
- //----------------------------------------------------------------------
-
- inline DelaySlotInfo* getDelaySlotInfoForInstr(const SchedGraphNode* bn,
- bool createIfMissing=false)
- {
- hash_map<const SchedGraphNode*, DelaySlotInfo*>::const_iterator
- I = delaySlotInfoForBranches.find(bn);
- if (I != delaySlotInfoForBranches.end())
- return I->second;
-
- if (!createIfMissing) return 0;
-
- DelaySlotInfo *dinfo =
- new DelaySlotInfo(bn, getInstrInfo().getNumDelaySlots(bn->getOpcode()));
- return delaySlotInfoForBranches[bn] = dinfo;
- }
-
-private:
- SchedulingManager(); // DISABLED: DO NOT IMPLEMENT
- void updateEarliestStartTimes(const SchedGraphNode* node, cycles_t schedTime);
-};
-
-
-/*ctor*/
-SchedulingManager::SchedulingManager(const TargetMachine& target,
- const SchedGraph* graph,
- SchedPriorities& _schedPrio)
- : nslots(target.getSchedInfo()->getMaxNumIssueTotal()),
- schedInfo(*target.getSchedInfo()),
- schedPrio(_schedPrio),
- isched(nslots, graph->getNumNodes()),
- totalInstrCount(graph->getNumNodes() - 2),
- nextEarliestIssueTime(0),
- choicesForSlot(nslots),
- numInClass(target.getSchedInfo()->getNumSchedClasses(), 0), // set all to 0
- nextEarliestStartTime(target.getInstrInfo()->getNumOpcodes(),
- (cycles_t) 0) // set all to 0
-{
- updateTime(0);
-
- // Note that an upper bound on #choices for each slot is = nslots since
- // we use this vector to hold a feasible set of instructions, and more
- // would be infeasible. Reserve that much memory since it is probably small.
- for (unsigned int i=0; i < nslots; i++)
- choicesForSlot[i].resize(nslots);
-}
-
-
-void
-SchedulingManager::updateEarliestStartTimes(const SchedGraphNode* node,
- cycles_t schedTime)
-{
- if (schedInfo.numBubblesAfter(node->getOpcode()) > 0)
- { // Update next earliest time before which *nothing* can issue.
- nextEarliestIssueTime = std::max(nextEarliestIssueTime,
- curTime + 1 + schedInfo.numBubblesAfter(node->getOpcode()));
- }
-
- const std::vector<MachineOpCode>&
- conflictVec = schedInfo.getConflictList(node->getOpcode());
-
- for (unsigned i=0; i < conflictVec.size(); i++)
- {
- MachineOpCode toOp = conflictVec[i];
- cycles_t est=schedTime + schedInfo.getMinIssueGap(node->getOpcode(),toOp);
- assert(toOp < (int) nextEarliestStartTime.size());
- if (nextEarliestStartTime[toOp] < est)
- nextEarliestStartTime[toOp] = est;
- }
-}
-
-//************************* Internal Functions *****************************/
-
-
-static void
-AssignInstructionsToSlots(class SchedulingManager& S, unsigned maxIssue)
-{
- // find the slot to start from, in the current cycle
- unsigned int startSlot = 0;
- cycles_t curTime = S.getTime();
-
- assert(maxIssue > 0 && maxIssue <= S.nslots - startSlot);
-
- // If only one instruction can be issued, do so.
- if (maxIssue == 1)
- for (unsigned s=startSlot; s < S.nslots; s++)
- if (S.getChoicesForSlot(s).size() > 0) {
- // found the one instruction
- S.scheduleInstr(*S.getChoicesForSlot(s).begin(), s, curTime);
- return;
- }
-
- // Otherwise, choose from the choices for each slot
- //
- InstrGroup* igroup = S.isched.getIGroup(S.getTime());
- assert(igroup != NULL && "Group creation failed?");
-
- // Find a slot that has only a single choice, and take it.
- // If all slots have 0 or multiple choices, pick the first slot with
- // choices and use its last instruction (just to avoid shifting the vector).
- unsigned numIssued;
- for (numIssued = 0; numIssued < maxIssue; numIssued++) {
- int chosenSlot = -1;
- for (unsigned s=startSlot; s < S.nslots; s++)
- if ((*igroup)[s] == NULL && S.getChoicesForSlot(s).size() == 1) {
- chosenSlot = (int) s;
- break;
- }
-
- if (chosenSlot == -1)
- for (unsigned s=startSlot; s < S.nslots; s++)
- if ((*igroup)[s] == NULL && S.getChoicesForSlot(s).size() > 0) {
- chosenSlot = (int) s;
- break;
- }
-
- if (chosenSlot != -1) {
- // Insert the chosen instr in the chosen slot and
- // erase it from all slots.
- const SchedGraphNode* node= *S.getChoicesForSlot(chosenSlot).begin();
- S.scheduleInstr(node, chosenSlot, curTime);
- }
- }
-
- assert(numIssued > 0 && "Should not happen when maxIssue > 0!");
-}
-
-
-//
-// For now, just assume we are scheduling within a single basic block.
-// Get the machine instruction vector for the basic block and clear it,
-// then append instructions in scheduled order.
-// Also, re-insert the dummy PHI instructions that were at the beginning
-// of the basic block, since they are not part of the schedule.
-//
-static void
-RecordSchedule(MachineBasicBlock &MBB, const SchedulingManager& S)
-{
- const TargetInstrInfo& mii = S.schedInfo.getInstrInfo();
-
- // Lets make sure we didn't lose any instructions, except possibly
- // some NOPs from delay slots. Also, PHIs are not included in the schedule.
- unsigned numInstr = 0;
- for (MachineBasicBlock::iterator I=MBB.begin(); I != MBB.end(); ++I)
- if (!(I->getOpcode() == V9::NOP || I->getOpcode() == V9::PHI))
- ++numInstr;
- assert(S.isched.getNumInstructions() >= numInstr &&
- "Lost some non-NOP instructions during scheduling!");
-
- if (S.isched.getNumInstructions() == 0)
- return; // empty basic block!
-
- // First find the dummy instructions at the start of the basic block
- MachineBasicBlock::iterator I = MBB.begin();
- for ( ; I != MBB.end(); ++I)
- if (I->getOpcode() != V9::PHI)
- break;
-
- // Remove all except the dummy PHI instructions from MBB, and
- // pre-allocate create space for the ones we will put back in.
- while (I != MBB.end())
- MBB.remove(I++);
-
- InstrSchedule::const_iterator NIend = S.isched.end();
- for (InstrSchedule::const_iterator NI = S.isched.begin(); NI != NIend; ++NI)
- MBB.push_back(const_cast<MachineInstr*>((*NI)->getMachineInstr()));
-}
-
-
-
-static void
-MarkSuccessorsReady(SchedulingManager& S, const SchedGraphNode* node)
-{
- // Check if any successors are now ready that were not already marked
- // ready before, and that have not yet been scheduled.
- //
- for (sg_succ_const_iterator SI = succ_begin(node); SI !=succ_end(node); ++SI)
- if (! (*SI)->isDummyNode()
- && ! S.isScheduled(*SI)
- && ! S.schedPrio.nodeIsReady(*SI))
- {
- // successor not scheduled and not marked ready; check *its* preds.
-
- bool succIsReady = true;
- for (sg_pred_const_iterator P=pred_begin(*SI); P != pred_end(*SI); ++P)
- if (! (*P)->isDummyNode() && ! S.isScheduled(*P)) {
- succIsReady = false;
- break;
- }
-
- if (succIsReady) // add the successor to the ready list
- S.schedPrio.insertReady(*SI);
- }
-}
-
-
-// Choose up to `nslots' FEASIBLE instructions and assign each
-// instruction to all possible slots that do not violate feasibility.
-// FEASIBLE means it should be guaranteed that the set
-// of chosen instructions can be issued in a single group.
-//
-// Return value:
-// maxIssue : total number of feasible instructions
-// S.choicesForSlot[i=0..nslots] : set of instructions feasible in slot i
-//
-static unsigned
-FindSlotChoices(SchedulingManager& S,
- DelaySlotInfo*& getDelaySlotInfo)
-{
- // initialize result vectors to empty
- S.resetChoices();
-
- // find the slot to start from, in the current cycle
- unsigned int startSlot = 0;
- InstrGroup* igroup = S.isched.getIGroup(S.getTime());
- for (int s = S.nslots - 1; s >= 0; s--)
- if ((*igroup)[s] != NULL) {
- startSlot = s+1;
- break;
- }
-
- // Make sure we pick at most one instruction that would break the group.
- // Also, if we do pick one, remember which it was.
- unsigned int indexForBreakingNode = S.nslots;
- unsigned int indexForDelayedInstr = S.nslots;
- DelaySlotInfo* delaySlotInfo = NULL;
-
- getDelaySlotInfo = NULL;
-
- // Choose instructions in order of priority.
- // Add choices to the choice vector in the SchedulingManager class as
- // we choose them so that subsequent choices will be correctly tested
- // for feasibility, w.r.t. higher priority choices for the same cycle.
- //
- while (S.getNumChoices() < S.nslots - startSlot) {
- const SchedGraphNode* nextNode=S.schedPrio.getNextHighest(S,S.getTime());
- if (nextNode == NULL)
- break; // no more instructions for this cycle
-
- if (S.getInstrInfo().getNumDelaySlots(nextNode->getOpcode()) > 0) {
- delaySlotInfo = S.getDelaySlotInfoForInstr(nextNode);
- if (delaySlotInfo != NULL) {
- if (indexForBreakingNode < S.nslots)
- // cannot issue a delayed instr in the same cycle as one
- // that breaks the issue group or as another delayed instr
- nextNode = NULL;
- else
- indexForDelayedInstr = S.getNumChoices();
- }
- } else if (S.schedInfo.breaksIssueGroup(nextNode->getOpcode())) {
- if (indexForBreakingNode < S.nslots)
- // have a breaking instruction already so throw this one away
- nextNode = NULL;
- else
- indexForBreakingNode = S.getNumChoices();
- }
-
- if (nextNode != NULL) {
- S.addChoice(nextNode);
-
- if (S.schedInfo.isSingleIssue(nextNode->getOpcode())) {
- assert(S.getNumChoices() == 1 &&
- "Prioritizer returned invalid instr for this cycle!");
- break;
- }
- }
-
- if (indexForDelayedInstr < S.nslots)
- break; // leave the rest for delay slots
- }
-
- assert(S.getNumChoices() <= S.nslots);
- assert(! (indexForDelayedInstr < S.nslots &&
- indexForBreakingNode < S.nslots) && "Cannot have both in a cycle");
-
- // Assign each chosen instruction to all possible slots for that instr.
- // But if only one instruction was chosen, put it only in the first
- // feasible slot; no more analysis will be needed.
- //
- if (indexForDelayedInstr >= S.nslots &&
- indexForBreakingNode >= S.nslots)
- { // No instructions that break the issue group or that have delay slots.
- // This is the common case, so handle it separately for efficiency.
-
- if (S.getNumChoices() == 1) {
- MachineOpCode opCode = S.getChoice(0)->getOpcode();
- unsigned int s;
- for (s=startSlot; s < S.nslots; s++)
- if (S.schedInfo.instrCanUseSlot(opCode, s))
- break;
- assert(s < S.nslots && "No feasible slot for this opCode?");
- S.addChoiceToSlot(s, S.getChoice(0));
- } else {
- for (unsigned i=0; i < S.getNumChoices(); i++) {
- MachineOpCode opCode = S.getChoice(i)->getOpcode();
- for (unsigned int s=startSlot; s < S.nslots; s++)
- if (S.schedInfo.instrCanUseSlot(opCode, s))
- S.addChoiceToSlot(s, S.getChoice(i));
- }
- }
- } else if (indexForDelayedInstr < S.nslots) {
- // There is an instruction that needs delay slots.
- // Try to assign that instruction to a higher slot than any other
- // instructions in the group, so that its delay slots can go
- // right after it.
- //
-
- assert(indexForDelayedInstr == S.getNumChoices() - 1 &&
- "Instruction with delay slots should be last choice!");
- assert(delaySlotInfo != NULL && "No delay slot info for instr?");
-
- const SchedGraphNode* delayedNode = S.getChoice(indexForDelayedInstr);
- MachineOpCode delayOpCode = delayedNode->getOpcode();
- unsigned ndelays= S.getInstrInfo().getNumDelaySlots(delayOpCode);
-
- unsigned delayedNodeSlot = S.nslots;
- int highestSlotUsed;
-
- // Find the last possible slot for the delayed instruction that leaves
- // at least `d' slots vacant after it (d = #delay slots)
- for (int s = S.nslots-ndelays-1; s >= (int) startSlot; s--)
- if (S.schedInfo.instrCanUseSlot(delayOpCode, s)) {
- delayedNodeSlot = s;
- break;
- }
-
- highestSlotUsed = -1;
- for (unsigned i=0; i < S.getNumChoices() - 1; i++) {
- // Try to assign every other instruction to a lower numbered
- // slot than delayedNodeSlot.
- MachineOpCode opCode =S.getChoice(i)->getOpcode();
- bool noSlotFound = true;
- unsigned int s;
- for (s=startSlot; s < delayedNodeSlot; s++)
- if (S.schedInfo.instrCanUseSlot(opCode, s)) {
- S.addChoiceToSlot(s, S.getChoice(i));
- noSlotFound = false;
- }
-
- // No slot before `delayedNodeSlot' was found for this opCode
- // Use a later slot, and allow some delay slots to fall in
- // the next cycle.
- if (noSlotFound)
- for ( ; s < S.nslots; s++)
- if (S.schedInfo.instrCanUseSlot(opCode, s)) {
- S.addChoiceToSlot(s, S.getChoice(i));
- break;
- }
-
- assert(s < S.nslots && "No feasible slot for instruction?");
-
- highestSlotUsed = std::max(highestSlotUsed, (int) s);
- }
-
- assert(highestSlotUsed <= (int) S.nslots-1 && "Invalid slot used?");
-
- // We will put the delayed node in the first slot after the
- // highest slot used. But we just mark that for now, and
- // schedule it separately because we want to schedule the delay
- // slots for the node at the same time.
- cycles_t dcycle = S.getTime();
- unsigned int dslot = highestSlotUsed + 1;
- if (dslot == S.nslots) {
- dslot = 0;
- ++dcycle;
- }
- delaySlotInfo->recordChosenSlot(dcycle, dslot);
- getDelaySlotInfo = delaySlotInfo;
- } else {
- // There is an instruction that breaks the issue group.
- // For such an instruction, assign to the last possible slot in
- // the current group, and then don't assign any other instructions
- // to later slots.
- assert(indexForBreakingNode < S.nslots);
- const SchedGraphNode* breakingNode=S.getChoice(indexForBreakingNode);
- unsigned breakingSlot = INT_MAX;
- unsigned int nslotsToUse = S.nslots;
-
- // Find the last possible slot for this instruction.
- for (int s = S.nslots-1; s >= (int) startSlot; s--)
- if (S.schedInfo.instrCanUseSlot(breakingNode->getOpcode(), s)) {
- breakingSlot = s;
- break;
- }
- assert(breakingSlot < S.nslots &&
- "No feasible slot for `breakingNode'?");
-
- // Higher priority instructions than the one that breaks the group:
- // These can be assigned to all slots, but will be assigned only
- // to earlier slots if possible.
- for (unsigned i=0;
- i < S.getNumChoices() && i < indexForBreakingNode; i++)
- {
- MachineOpCode opCode =S.getChoice(i)->getOpcode();
-
- // If a higher priority instruction cannot be assigned to
- // any earlier slots, don't schedule the breaking instruction.
- //
- bool foundLowerSlot = false;
- nslotsToUse = S.nslots; // May be modified in the loop
- for (unsigned int s=startSlot; s < nslotsToUse; s++)
- if (S.schedInfo.instrCanUseSlot(opCode, s)) {
- if (breakingSlot < S.nslots && s < breakingSlot) {
- foundLowerSlot = true;
- nslotsToUse = breakingSlot; // RESETS LOOP UPPER BOUND!
- }
-
- S.addChoiceToSlot(s, S.getChoice(i));
- }
-
- if (!foundLowerSlot)
- breakingSlot = INT_MAX; // disable breaking instr
- }
-
- // Assign the breaking instruction (if any) to a single slot
- // Otherwise, just ignore the instruction. It will simply be
- // scheduled in a later cycle.
- if (breakingSlot < S.nslots) {
- S.addChoiceToSlot(breakingSlot, breakingNode);
- nslotsToUse = breakingSlot;
- } else
- nslotsToUse = S.nslots;
-
- // For lower priority instructions than the one that breaks the
- // group, only assign them to slots lower than the breaking slot.
- // Otherwise, just ignore the instruction.
- for (unsigned i=indexForBreakingNode+1; i < S.getNumChoices(); i++) {
- MachineOpCode opCode = S.getChoice(i)->getOpcode();
- for (unsigned int s=startSlot; s < nslotsToUse; s++)
- if (S.schedInfo.instrCanUseSlot(opCode, s))
- S.addChoiceToSlot(s, S.getChoice(i));
- }
- } // endif (no delay slots and no breaking slots)
-
- return S.getNumChoices();
-}
-
-
-static unsigned
-ChooseOneGroup(SchedulingManager& S)
-{
- assert(S.schedPrio.getNumReady() > 0
- && "Don't get here without ready instructions.");
-
- cycles_t firstCycle = S.getTime();
- DelaySlotInfo* getDelaySlotInfo = NULL;
-
- // Choose up to `nslots' feasible instructions and their possible slots.
- unsigned numIssued = FindSlotChoices(S, getDelaySlotInfo);
-
- while (numIssued == 0) {
- S.updateTime(S.getTime()+1);
- numIssued = FindSlotChoices(S, getDelaySlotInfo);
- }
-
- AssignInstructionsToSlots(S, numIssued);
-
- if (getDelaySlotInfo != NULL)
- numIssued += getDelaySlotInfo->scheduleDelayedNode(S);
-
- // Print trace of scheduled instructions before newly ready ones
- if (SchedDebugLevel >= Sched_PrintSchedTrace) {
- for (cycles_t c = firstCycle; c <= S.getTime(); c++) {
- std::cerr << " Cycle " << (long)c <<" : Scheduled instructions:\n";
- const InstrGroup* igroup = S.isched.getIGroup(c);
- for (unsigned int s=0; s < S.nslots; s++) {
- std::cerr << " ";
- if ((*igroup)[s] != NULL)
- std::cerr << * ((*igroup)[s])->getMachineInstr() << "\n";
- else
- std::cerr << "<none>\n";
- }
- }
- }
-
- return numIssued;
-}
-
-
-static void
-ForwardListSchedule(SchedulingManager& S)
-{
- unsigned N;
- const SchedGraphNode* node;
-
- S.schedPrio.initialize();
-
- while ((N = S.schedPrio.getNumReady()) > 0) {
- cycles_t nextCycle = S.getTime();
-
- // Choose one group of instructions for a cycle, plus any delay slot
- // instructions (which may overflow into successive cycles).
- // This will advance S.getTime() to the last cycle in which
- // instructions are actually issued.
- //
- unsigned numIssued = ChooseOneGroup(S);
- assert(numIssued > 0 && "Deadlock in list scheduling algorithm?");
-
- // Notify the priority manager of scheduled instructions and mark
- // any successors that may now be ready
- //
- for (cycles_t c = nextCycle; c <= S.getTime(); c++) {
- const InstrGroup* igroup = S.isched.getIGroup(c);
- for (unsigned int s=0; s < S.nslots; s++)
- if ((node = (*igroup)[s]) != NULL) {
- S.schedPrio.issuedReadyNodeAt(S.getTime(), node);
- MarkSuccessorsReady(S, node);
- }
- }
-
- // Move to the next the next earliest cycle for which
- // an instruction can be issued, or the next earliest in which
- // one will be ready, or to the next cycle, whichever is latest.
- //
- S.updateTime(std::max(S.getTime() + 1,
- std::max(S.getEarliestIssueTime(),
- S.schedPrio.getEarliestReadyTime())));
- }
-}
-
-
-//---------------------------------------------------------------------
-// Code for filling delay slots for delayed terminator instructions
-// (e.g., BRANCH and RETURN). Delay slots for non-terminator
-// instructions (e.g., CALL) are not handled here because they almost
-// always can be filled with instructions from the call sequence code
-// before a call. That's preferable because we incur many tradeoffs here
-// when we cannot find single-cycle instructions that can be reordered.
-//----------------------------------------------------------------------
-
-static bool
-NodeCanFillDelaySlot(const SchedulingManager& S,
- const SchedGraphNode* node,
- const SchedGraphNode* brNode,
- bool nodeIsPredecessor)
-{
- assert(! node->isDummyNode());
-
- // don't put a branch in the delay slot of another branch
- if (S.getInstrInfo().isBranch(node->getOpcode()))
- return false;
-
- // don't put a single-issue instruction in the delay slot of a branch
- if (S.schedInfo.isSingleIssue(node->getOpcode()))
- return false;
-
- // don't put a load-use dependence in the delay slot of a branch
- const TargetInstrInfo& mii = S.getInstrInfo();
-
- for (SchedGraphNode::const_iterator EI = node->beginInEdges();
- EI != node->endInEdges(); ++EI)
- if (! ((SchedGraphNode*)(*EI)->getSrc())->isDummyNode()
- && mii.isLoad(((SchedGraphNode*)(*EI)->getSrc())->getOpcode())
- && (*EI)->getDepType() == SchedGraphEdge::CtrlDep)
- return false;
-
- // Finally, if the instruction precedes the branch, we make sure the
- // instruction can be reordered relative to the branch. We simply check
- // if the instr. has only 1 outgoing edge, viz., a CD edge to the branch.
- //
- if (nodeIsPredecessor) {
- bool onlyCDEdgeToBranch = true;
- for (SchedGraphNode::const_iterator OEI = node->beginOutEdges();
- OEI != node->endOutEdges(); ++OEI)
- if (! ((SchedGraphNode*)(*OEI)->getSink())->isDummyNode()
- && ((*OEI)->getSink() != brNode
- || (*OEI)->getDepType() != SchedGraphEdge::CtrlDep))
- {
- onlyCDEdgeToBranch = false;
- break;
- }
-
- if (!onlyCDEdgeToBranch)
- return false;
- }
-
- return true;
-}
-
-
-static void
-MarkNodeForDelaySlot(SchedulingManager& S,
- SchedGraph* graph,
- SchedGraphNode* node,
- const SchedGraphNode* brNode,
- bool nodeIsPredecessor)
-{
- if (nodeIsPredecessor) {
- // If node is in the same basic block (i.e., precedes brNode),
- // remove it and all its incident edges from the graph. Make sure we
- // add dummy edges for pred/succ nodes that become entry/exit nodes.
- graph->eraseIncidentEdges(node, /*addDummyEdges*/ true);
- } else {
- // If the node was from a target block, add the node to the graph
- // and add a CD edge from brNode to node.
- assert(0 && "NOT IMPLEMENTED YET");
- }
-
- DelaySlotInfo* dinfo = S.getDelaySlotInfoForInstr(brNode, /*create*/ true);
- dinfo->addDelayNode(node);
-}
-
-
-void
-FindUsefulInstructionsForDelaySlots(SchedulingManager& S,
- SchedGraphNode* brNode,
- std::vector<SchedGraphNode*>& sdelayNodeVec)
-{
- const TargetInstrInfo& mii = S.getInstrInfo();
- unsigned ndelays =
- mii.getNumDelaySlots(brNode->getOpcode());
-
- if (ndelays == 0)
- return;
-
- sdelayNodeVec.reserve(ndelays);
-
- // Use a separate vector to hold the feasible multi-cycle nodes.
- // These will be used if not enough single-cycle nodes are found.
- //
- std::vector<SchedGraphNode*> mdelayNodeVec;
-
- for (sg_pred_iterator P = pred_begin(brNode);
- P != pred_end(brNode) && sdelayNodeVec.size() < ndelays; ++P)
- if (! (*P)->isDummyNode() &&
- ! mii.isNop((*P)->getOpcode()) &&
- NodeCanFillDelaySlot(S, *P, brNode, /*pred*/ true))
- {
- if (mii.maxLatency((*P)->getOpcode()) > 1)
- mdelayNodeVec.push_back(*P);
- else
- sdelayNodeVec.push_back(*P);
- }
-
- // If not enough single-cycle instructions were found, select the
- // lowest-latency multi-cycle instructions and use them.
- // Note that this is the most efficient code when only 1 (or even 2)
- // values need to be selected.
- //
- while (sdelayNodeVec.size() < ndelays && mdelayNodeVec.size() > 0) {
- unsigned lmin =
- mii.maxLatency(mdelayNodeVec[0]->getOpcode());
- unsigned minIndex = 0;
- for (unsigned i=1; i < mdelayNodeVec.size(); i++)
- {
- unsigned li =
- mii.maxLatency(mdelayNodeVec[i]->getOpcode());
- if (lmin >= li)
- {
- lmin = li;
- minIndex = i;
- }
- }
- sdelayNodeVec.push_back(mdelayNodeVec[minIndex]);
- if (sdelayNodeVec.size() < ndelays) // avoid the last erase!
- mdelayNodeVec.erase(mdelayNodeVec.begin() + minIndex);
- }
-}
-
-
-// Remove the NOPs currently in delay slots from the graph.
-// Mark instructions specified in sdelayNodeVec to replace them.
-// If not enough useful instructions were found, mark the NOPs to be used
-// for filling delay slots, otherwise, otherwise just discard them.
-//
-static void ReplaceNopsWithUsefulInstr(SchedulingManager& S,
- SchedGraphNode* node,
- // FIXME: passing vector BY VALUE!!!
- std::vector<SchedGraphNode*> sdelayNodeVec,
- SchedGraph* graph)
-{
- std::vector<SchedGraphNode*> nopNodeVec; // this will hold unused NOPs
- const TargetInstrInfo& mii = S.getInstrInfo();
- const MachineInstr* brInstr = node->getMachineInstr();
- unsigned ndelays= mii.getNumDelaySlots(brInstr->getOpcode());
- assert(ndelays > 0 && "Unnecessary call to replace NOPs");
-
- // Remove the NOPs currently in delay slots from the graph.
- // If not enough useful instructions were found, use the NOPs to
- // fill delay slots, otherwise, just discard them.
- //
- unsigned int firstDelaySlotIdx = node->getOrigIndexInBB() + 1;
- MachineBasicBlock& MBB = node->getMachineBasicBlock();
- MachineBasicBlock::iterator MBBI = MBB.begin();
- std::advance(MBBI, firstDelaySlotIdx - 1);
- if (!(&*MBBI++ == brInstr)) {
- std::cerr << "Incorrect instr. index in basic block for brInstr";
- abort();
- }
-
- // First find all useful instructions already in the delay slots
- // and USE THEM. We'll throw away the unused alternatives below
- //
- MachineBasicBlock::iterator Tmp = MBBI;
- for (unsigned i = 0; i != ndelays; ++i, ++MBBI)
- if (!mii.isNop(MBBI->getOpcode()))
- sdelayNodeVec.insert(sdelayNodeVec.begin(),
- graph->getGraphNodeForInstr(MBBI));
- MBBI = Tmp;
-
- // Then find the NOPs and keep only as many as are needed.
- // Put the rest in nopNodeVec to be deleted.
- for (unsigned i=firstDelaySlotIdx; i < firstDelaySlotIdx+ndelays; ++i, ++MBBI)
- if (mii.isNop(MBBI->getOpcode()))
- if (sdelayNodeVec.size() < ndelays)
- sdelayNodeVec.push_back(graph->getGraphNodeForInstr(MBBI));
- else {
- nopNodeVec.push_back(graph->getGraphNodeForInstr(MBBI));
-
- //remove the MI from the Machine Code For Instruction
- const TerminatorInst *TI = MBB.getBasicBlock()->getTerminator();
- MachineCodeForInstruction& llvmMvec =
- MachineCodeForInstruction::get((const Instruction *)TI);
-
- for(MachineCodeForInstruction::iterator mciI=llvmMvec.begin(),
- mciE=llvmMvec.end(); mciI!=mciE; ++mciI){
- if (*mciI == MBBI)
- llvmMvec.erase(mciI);
- }
- }
-
- assert(sdelayNodeVec.size() >= ndelays);
-
- // If some delay slots were already filled, throw away that many new choices
- if (sdelayNodeVec.size() > ndelays)
- sdelayNodeVec.resize(ndelays);
-
- // Mark the nodes chosen for delay slots. This removes them from the graph.
- for (unsigned i=0; i < sdelayNodeVec.size(); i++)
- MarkNodeForDelaySlot(S, graph, sdelayNodeVec[i], node, true);
-
- // And remove the unused NOPs from the graph.
- for (unsigned i=0; i < nopNodeVec.size(); i++)
- graph->eraseIncidentEdges(nopNodeVec[i], /*addDummyEdges*/ true);
-}
-
-
-// For all delayed instructions, choose instructions to put in the delay
-// slots and pull those out of the graph. Mark them for the delay slots
-// in the DelaySlotInfo object for that graph node. If no useful work
-// is found for a delay slot, use the NOP that is currently in that slot.
-//
-// We try to fill the delay slots with useful work for all instructions
-// EXCEPT CALLS AND RETURNS.
-// For CALLs and RETURNs, it is nearly always possible to use one of the
-// call sequence instrs and putting anything else in the delay slot could be
-// suboptimal. Also, it complicates generating the calling sequence code in
-// regalloc.
-//
-static void
-ChooseInstructionsForDelaySlots(SchedulingManager& S, MachineBasicBlock &MBB,
- SchedGraph *graph)
-{
- const TargetInstrInfo& mii = S.getInstrInfo();
-
- Instruction *termInstr = (Instruction*)MBB.getBasicBlock()->getTerminator();
- MachineCodeForInstruction &termMvec=MachineCodeForInstruction::get(termInstr);
- std::vector<SchedGraphNode*> delayNodeVec;
- const MachineInstr* brInstr = NULL;
-
- if (EnableFillingDelaySlots &&
- termInstr->getOpcode() != Instruction::Ret)
- {
- // To find instructions that need delay slots without searching the full
- // machine code, we assume that the only delayed instructions are CALLs
- // or instructions generated for the terminator inst.
- // Find the first branch instr in the sequence of machine instrs for term
- //
- unsigned first = 0;
- while (first < termMvec.size() &&
- ! mii.isBranch(termMvec[first]->getOpcode()))
- {
- ++first;
- }
- assert(first < termMvec.size() &&
- "No branch instructions for BR? Ok, but weird! Delete assertion.");
-
- brInstr = (first < termMvec.size())? termMvec[first] : NULL;
-
- // Compute a vector of the nodes chosen for delay slots and then
- // mark delay slots to replace NOPs with these useful instructions.
- //
- if (brInstr != NULL) {
- SchedGraphNode* brNode = graph->getGraphNodeForInstr(brInstr);
- FindUsefulInstructionsForDelaySlots(S, brNode, delayNodeVec);
- ReplaceNopsWithUsefulInstr(S, brNode, delayNodeVec, graph);
- }
- }
-
- // Also mark delay slots for other delayed instructions to hold NOPs.
- // Simply passing in an empty delayNodeVec will have this effect.
- // If brInstr is not handled above (EnableFillingDelaySlots == false),
- // brInstr will be NULL so this will handle the branch instrs. as well.
- //
- delayNodeVec.clear();
- for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; ++I)
- if (I != brInstr && mii.getNumDelaySlots(I->getOpcode()) > 0) {
- SchedGraphNode* node = graph->getGraphNodeForInstr(I);
- ReplaceNopsWithUsefulInstr(S, node, delayNodeVec, graph);
- }
-}
-
-
-//
-// Schedule the delayed branch and its delay slots
-//
-unsigned
-DelaySlotInfo::scheduleDelayedNode(SchedulingManager& S)
-{
- assert(delayedNodeSlotNum < S.nslots && "Illegal slot for branch");
- assert(S.isched.getInstr(delayedNodeSlotNum, delayedNodeCycle) == NULL
- && "Slot for branch should be empty");
-
- unsigned int nextSlot = delayedNodeSlotNum;
- cycles_t nextTime = delayedNodeCycle;
-
- S.scheduleInstr(brNode, nextSlot, nextTime);
-
- for (unsigned d=0; d < ndelays; d++) {
- ++nextSlot;
- if (nextSlot == S.nslots) {
- nextSlot = 0;
- nextTime++;
- }
-
- // Find the first feasible instruction for this delay slot
- // Note that we only check for issue restrictions here.
- // We do *not* check for flow dependences but rely on pipeline
- // interlocks to resolve them. Machines without interlocks
- // will require this code to be modified.
- for (unsigned i=0; i < delayNodeVec.size(); i++) {
- const SchedGraphNode* dnode = delayNodeVec[i];
- if ( ! S.isScheduled(dnode)
- && S.schedInfo.instrCanUseSlot(dnode->getOpcode(), nextSlot)
- && instrIsFeasible(S, dnode->getOpcode())) {
- S.scheduleInstr(dnode, nextSlot, nextTime);
- break;
- }
- }
- }
-
- // Update current time if delay slots overflowed into later cycles.
- // Do this here because we know exactly which cycle is the last cycle
- // that contains delay slots. The next loop doesn't compute that.
- if (nextTime > S.getTime())
- S.updateTime(nextTime);
-
- // Now put any remaining instructions in the unfilled delay slots.
- // This could lead to suboptimal performance but needed for correctness.
- nextSlot = delayedNodeSlotNum;
- nextTime = delayedNodeCycle;
- for (unsigned i=0; i < delayNodeVec.size(); i++)
- if (! S.isScheduled(delayNodeVec[i])) {
- do { // find the next empty slot
- ++nextSlot;
- if (nextSlot == S.nslots) {
- nextSlot = 0;
- nextTime++;
- }
- } while (S.isched.getInstr(nextSlot, nextTime) != NULL);
-
- S.scheduleInstr(delayNodeVec[i], nextSlot, nextTime);
- break;
- }
-
- return 1 + ndelays;
-}
-
-
-// Check if the instruction would conflict with instructions already
-// chosen for the current cycle
-//
-static inline bool
-ConflictsWithChoices(const SchedulingManager& S,
- MachineOpCode opCode)
-{
- // Check if the instruction must issue by itself, and some feasible
- // choices have already been made for this cycle
- if (S.getNumChoices() > 0 && S.schedInfo.isSingleIssue(opCode))
- return true;
-
- // For each class that opCode belongs to, check if there are too many
- // instructions of that class.
- //
- const InstrSchedClass sc = S.schedInfo.getSchedClass(opCode);
- return (S.getNumChoicesInClass(sc) == S.schedInfo.getMaxIssueForClass(sc));
-}
-
-
-//************************* External Functions *****************************/
-
-
-//---------------------------------------------------------------------------
-// Function: ViolatesMinimumGap
-//
-// Purpose:
-// Check minimum gap requirements relative to instructions scheduled in
-// previous cycles.
-// Note that we do not need to consider `nextEarliestIssueTime' here because
-// that is also captured in the earliest start times for each opcode.
-//---------------------------------------------------------------------------
-
-static inline bool
-ViolatesMinimumGap(const SchedulingManager& S,
- MachineOpCode opCode,
- const cycles_t inCycle)
-{
- return (inCycle < S.getEarliestStartTimeForOp(opCode));
-}
-
-
-//---------------------------------------------------------------------------
-// Function: instrIsFeasible
-//
-// Purpose:
-// Check if any issue restrictions would prevent the instruction from
-// being issued in the current cycle
-//---------------------------------------------------------------------------
-
-bool
-instrIsFeasible(const SchedulingManager& S,
- MachineOpCode opCode)
-{
- // skip the instruction if it cannot be issued due to issue restrictions
- // caused by previously issued instructions
- if (ViolatesMinimumGap(S, opCode, S.getTime()))
- return false;
-
- // skip the instruction if it cannot be issued due to issue restrictions
- // caused by previously chosen instructions for the current cycle
- if (ConflictsWithChoices(S, opCode))
- return false;
-
- return true;
-}
-
-//---------------------------------------------------------------------------
-// Function: ScheduleInstructionsWithSSA
-//
-// Purpose:
-// Entry point for instruction scheduling on SSA form.
-// Schedules the machine instructions generated by instruction selection.
-// Assumes that register allocation has not been done, i.e., operands
-// are still in SSA form.
-//---------------------------------------------------------------------------
-
-namespace {
- class InstructionSchedulingWithSSA : public FunctionPass {
- const TargetMachine &target;
- public:
- inline InstructionSchedulingWithSSA(const TargetMachine &T) : target(T) {}
-
- const char *getPassName() const { return "Instruction Scheduling"; }
-
- // getAnalysisUsage - We use LiveVarInfo...
- virtual void getAnalysisUsage(AnalysisUsage &AU) const {
- AU.addRequired<FunctionLiveVarInfo>();
- AU.setPreservesCFG();
- }
-
- bool runOnFunction(Function &F);
- };
-} // end anonymous namespace
-
-
-bool InstructionSchedulingWithSSA::runOnFunction(Function &F)
-{
- SchedGraphSet graphSet(&F, target);
-
- if (SchedDebugLevel >= Sched_PrintSchedGraphs) {
- std::cerr << "\n*** SCHEDULING GRAPHS FOR INSTRUCTION SCHEDULING\n";
- graphSet.dump();
- }
-
- for (SchedGraphSet::const_iterator GI=graphSet.begin(), GE=graphSet.end();
- GI != GE; ++GI)
- {
- SchedGraph* graph = (*GI);
- MachineBasicBlock &MBB = graph->getBasicBlock();
-
- if (SchedDebugLevel >= Sched_PrintSchedTrace)
- std::cerr << "\n*** TRACE OF INSTRUCTION SCHEDULING OPERATIONS\n\n";
-
- // expensive!
- SchedPriorities schedPrio(&F, graph, getAnalysis<FunctionLiveVarInfo>());
- SchedulingManager S(target, graph, schedPrio);
-
- ChooseInstructionsForDelaySlots(S, MBB, graph); // modifies graph
- ForwardListSchedule(S); // computes schedule in S
- RecordSchedule(MBB, S); // records schedule in BB
- }
-
- if (SchedDebugLevel >= Sched_PrintMachineCode) {
- std::cerr << "\n*** Machine instructions after INSTRUCTION SCHEDULING\n";
- MachineFunction::get(&F).dump();
- }
-
- return false;
-}
-
-
-FunctionPass *createInstructionSchedulingWithSSAPass(const TargetMachine &tgt) {
- return new InstructionSchedulingWithSSA(tgt);
-}
-
-} // End llvm namespace
-
diff --git a/lib/CodeGen/InstrSched/Makefile b/lib/CodeGen/InstrSched/Makefile
deleted file mode 100644
index 511e04b36f..0000000000
--- a/lib/CodeGen/InstrSched/Makefile
+++ /dev/null
@@ -1,14 +0,0 @@
-##===- lib/CodeGen/InstrSched/Makefile ---------------------*- Makefile -*-===##
-#
-# The LLVM Compiler Infrastructure
-#
-# This file was developed by the LLVM research group and is distributed under
-# the University of Illinois Open Source License. See LICENSE.TXT for details.
-#
-##===----------------------------------------------------------------------===##
-
-LEVEL = ../../..
-DIRS =
-LIBRARYNAME = sched
-
-include $(LEVEL)/Makefile.common
diff --git a/lib/CodeGen/InstrSched/SchedGraph.cpp b/lib/CodeGen/InstrSched/SchedGraph.cpp
deleted file mode 100644
index 00b48d537d..0000000000
--- a/lib/CodeGen/InstrSched/SchedGraph.cpp
+++ /dev/null
@@ -1,737 +0,0 @@
-//===- SchedGraph.cpp - Scheduling Graph Implementation -------------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// Scheduling graph based on SSA graph plus extra dependence edges capturing
-// dependences due to machine resources (machine registers, CC registers, and
-// any others).
-//
-//===----------------------------------------------------------------------===//
-
-#include "SchedGraph.h"
-#include "llvm/Function.h"
-#include "llvm/Instructions.h"
-#include "llvm/CodeGen/MachineFunction.h"
-#include "llvm/Target/TargetInstrInfo.h"
-#include "llvm/Target/TargetMachine.h"
-#include "../../Target/SparcV9/MachineCodeForInstruction.h"
-#include "../../Target/SparcV9/SparcV9RegInfo.h"
-#include "../../Target/SparcV9/SparcV9InstrInfo.h"
-#include "llvm/ADT/STLExtras.h"
-#include <iostream>
-
-namespace llvm {
-
-//*********************** Internal Data Structures *************************/
-
-// The following two types need to be classes, not typedefs, so we can use
-// opaque declarations in SchedGraph.h
-//
-struct RefVec: public std::vector<std::pair<SchedGraphNode*, int> > {
- typedef std::vector<std::pair<SchedGraphNode*,int> >::iterator iterator;
- typedef
- std::vector<std::pair<SchedGraphNode*,int> >::const_iterator const_iterator;
-};
-
-struct RegToRefVecMap: public hash_map<int, RefVec> {
- typedef hash_map<int, RefVec>:: iterator iterator;
- typedef hash_map<int, RefVec>::const_iterator const_iterator;
-};
-
-struct ValueToDefVecMap: public hash_map<const Value*, RefVec> {
- typedef hash_map<const Value*, RefVec>:: iterator iterator;
- typedef hash_map<const Value*, RefVec>::const_iterator const_iterator;
-};
-
-
-//
-// class SchedGraphNode
-//
-
-SchedGraphNode::SchedGraphNode(unsigned NID, MachineBasicBlock *mbb,
- int indexInBB, const TargetMachine& Target)
- : SchedGraphNodeCommon(NID,indexInBB), MBB(mbb), MI(0) {
- if (mbb) {
- MachineBasicBlock::iterator I = MBB->begin();
- std::advance(I, indexInBB);
- MI = I;
-
- MachineOpCode mopCode = MI->getOpcode();
- latency = Target.getInstrInfo()->hasResultInterlock(mopCode)
- ? Target.getInstrInfo()->minLatency(mopCode)
- : Target.getInstrInfo()->maxLatency(mopCode);
- }
-}
-
-//
-// Method: SchedGraphNode Destructor
-//
-// Description:
-// Free memory allocated by the SchedGraphNode object.
-//
-// Notes:
-// Do not delete the edges here. The base class will take care of that.
-// Only handle subclass specific stuff here (where currently there is
-// none).
-//
-SchedGraphNode::~SchedGraphNode() {
-}
-
-//
-// class SchedGraph
-//
-SchedGraph::SchedGraph(MachineBasicBlock &mbb, const TargetMachine& target)
- : MBB(mbb) {
- buildGraph(target);
-}
-
-//
-// Method: SchedGraph Destructor
-//
-// Description:
-// This method deletes memory allocated by the SchedGraph object.
-//
-// Notes:
-// Do not delete the graphRoot or graphLeaf here. The base class handles
-// that bit of work.
-//
-SchedGraph::~SchedGraph() {
- for (const_iterator I = begin(); I != end(); ++I)
- delete I->second;
-}
-
-void SchedGraph::dump() const {
- std::cerr << " Sched Graph for Basic Block: "
- << MBB.getBasicBlock()->getName()
- << " (" << *MBB.getBasicBlock() << ")"
- << "\n\n Actual Root nodes: ";
- for (SchedGraphNodeCommon::const_iterator I = graphRoot->beginOutEdges(),
- E = graphRoot->endOutEdges();
- I != E; ++I) {
- std::cerr << (*I)->getSink ()->getNodeId ();
- if (I + 1 != E) { std::cerr << ", "; }
- }
- std::cerr << "\n Graph Nodes:\n";
- for (const_iterator I = begin(), E = end(); I != E; ++I)
- std::cerr << "\n" << *I->second;
- std::cerr << "\n";
-}
-
-void SchedGraph::addDummyEdges() {
- assert(graphRoot->getNumOutEdges() == 0);
-
- for (const_iterator I=begin(); I != end(); ++I) {
- SchedGraphNode* node = (*I).second;
- assert(node != graphRoot && node != graphLeaf);
- if (node->beginInEdges() == node->endInEdges())
- (void) new SchedGraphEdge(graphRoot, node, SchedGraphEdge::CtrlDep,
- SchedGraphEdge::NonDataDep, 0);
- if (node->beginOutEdges() == node->endOutEdges())
- (void) new SchedGraphEdge(node, graphLeaf, SchedGraphEdge::CtrlDep,
- SchedGraphEdge::NonDataDep, 0);
- }
-}
-
-
-void SchedGraph::addCDEdges(const TerminatorInst* term,
- const TargetMachine& target) {
- const TargetInstrInfo& mii = *target.getInstrInfo();
- MachineCodeForInstruction &termMvec = MachineCodeForInstruction::get(term);
-
- // Find the first branch instr in the sequence of machine instrs for term
- //
- unsigned first = 0;
- while (! mii.isBranch(termMvec[first]->getOpcode()) &&
- ! mii.isReturn(termMvec[first]->getOpcode()))
- ++first;
- assert(first < termMvec.size() &&
- "No branch instructions for terminator? Ok, but weird!");
- if (first == termMvec.size())
- return;
-
- SchedGraphNode* firstBrNode = getGraphNodeForInstr(termMvec[first]);
-
- // Add CD edges from each instruction in the sequence to the
- // *last preceding* branch instr. in the sequence
- // Use a latency of 0 because we only need to prevent out-of-order issue.
- //
- for (unsigned i = termMvec.size(); i > first+1; --i) {
- SchedGraphNode* toNode = getGraphNodeForInstr(termMvec[i-1]);
- assert(toNode && "No node for instr generated for branch/ret?");
-
- for (unsigned j = i-1; j != 0; --j)
- if (mii.isBranch(termMvec[j-1]->getOpcode()) ||
- mii.isReturn(termMvec[j-1]->getOpcode())) {
- SchedGraphNode* brNode = getGraphNodeForInstr(termMvec[j-1]);
- assert(brNode && "No node for instr generated for branch/ret?");
- (void) new SchedGraphEdge(brNode, toNode, SchedGraphEdge::CtrlDep,
- SchedGraphEdge::NonDataDep, 0);
- break; // only one incoming edge is enough
- }
- }
-
- // Add CD edges from each instruction preceding the first branch
- // to the first branch. Use a latency of 0 as above.
- //
- for (unsigned i = first; i != 0; --i) {
- SchedGraphNode* fromNode = getGraphNodeForInstr(termMvec[i-1]);
- assert(fromNode && "No node for instr generated for branch?");
- (void) new SchedGraphEdge(fromNode, firstBrNode, SchedGraphEdge::CtrlDep,
- SchedGraphEdge::NonDataDep, 0);
- }
-
- // Now add CD edges to the first branch instruction in the sequence from
- // all preceding instructions in the basic block. Use 0 latency again.
- //
- for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; ++I){
- if (&*I == termMvec[first]) // reached the first branch
- break;
-
- SchedGraphNode* fromNode = getGraphNodeForInstr(I);
- if (fromNode == NULL)
- continue; // dummy instruction, e.g., PHI
-
- (void) new SchedGraphEdge(fromNode, firstBrNode,
- SchedGraphEdge::CtrlDep,
- SchedGraphEdge::NonDataDep, 0);
-
- // If we find any other machine instructions (other than due to
- // the terminator) that also have delay slots, add an outgoing edge
- // from the instruction to the instructions in the delay slots.
- //
- unsigned d = mii.getNumDelaySlots(I->getOpcode());
-
- MachineBasicBlock::iterator J = I; ++J;
- for (unsigned j=1; j <= d; j++, ++J) {
- SchedGraphNode* toNode = this->getGraphNodeForInstr(J);
- assert(toNode && "No node for machine instr in delay slot?");
- (void) new SchedGraphEdge(fromNode, toNode,
- SchedGraphEdge::CtrlDep,
- SchedGraphEdge::NonDataDep, 0);
- }
- }
-}
-
-static const int SG_LOAD_REF = 0;
-static const int SG_STORE_REF = 1;
-static const int SG_CALL_REF = 2;
-
-static const unsigned int SG_DepOrderArray[][3] = {
- { SchedGraphEdge::NonDataDep,
- SchedGraphEdge::AntiDep,
- SchedGraphEdge::AntiDep },
- { SchedGraphEdge::TrueDep,
- SchedGraphEdge::OutputDep,
- SchedGraphEdge::TrueDep | SchedGraphEdge::OutputDep },
- { SchedGraphEdge::TrueDep,
- SchedGraphEdge::AntiDep | SchedGraphEdge::OutputDep,
- SchedGraphEdge::TrueDep | SchedGraphEdge::AntiDep
- | SchedGraphEdge::OutputDep }
-};
-
-
-// Add a dependence edge between every pair of machine load/store/call
-// instructions, where at least one is a store or a call.
-// Use latency 1 just to ensure that memory operations are ordered;
-// latency does not otherwise matter (true dependences enforce that).
-//
-void SchedGraph::addMemEdges(const std::vector<SchedGraphNode*>& memNodeVec,
- const TargetMachine& target) {
- const TargetInstrInfo& mii = *target.getInstrInfo();
-
- // Instructions in memNodeVec are in execution order within the basic block,
- // so simply look at all pairs <memNodeVec[i], memNodeVec[j: j > i]>.
- //
- for (unsigned im=0, NM=memNodeVec.size(); im < NM; im++) {
- MachineOpCode fromOpCode = memNodeVec[im]->getOpcode();
- int fromType = (mii.isCall(fromOpCode)? SG_CALL_REF
- : (mii.isLoad(fromOpCode)? SG_LOAD_REF
- : SG_STORE_REF));
- for (unsigned jm=im+1; jm < NM; jm++) {
- MachineOpCode toOpCode = memNodeVec[jm]->getOpcode();
- int toType = (mii.isCall(toOpCode)? SG_CALL_REF
- : (mii.isLoad(toOpCode)? SG_LOAD_REF
- : SG_STORE_REF));
-
- if (fromType != SG_LOAD_REF || toType != SG_LOAD_REF)
- (void) new SchedGraphEdge(memNodeVec[im], memNodeVec[jm],
- SchedGraphEdge::MemoryDep,
- SG_DepOrderArray[fromType][toType], 1);
- }
- }
-}
-
-// Add edges from/to CC reg instrs to/from call instrs.
-// Essentially this prevents anything that sets or uses a CC reg from being
-// reordered w.r.t. a call.
-// Use a latency of 0 because we only need to prevent out-of-order issue,
-// like with control dependences.
-//
-void SchedGraph::addCallDepEdges(const std::vector<SchedGraphNode*>& callDepNodeVec,
- const TargetMachine& target) {
- const TargetInstrInfo& mii = *target.getInstrInfo();
-
- // Instructions in memNodeVec are in execution order within the basic block,
- // so simply look at all pairs <memNodeVec[i], memNodeVec[j: j > i]>.
- //
- for (unsigned ic=0, NC=callDepNodeVec.size(); ic < NC; ic++)
- if (mii.isCall(callDepNodeVec[ic]->getOpcode())) {
- // Add SG_CALL_REF edges from all preds to this instruction.
- for (unsigned jc=0; jc < ic; jc++)
- (void) new SchedGraphEdge(callDepNodeVec[jc], callDepNodeVec[ic],
- SchedGraphEdge::MachineRegister,
- MachineIntRegsRID, 0);
-
- // And do the same from this instruction to all successors.
- for (unsigned jc=ic+1; jc < NC; jc++)
- (void) new SchedGraphEdge(callDepNodeVec[ic], callDepNodeVec[jc],
- SchedGraphEdge::MachineRegister,
- MachineIntRegsRID, 0);
- }
-
-#ifdef CALL_DEP_NODE_VEC_CANNOT_WORK
- // Find the call instruction nodes and put them in a vector.
- std::vector<SchedGraphNode*> callNodeVec;
- for (unsigned im=0, NM=memNodeVec.size(); im < NM; im++)
- if (mii.isCall(memNodeVec[im]->getOpcode()))
- callNodeVec.push_back(memNodeVec[im]);
-
- // Now walk the entire basic block, looking for CC instructions *and*
- // call instructions, and keep track of the order of the instructions.
- // Use the call node vec to quickly find earlier and later call nodes
- // relative to the current CC instruction.
- //
- int lastCallNodeIdx = -1;
- for (unsigned i=0, N=bbMvec.size(); i < N; i++)
- if (mii.isCall(bbMvec[i]->getOpcode())) {
- ++lastCallNodeIdx;
- for ( ; lastCallNodeIdx < (int)callNodeVec.size(); ++lastCallNodeIdx)
- if (callNodeVec[lastCallNodeIdx]->getMachineInstr() == bbMvec[i])
- break;
- assert(lastCallNodeIdx < (int)callNodeVec.size() && "Missed Call?");
- }
- else if (mii.isCCInstr(bbMvec[i]->getOpcode())) {
- // Add incoming/outgoing edges from/to preceding/later calls
- SchedGraphNode* ccNode = this->getGraphNodeForInstr(bbMvec[i]);
- int j=0;
- for ( ; j <= lastCallNodeIdx; j++)
- (void) new SchedGraphEdge(callNodeVec[j], ccNode,
- MachineCCRegsRID, 0);
- for ( ; j < (int) callNodeVec.size(); j++)
- (void) new SchedGraphEdge(ccNode, callNodeVec[j],
- MachineCCRegsRID, 0);
- }
-#endif
-}
-
-
-void SchedGraph::addMachineRegEdges(RegToRefVecMap& regToRefVecMap,
- const TargetMachine& target) {
- // This code assumes that two registers with different numbers are
- // not aliased!
- //
- for (RegToRefVecMap::iterator I = regToRefVecMap.begin();
- I != regToRefVecMap.end(); ++I) {
- int regNum = (*I).first;
- RefVec& regRefVec = (*I).second;
-
- // regRefVec is ordered by control flow order in the basic block
- for (unsigned i=0; i < regRefVec.size(); ++i) {
- SchedGraphNode* node = regRefVec[i].first;
- unsigned int opNum = regRefVec[i].second;
- const MachineOperand& mop =
- node->getMachineInstr()->getExplOrImplOperand(opNum);
- bool isDef = mop.isDef() && !mop.isUse();
- bool isDefAndUse = mop.isDef() && mop.isUse();
-
- for (unsigned p=0; p < i; ++p) {
- SchedGraphNode* prevNode = regRefVec[p].first;
- if (prevNode != node) {
- unsigned int prevOpNum = regRefVec[p].second;
- const MachineOperand& prevMop =
- prevNode->getMachineInstr()->getExplOrImplOperand(prevOpNum);
- bool prevIsDef = prevMop.isDef() && !prevMop.isUse();
- bool prevIsDefAndUse = prevMop.isDef() && prevMop.isUse();
- if (isDef) {
- if (prevIsDef)
- new SchedGraphEdge(prevNode, node, regNum,
- SchedGraphEdge::OutputDep);
- if (!prevIsDef || prevIsDefAndUse)
- new SchedGraphEdge(prevNode, node, regNum,
- SchedGraphEdge::AntiDep);
- }
-
- if (prevIsDef)
- if (!isDef || isDefAndUse)
- new SchedGraphEdge(prevNode, node, regNum,
- SchedGraphEdge::TrueDep);
- }
- }
- }
- }
-}
-
-
-// Adds dependences to/from refNode from/to all other defs
-// in the basic block. refNode may be a use, a def, or both.
-// We do not consider other uses because we are not building use-use deps.
-//
-void SchedGraph::addEdgesForValue(SchedGraphNode* refNode,
- const RefVec& defVec,
- const Value* defValue,
- bool refNodeIsDef,
- bool refNodeIsUse,
- const TargetMachine& target) {
- // Add true or output dep edges from all def nodes before refNode in BB.
- // Add anti or output dep edges to all def nodes after refNode.
- for (RefVec::const_iterator I=defVec.begin(), E=defVec.end(); I != E; ++I) {
- if ((*I).first == refNode)
- continue; // Dont add any self-loops
-
- if ((*I).first->getOrigIndexInBB() < refNode->getOrigIndexInBB()) {
- // (*).first is before refNode
- if (refNodeIsDef && !refNodeIsUse)
- (void) new SchedGraphEdge((*I).first, refNode, defValue,
- SchedGraphEdge::OutputDep);
- if (refNodeIsUse)
- (void) new SchedGraphEdge((*I).first, refNode, defValue,
- SchedGraphEdge::TrueDep);
- } else {
- // (*).first is after refNode
- if (refNodeIsDef && !refNodeIsUse)
- (void) new SchedGraphEdge(refNode, (*I).first, defValue,
- SchedGraphEdge::OutputDep);
- if (refNodeIsUse)
- (void) new SchedGraphEdge(refNode, (*I).first, defValue,
- SchedGraphEdge::AntiDep);
- }
- }
-}
-
-
-void SchedGraph::addEdgesForInstruction(const MachineInstr& MI,
- const ValueToDefVecMap& valueToDefVecMap,
- const TargetMachine& target) {
- SchedGraphNode* node = getGraphNodeForInstr(&MI);
- if (node == NULL)
- return;
-
- // Add edges for all operands of the machine instruction.
- //
- for (unsigned i = 0, numOps = MI.getNumOperands(); i != numOps; ++i) {
- switch (MI.getOperand(i).getType()) {
- case MachineOperand::MO_VirtualRegister:
- case MachineOperand::MO_CCRegister:
- if (const Value* srcI = MI.getOperand(i).getVRegValue()) {
- ValueToDefVecMap::const_iterator I = valueToDefVecMap.find(srcI);
- if (I != valueToDefVecMap.end())
- addEdgesForValue(node, I->second, srcI,
- MI.getOperand(i).isDef(), MI.getOperand(i).isUse(),
- target);
- }
- break;
-
- case MachineOperand::MO_MachineRegister:
- break;
-
- case MachineOperand::MO_SignExtendedImmed:
- case MachineOperand::MO_UnextendedImmed:
- case MachineOperand::MO_PCRelativeDisp:
- case MachineOperand::MO_ConstantPoolIndex:
- break; // nothing to do for immediate fields
-
- default:
- assert(0 && "Unknown machine operand type in SchedGraph builder");
- break;
- }
- }
-
- // Add edges for values implicitly used by the machine instruction.
- // Examples include function arguments to a Call instructions or the return
- // value of a Ret instruction.
- //
- for (unsigned i=0, N=MI.getNumImplicitRefs(); i < N; ++i)
- if (MI.getImplicitOp(i).isUse())
- if (const Value* srcI = MI.getImplicitRef(i)) {
- ValueToDefVecMap::const_iterator I = valueToDefVecMap.find(srcI);
- if (I != valueToDefVecMap.end())
- addEdgesForValue(node, I->second, srcI,
- MI.getImplicitOp(i).isDef(),
- MI.getImplicitOp(i).isUse(), target);
- }
-}
-
-
-void SchedGraph::findDefUseInfoAtInstr(const TargetMachine& target,
- SchedGraphNode* node,
- std::vector<SchedGraphNode*>& memNodeVec,
- std::vector<SchedGraphNode*>& callDepNodeVec,
- RegToRefVecMap& regToRefVecMap,
- ValueToDefVecMap& valueToDefVecMap) {
- const TargetInstrInfo& mii = *target.getInstrInfo();
-
- MachineOpCode opCode = node->getOpcode();
-
- if (mii.isCall(opCode) || mii.isCCInstr(opCode))
- callDepNodeVec.push_back(node);
-
- if (mii.isLoad(opCode) || mii.isStore(opCode) || mii.isCall(opCode))
- memNodeVec.push_back(node);
-
- // Collect the register references and value defs. for explicit operands
- //
- const MachineInstr& MI = *node->getMachineInstr();
- for (int i=0, numOps = (int) MI.getNumOperands(); i < numOps; i++) {
- const MachineOperand& mop = MI.getOperand(i);
-
- // if this references a register other than the hardwired
- // "zero" register, record the reference.
- if (mop.hasAllocatedReg()) {
- unsigned regNum = mop.getReg();
-
- // If this is not a dummy zero register, record the reference in order
- if (regNum != target.getRegInfo()->getZeroRegNum())
- regToRefVecMap[mop.getReg()]
- .push_back(std::make_pair(node, i));
-
- // If this is a volatile register, add the instruction to callDepVec
- // (only if the node is not already on the callDepVec!)
- if (callDepNodeVec.size() == 0 || callDepNodeVec.back() != node)
- {
- unsigned rcid;
- int regInClass = target.getRegInfo()->getClassRegNum(regNum, rcid);
- if (target.getRegInfo()->getMachineRegClass(rcid)
- ->isRegVolatile(regInClass))
- callDepNodeVec.push_back(node);
- }
-
- continue; // nothing more to do
- }
-
- // ignore all other non-def operands
- if (!MI.getOperand(i).isDef())
- continue;
-
- // We must be defining a value.
- assert((mop.getType() == MachineOperand::MO_VirtualRegister ||
- mop.getType() == MachineOperand::MO_CCRegister)
- && "Do not expect any other kind of operand to be defined!");
- assert(mop.getVRegValue() != NULL && "Null value being defined?");
-
- valueToDefVecMap[mop.getVRegValue()].push_back(std::make_pair(node, i));
- }
-
- //
- // Collect value defs. for implicit operands. They may have allocated
- // physical registers also.
- //
- for (unsigned i=0, N = MI.getNumImplicitRefs(); i != N; ++i) {
- const MachineOperand& mop = MI.getImplicitOp(i);
- if (mop.hasAllocatedReg()) {
- unsigned regNum = mop.getReg();
- if (regNum != target.getRegInfo()->getZeroRegNum())
- regToRefVecMap[mop.getReg()]
- .push_back(std::make_pair(node, i + MI.getNumOperands()));
- continue; // nothing more to do
- }
-
- if (mop.isDef()) {
- assert(MI.getImplicitRef(i) != NULL && "Null value being defined?");
- valueToDefVecMap[MI.getImplicitRef(i)].push_back(
- std::make_pair(node, -i));
- }
- }
-}
-
-
-void SchedGraph::buildNodesForBB(const TargetMachine& target,
- MachineBasicBlock& MBB,
- std::vector<SchedGraphNode*>& memNodeVec,
- std::vector<SchedGraphNode*>& callDepNodeVec,
- RegToRefVecMap& regToRefVecMap,
- ValueToDefVecMap& valueToDefVecMap) {
- const TargetInstrInfo& mii = *target.getInstrInfo();
-
- // Build graph nodes for each VM instruction and gather def/use info.
- // Do both those together in a single pass over all machine instructions.
- unsigned i = 0;
- for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E;
- ++I, ++i)
- if (I->getOpcode() != V9::PHI) {
- SchedGraphNode* node = new SchedGraphNode(getNumNodes(), &MBB, i, target);
- noteGraphNodeForInstr(I, node);
-
- // Remember all register references and value defs
- findDefUseInfoAtInstr(target, node, memNodeVec, callDepNodeVec,
- regToRefVecMap, valueToDefVecMap);
- }
-}
-
-
-void SchedGraph::buildGraph(const TargetMachine& target) {
- // Use this data structure to note all machine operands that compute
- // ordinary LLVM values. These must be computed defs (i.e., instructions).
- // Note that there may be multiple machine instructions that define
- // each Value.
- ValueToDefVecMap valueToDefVecMap;
-
- // Use this data structure to note all memory instructions.
- // We use this to add memory dependence edges without a second full walk.
- std::vector<SchedGraphNode*> memNodeVec;
-
- // Use this data structure to note all instructions that access physical
- // registers that can be modified by a call (including call instructions)
- std::vector<SchedGraphNode*> callDepNodeVec;
-
- // Use this data structure to note any uses or definitions of
- // machine registers so we can add edges for those later without
- // extra passes over the nodes.
- // The vector holds an ordered list of references to the machine reg,
- // ordered according to control-flow order. This only works for a
- // single basic block, hence the assertion. Each reference is identified
- // by the pair: <node, operand-number>.
- //
- RegToRefVecMap regToRefVecMap;
-
- // Make a dummy root node. We'll add edges to the real roots later.
- graphRoot = new SchedGraphNode(0, NULL, -1, target);
- graphLeaf = new SchedGraphNode(1, NULL, -1, target);
-
- //----------------------------------------------------------------
- // First add nodes for all the machine instructions in the basic block
- // because this greatly simplifies identifying which edges to add.
- // Do this one VM instruction at a time since the SchedGraphNode needs that.
- // Also, remember the load/store instructions to add memory deps later.
- //----------------------------------------------------------------
-
- buildNodesForBB(target, MBB, memNodeVec, callDepNodeVec,
- regToRefVecMap, valueToDefVecMap);
-
- //----------------------------------------------------------------
- // Now add edges for the following (all are incoming edges except (4)):
- // (1) operands of the machine instruction, including hidden operands
- // (2) machine register dependences
- // (3) memory load/store dependences
- // (3) other resource dependences for the machine instruction, if any
- // (4) output dependences when multiple machine instructions define the
- // same value; all must have been generated from a single VM instrn
- // (5) control dependences to branch instructions generated for the
- // terminator instruction of the BB. Because of delay slots and
- // 2-way conditional branches, multiple CD edges are needed
- // (see addCDEdges for details).
- // Also, note any uses or defs of machine registers.
- //
- //----------------------------------------------------------------
-
- // First, add edges to the terminator instruction of the basic block.
- this->addCDEdges(MBB.getBasicBlock()->getTerminator(), target);
-
- // Then add memory dep edges: store->load, load->store, and store->store.
- // Call instructions are treated as both load and store.
- this->addMemEdges(memNodeVec, target);
-
- // Then add edges between call instructions and CC set/use instructions
- this->addCallDepEdges(callDepNodeVec, target);
-
- // Then add incoming def-use (SSA) edges for each machine instruction.
- for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; ++I)
- addEdgesForInstruction(*I, valueToDefVecMap, target);
-
- // Then add edges for dependences on machine registers
- this->addMachineRegEdges(regToRefVecMap, target);
-
- // Finally, add edges from the dummy root and to dummy leaf
- this->addDummyEdges();
-}
-
-
-//
-// class SchedGraphSet
-//
-SchedGraphSet::SchedGraphSet(const Function* _function,
- const TargetMachine& target) :
- function(_function) {
- buildGraphsForMethod(function, target);
-}
-
-SchedGraphSet::~SchedGraphSet() {
- // delete all the graphs
- for(iterator I = begin(), E = end(); I != E; ++I)
- delete *I; // destructor is a friend
-}
-
-
-void SchedGraphSet::dump() const {
- std::cerr << "======== Sched graphs for function `" << function->getName()
- << "' ========\n\n";
-
- for (const_iterator I=begin(); I != end(); ++I)
- (*I)->dump();
-
- std::cerr << "\n====== End graphs for function `" << function->getName()
- << "' ========\n\n";
-}
-
-
-void SchedGraphSet::buildGraphsForMethod(const Function *F,
- const TargetMachine& target) {
- MachineFunction &MF = MachineFunction::get(F);
- for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
- addGraph(new SchedGraph(*I, target));
-}
-
-
-void SchedGraphEdge::print(std::ostream &os) const {
- os << "edge [" << src->getNodeId() << "] -> ["
- << sink->getNodeId() << "] : ";
-
- switch(depType) {
- case SchedGraphEdge::CtrlDep:
- os<< "Control Dep";
- break;
- case SchedGraphEdge::ValueDep:
- os<< "Reg Value " << *val;
- break;
- case SchedGraphEdge::MemoryDep:
- os<< "Memory Dep";
- break;
- case SchedGraphEdge::MachineRegister:
- os<< "Reg " << machineRegNum;
- break;
- case SchedGraphEdge::MachineResource:
- os<<"Resource "<< resourceId;
- break;
- default:
- assert(0);
- break;
- }
-
- os << " : delay = " << minDelay << "\n";
-}
-
-void SchedGraphNode::print(std::ostream &os) const {
- os << std::string(8, ' ')
- << "Node " << ID << " : "
- << "latency = " << latency << "\n" << std::string(12, ' ');
-
- if (getMachineInstr() == NULL)
- os << "(Dummy node)\n";
- else {
- os << *getMachineInstr() << "\n" << std::string(12, ' ');
- os << inEdges.size() << " Incoming Edges:\n";
- for (unsigned i=0, N = inEdges.size(); i < N; i++)
- os << std::string(16, ' ') << *inEdges[i];
-
- os << std::string(12, ' ') << outEdges.size()
- << " Outgoing Edges:\n";
- for (unsigned i=0, N= outEdges.size(); i < N; i++)
- os << std::string(16, ' ') << *outEdges[i];
- }
-}
-
-} // End llvm namespace
diff --git a/lib/CodeGen/InstrSched/SchedGraph.h b/lib/CodeGen/InstrSched/SchedGraph.h
deleted file mode 100644
index 53ded6377d..0000000000
--- a/lib/CodeGen/InstrSched/SchedGraph.h
+++ /dev/null
@@ -1,262 +0,0 @@
-//===-- SchedGraph.h - Scheduling Graph -------------------------*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This is a scheduling graph based on SSA graph plus extra dependence edges
-// capturing dependences due to machine resources (machine registers, CC
-// registers, and any others).
-//
-// This graph tries to leverage the SSA graph as much as possible, but captures
-// the extra dependences through a common interface.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_CODEGEN_SCHEDGRAPH_H
-#define LLVM_CODEGEN_SCHEDGRAPH_H
-
-#include "llvm/CodeGen/SchedGraphCommon.h"
-#include "llvm/CodeGen/MachineInstr.h"
-#include "llvm/Transforms/Scalar.h"
-#include "llvm/ADT/hash_map"
-#include "llvm/ADT/GraphTraits.h"
-
-namespace llvm {
-
-class RegToRefVecMap;
-class ValueToDefVecMap;
-class RefVec;
-
-class SchedGraphNode : public SchedGraphNodeCommon {
-
- MachineBasicBlock *MBB;
- const MachineInstr *MI;
-
-
- SchedGraphNode(unsigned nodeId, MachineBasicBlock *mbb, int indexInBB,
- const TargetMachine& Target);
- ~SchedGraphNode();
-
- friend class SchedGraph; // give access for ctor and dtor
- friend class SchedGraphEdge; // give access for adding edges
-
-public:
-
- // Accessor methods
- const MachineInstr* getMachineInstr() const { return MI; }
- const MachineOpCode getOpcode() const { return MI->getOpcode(); }
- bool isDummyNode() const { return (MI == NULL); }
- MachineBasicBlock &getMachineBasicBlock() const { return *MBB; }
-
- void print(std::ostream &os) const;
-};
-
-class SchedGraph : public SchedGraphCommon {
- MachineBasicBlock &MBB;
- hash_map<const MachineInstr*, SchedGraphNode*> GraphMap;
-
-public:
- typedef hash_map<const MachineInstr*, SchedGraphNode*>::const_iterator iterator;
- typedef hash_map<const MachineInstr*, SchedGraphNode*>::const_iterator const_iterator;
-
- MachineBasicBlock& getBasicBlock() const{return MBB;}
- const unsigned int getNumNodes() const { return GraphMap.size()+2; }
- SchedGraphNode* getGraphNodeForInstr(const MachineInstr* MI) const {
- const_iterator onePair = find(MI);
- return (onePair != end())? onePair->second : NULL;
- }
-
- // Debugging support
- void dump() const;
-
-protected:
- SchedGraph(MachineBasicBlock& mbb, const TargetMachine& TM);
- ~SchedGraph();
-
- // Unordered iterators.
- // Return values is pair<const MachineIntr*,SchedGraphNode*>.
- //
- hash_map<const MachineInstr*, SchedGraphNode*>::const_iterator begin() const {
- return GraphMap.begin();
- }
- hash_map<const MachineInstr*, SchedGraphNode*>::const_iterator end() const {
- return GraphMap.end();
- }
-
- unsigned size() { return GraphMap.size(); }
- iterator find(const MachineInstr *MI) const { return GraphMap.find(MI); }
-
- SchedGraphNode *&operator[](const MachineInstr *MI) {
- return GraphMap[MI];
- }
-
-private:
- friend class SchedGraphSet; // give access to ctor
-
- inline void noteGraphNodeForInstr (const MachineInstr* minstr,
- SchedGraphNode* node) {
- assert((*this)[minstr] == NULL);
- (*this)[minstr] = node;
- }
-
- //
- // Graph builder
- //
- void buildGraph(const TargetMachine& target);
-
- void buildNodesForBB(const TargetMachine& target,MachineBasicBlock &MBB,
- std::vector<SchedGraphNode*>& memNV,
- std::vector<SchedGraphNode*>& callNV,
- RegToRefVecMap& regToRefVecMap,
- ValueToDefVecMap& valueToDefVecMap);
-
-
- void findDefUseInfoAtInstr(const TargetMachine& target, SchedGraphNode* node,
- std::vector<SchedGraphNode*>& memNV,
- std::vector<SchedGraphNode*>& callNV,
- RegToRefVecMap& regToRefVecMap,
- ValueToDefVecMap& valueToDefVecMap);
-
- void addEdgesForInstruction(const MachineInstr& minstr,
- const ValueToDefVecMap& valueToDefVecMap,
- const TargetMachine& target);
-
- void addCDEdges(const TerminatorInst* term, const TargetMachine& target);
-
- void addMemEdges(const std::vector<SchedGraphNode*>& memNod,
- const TargetMachine& target);
-
- void addCallCCEdges(const std::vector<SchedGraphNode*>& memNod,
- MachineBasicBlock& bbMvec,
- const TargetMachine& target);
-
- void addCallDepEdges(const std::vector<SchedGraphNode*>& callNV,
- const TargetMachine& target);
-
- void addMachineRegEdges(RegToRefVecMap& regToRefVecMap,
- const TargetMachine& target);
-
- void addEdgesForValue(SchedGraphNode* refNode, const RefVec& defVec,
- const Value* defValue, bool refNodeIsDef,
- bool refNodeIsDefAndUse,
- const TargetMachine& target);
-
- void addDummyEdges();
-
-};
-
-
-
-class SchedGraphSet {
- const Function* function;
- std::vector<SchedGraph*> Graphs;
-
- // Graph builder
- void buildGraphsForMethod(const Function *F, const TargetMachine& target);
-
- inline void addGraph(SchedGraph* graph) {
- assert(graph != NULL);
- Graphs.push_back(graph);
- }
-
-public:
- SchedGraphSet(const Function *function, const TargetMachine& target);
- ~SchedGraphSet();
-
- //iterators
- typedef std::vector<SchedGraph*>::const_iterator iterator;
- typedef std::vector<SchedGraph*>::const_iterator const_iterator;
-
- std::vector<SchedGraph*>::const_iterator begin() const { return Graphs.begin(); }
- std::vector<SchedGraph*>::const_iterator end() const { return Graphs.end(); }
-
- // Debugging support
- void dump() const;
-};
-
-
-
-
-//
-// sg_pred_iterator
-// sg_pred_const_iterator
-//
-typedef SGPredIterator<SchedGraphNode, SchedGraphEdge, SchedGraphNode::iterator>
- sg_pred_iterator;
-typedef SGPredIterator<const SchedGraphNode, const SchedGraphEdge,SchedGraphNode::const_iterator>
- sg_pred_const_iterator;
-
-inline sg_pred_iterator pred_begin(SchedGraphNode *N) {
- return sg_pred_iterator(N->beginInEdges());
-}
-inline sg_pred_iterator pred_end(SchedGraphNode *N) {
- return sg_pred_iterator(N->endInEdges());
-}
-inline sg_pred_const_iterator pred_begin(const SchedGraphNode *N) {
- return sg_pred_const_iterator(N->beginInEdges());
-}
-inline sg_pred_const_iterator pred_end(const SchedGraphNode *N) {
- return sg_pred_const_iterator(N->endInEdges());
-}
-
-
-//
-// sg_succ_iterator
-// sg_succ_const_iterator
-//
-typedef SGSuccIterator<SchedGraphNode, SchedGraphEdge, SchedGraphNode::iterator>
- sg_succ_iterator;
-typedef SGSuccIterator<const SchedGraphNode, const SchedGraphEdge,SchedGraphNode::const_iterator>
- sg_succ_const_iterator;
-
-inline sg_succ_iterator succ_begin(SchedGraphNode *N) {
- return sg_succ_iterator(N->beginOutEdges());
-}
-inline sg_succ_iterator succ_end(SchedGraphNode *N) {
- return sg_succ_iterator(N->endOutEdges());
-}
-inline sg_succ_const_iterator succ_begin(const SchedGraphNode *N) {
- return sg_succ_const_iterator(N->beginOutEdges());
-}
-inline sg_succ_const_iterator succ_end(const SchedGraphNode *N) {
- return sg_succ_const_iterator(N->endOutEdges());
-}
-
-// Provide specializations of GraphTraits to be able to use graph iterators on
-// the scheduling graph!
-//
-template <> struct GraphTraits<SchedGraph*> {
- typedef SchedGraphNode NodeType;
- typedef sg_succ_iterator ChildIteratorType;
-
- static inline NodeType *getEntryNode(SchedGraph *SG) { return (NodeType*)SG->getRoot(); }
- static inline ChildIteratorType child_begin(NodeType *N) {
- return succ_begin(N);
- }
- static inline ChildIteratorType child_end(NodeType *N) {
- return succ_end(N);
- }
-};
-
-template <> struct GraphTraits<const SchedGraph*> {
- typedef const SchedGraphNode NodeType;
- typedef sg_succ_const_iterator ChildIteratorType;
-
- static inline NodeType *getEntryNode(const SchedGraph *SG) {
- return (NodeType*)SG->getRoot();
- }
- static inline ChildIteratorType child_begin(NodeType *N) {
- return succ_begin(N);
- }
- static inline ChildIteratorType child_end(NodeType *N) {
- return succ_end(N);
- }
-};
-
-} // End llvm namespace
-
-#endif
diff --git a/lib/CodeGen/InstrSched/SchedGraphCommon.cpp b/lib/CodeGen/InstrSched/SchedGraphCommon.cpp
deleted file mode 100644
index 9cae7c616c..0000000000
--- a/lib/CodeGen/InstrSched/SchedGraphCommon.cpp
+++ /dev/null
@@ -1,180 +0,0 @@
-//===- SchedGraphCommon.cpp - Scheduling Graphs Base Class- ---------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// Scheduling graph base class that contains common information for SchedGraph
-// and ModuloSchedGraph scheduling graphs.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/CodeGen/SchedGraphCommon.h"
-#include "llvm/ADT/STLExtras.h"
-#include <algorithm>
-#include <iostream>
-
-namespace llvm {
-
-class SchedGraphCommon;
-
-//
-// class SchedGraphEdge
-//
-SchedGraphEdge::SchedGraphEdge(SchedGraphNodeCommon* _src,
- SchedGraphNodeCommon* _sink,
- SchedGraphEdgeDepType _depType,
- unsigned int _depOrderType,
- int _minDelay)
- : src(_src), sink(_sink), depType(_depType), depOrderType(_depOrderType),
- minDelay((_minDelay >= 0)? _minDelay : _src->getLatency()), val(NULL) {
-
- iteDiff=0;
- assert(src != sink && "Self-loop in scheduling graph!");
- src->addOutEdge(this);
- sink->addInEdge(this);
-}
-
-SchedGraphEdge::SchedGraphEdge(SchedGraphNodeCommon* _src,
- SchedGraphNodeCommon* _sink,
- const Value* _val,
- unsigned int _depOrderType,
- int _minDelay)
- : src(_src), sink(_sink), depType(ValueDep), depOrderType(_depOrderType),
- minDelay((_minDelay >= 0)? _minDelay : _src->getLatency()), val(_val) {
- iteDiff=0;
- assert(src != sink && "Self-loop in scheduling graph!");
- src->addOutEdge(this);
- sink->addInEdge(this);
-}
-
-SchedGraphEdge::SchedGraphEdge(SchedGraphNodeCommon* _src,
- SchedGraphNodeCommon* _sink,
- unsigned int _regNum,
- unsigned int _depOrderType,
- int _minDelay)
- : src(_src), sink(_sink), depType(MachineRegister),
- depOrderType(_depOrderType),
- minDelay((_minDelay >= 0)? _minDelay : _src->getLatency()),
- machineRegNum(_regNum) {
- iteDiff=0;
- assert(src != sink && "Self-loop in scheduling graph!");
- src->addOutEdge(this);
- sink->addInEdge(this);
-}
-
-SchedGraphEdge::SchedGraphEdge(SchedGraphNodeCommon* _src,
- SchedGraphNodeCommon* _sink,
- ResourceId _resourceId,
- int _minDelay)
- : src(_src), sink(_sink), depType(MachineResource), depOrderType(NonDataDep),
- minDelay((_minDelay >= 0)? _minDelay : _src->getLatency()),
- resourceId(_resourceId) {
- iteDiff=0;
- assert(src != sink && "Self-loop in scheduling graph!");
- src->addOutEdge(this);
- sink->addInEdge(this);
-}
-
-
-void SchedGraphEdge::dump(int indent) const {
- std::cerr << std::string(indent*2, ' ') << *this;
-}
-
-/*dtor*/
-SchedGraphNodeCommon::~SchedGraphNodeCommon()
-{
- // for each node, delete its out-edges
- std::for_each(beginOutEdges(), endOutEdges(),
- deleter<SchedGraphEdge>);
-}
-
-void SchedGraphNodeCommon::removeInEdge(const SchedGraphEdge* edge) {
- assert(edge->getSink() == this);
-
- for (iterator I = beginInEdges(); I != endInEdges(); ++I)
- if ((*I) == edge) {
- inEdges.erase(I);
- break;
- }
-}
-
-void SchedGraphNodeCommon::removeOutEdge(const SchedGraphEdge* edge) {
- assert(edge->getSrc() == this);
-
- for (iterator I = beginOutEdges(); I != endOutEdges(); ++I)
- if ((*I) == edge) {
- outEdges.erase(I);
- break;
- }
-}
-
-void SchedGraphNodeCommon::dump(int indent) const {
- std::cerr << std::string(indent*2, ' ') << *this;
-}
-
-//class SchedGraphCommon
-
-SchedGraphCommon::~SchedGraphCommon() {
- delete graphRoot;
- delete graphLeaf;
-}
-
-
-void SchedGraphCommon::eraseIncomingEdges(SchedGraphNodeCommon* node,
- bool addDummyEdges) {
- // Delete and disconnect all in-edges for the node
- for (SchedGraphNodeCommon::iterator I = node->beginInEdges();
- I != node->endInEdges(); ++I) {
- SchedGraphNodeCommon* srcNode = (*I)->getSrc();
- srcNode->removeOutEdge(*I);
- delete *I;
-
- if (addDummyEdges && srcNode != getRoot() &&
- srcNode->beginOutEdges() == srcNode->endOutEdges()) {
-
- // srcNode has no more out edges, so add an edge to dummy EXIT node
- assert(node != getLeaf() && "Adding edge that was just removed?");
- (void) new SchedGraphEdge(srcNode, getLeaf(),
- SchedGraphEdge::CtrlDep,
- SchedGraphEdge::NonDataDep, 0);
- }
- }
-
- node->inEdges.clear();
-}
-
-void SchedGraphCommon::eraseOutgoingEdges(SchedGraphNodeCommon* node,
- bool addDummyEdges) {
- // Delete and disconnect all out-edges for the node
- for (SchedGraphNodeCommon::iterator I = node->beginOutEdges();
- I != node->endOutEdges(); ++I) {
- SchedGraphNodeCommon* sinkNode = (*I)->getSink();
- sinkNode->removeInEdge(*I);
- delete *I;
-
- if (addDummyEdges &&
- sinkNode != getLeaf() &&
- sinkNode->beginInEdges() == sinkNode->endInEdges()) {
-
- //sinkNode has no more in edges, so add an edge from dummy ENTRY node
- assert(node != getRoot() && "Adding edge that was just removed?");
- (void) new SchedGraphEdge(getRoot(), sinkNode,
- SchedGraphEdge::CtrlDep,
- SchedGraphEdge::NonDataDep, 0);
- }
- }
-
- node->outEdges.clear();
-}
-
-void SchedGraphCommon::eraseIncidentEdges(SchedGraphNodeCommon* node,
- bool addDummyEdges) {
- this->eraseIncomingEdges(node, addDummyEdges);
- this->eraseOutgoingEdges(node, addDummyEdges);
-}
-
-} // End llvm namespace
diff --git a/lib/CodeGen/InstrSched/SchedPriorities.cpp b/lib/CodeGen/InstrSched/SchedPriorities.cpp
deleted file mode 100644
index 0aaece228d..0000000000
--- a/lib/CodeGen/InstrSched/SchedPriorities.cpp
+++ /dev/null
@@ -1,284 +0,0 @@
-//===-- SchedPriorities.h - Encapsulate scheduling heuristics -------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// Strategy:
-// Priority ordering rules:
-// (1) Max delay, which is the order of the heap S.candsAsHeap.
-// (2) Instruction that frees up a register.
-// (3) Instruction that has the maximum number of dependent instructions.
-// Note that rules 2 and 3 are only used if issue conflicts prevent
-// choosing a higher priority instruction by rule 1.
-//
-//===----------------------------------------------------------------------===//
-
-#include "SchedPriorities.h"
-#include "../../Target/SparcV9/LiveVar/FunctionLiveVarInfo.h"
-#include "llvm/CodeGen/MachineBasicBlock.h"
-#include "llvm/Support/CFG.h"
-#include "llvm/ADT/PostOrderIterator.h"
-#include <iostream>
-
-namespace llvm {
-
-std::ostream &operator<<(std::ostream &os, const NodeDelayPair* nd) {
- return os << "Delay for node " << nd->node->getNodeId()
- << " = " << (long)nd->delay << "\n";
-}
-
-
-SchedPriorities::SchedPriorities(const Function *, const SchedGraph *G,
- FunctionLiveVarInfo &LVI)
- : curTime(0), graph(G), methodLiveVarInfo(LVI),
- nodeDelayVec(G->getNumNodes(), INVALID_LATENCY), // make errors obvious
- earliestReadyTimeForNode(G->getNumNodes(), 0),
- earliestReadyTime(0),
- nextToTry(candsAsHeap.begin())
-{
- computeDelays(graph);
-}
-
-
-void
-SchedPriorities::initialize() {
- initializeReadyHeap(graph);
-}
-
-
-void
-SchedPriorities::computeDelays(const SchedGraph* graph) {
- po_iterator<const SchedGraph*> poIter = po_begin(graph), poEnd =po_end(graph);
- for ( ; poIter != poEnd; ++poIter) {
- const SchedGraphNode* node = *poIter;
- cycles_t nodeDelay;
- if (node->beginOutEdges() == node->endOutEdges())
- nodeDelay = node->getLatency();
- else {
- // Iterate over the out-edges of the node to compute delay
- nodeDelay = 0;
- for (SchedGraphNode::const_iterator E=node->beginOutEdges();
- E != node->endOutEdges(); ++E) {
- cycles_t sinkDelay = getNodeDelay((SchedGraphNode*)(*E)->getSink());
- nodeDelay = std::max(nodeDelay, sinkDelay + (*E)->getMinDelay());
- }
- }
- getNodeDelayRef(node) = nodeDelay;
- }
-}
-
-
-void
-SchedPriorities::initializeReadyHeap(const SchedGraph* graph) {
- const SchedGraphNode* graphRoot = (const SchedGraphNode*)graph->getRoot();
- assert(graphRoot->getMachineInstr() == NULL && "Expect dummy root");
-
- // Insert immediate successors of dummy root, which are the actual roots
- sg_succ_const_iterator SEnd = succ_end(graphRoot);
- for (sg_succ_const_iterator S = succ_begin(graphRoot); S != SEnd; ++S)
- this->insertReady(*S);
-
-#undef TEST_HEAP_CONVERSION
-#ifdef TEST_HEAP_CONVERSION
- std::cerr << "Before heap conversion:\n";
- copy(candsAsHeap.begin(), candsAsHeap.end(),
- ostream_iterator<NodeDelayPair*>(std::cerr,"\n"));
-#endif
-
- candsAsHeap.makeHeap();
-
- nextToTry = candsAsHeap.begin();
-
-#ifdef TEST_HEAP_CONVERSION
- std::cerr << "After heap conversion:\n";
- copy(candsAsHeap.begin(), candsAsHeap.end(),
- ostream_iterator<NodeDelayPair*>(std::cerr,"\n"));
-#endif
-}
-
-void
-SchedPriorities::insertReady(const SchedGraphNode* node) {
- candsAsHeap.insert(node, nodeDelayVec[node->getNodeId()]);
- candsAsSet.insert(node);
- mcands.clear(); // ensure reset choices is called before any more choices
- earliestReadyTime = std::min(earliestReadyTime,
- getEarliestReadyTimeForNode(node));
-
- if (SchedDebugLevel >= Sched_PrintSchedTrace) {
- std::cerr << " Node " << node->getNodeId() << " will be ready in Cycle "
- << getEarliestReadyTimeForNode(node) << "; "
- << " Delay = " <<(long)getNodeDelay(node) << "; Instruction: \n"
- << " " << *node->getMachineInstr() << "\n";
- }
-}
-
-void
-SchedPriorities::issuedReadyNodeAt(cycles_t curTime,
- const SchedGraphNode* node) {
- candsAsHeap.removeNode(node);
- candsAsSet.erase(node);
- mcands.clear(); // ensure reset choices is called before any more choices
-
- if (earliestReadyTime == getEarliestReadyTimeForNode(node)) {
- // earliestReadyTime may have been due to this node, so recompute it
- earliestReadyTime = HUGE_LATENCY;
- for (NodeHeap::const_iterator I=candsAsHeap.begin();
- I != candsAsHeap.end(); ++I)
- if (candsAsHeap.getNode(I)) {
- earliestReadyTime =
- std::min(earliestReadyTime,
- getEarliestReadyTimeForNode(candsAsHeap.getNode(I)));
- }
- }
-
- // Now update ready times for successors
- for (SchedGraphNode::const_iterator E=node->beginOutEdges();
- E != node->endOutEdges(); ++E) {
- cycles_t& etime =
- getEarliestReadyTimeForNodeRef((SchedGraphNode*)(*E)->getSink());
- etime = std::max(etime, curTime + (*E)->getMinDelay());
- }
-}
-
-
-//----------------------------------------------------------------------
-// Priority ordering rules:
-// (1) Max delay, which is the order of the heap S.candsAsHeap.
-// (2) Instruction that frees up a register.
-// (3) Instruction that has the maximum number of dependent instructions.
-// Note that rules 2 and 3 are only used if issue conflicts prevent
-// choosing a higher priority instruction by rule 1.
-//----------------------------------------------------------------------
-
-inline int
-SchedPriorities::chooseByRule1(std::vector<candIndex>& mcands) {
- return (mcands.size() == 1)? 0 // only one choice exists so take it
- : -1; // -1 indicates multiple choices
-}
-
-inline int
-SchedPriorities::chooseByRule2(std::vector<candIndex>& mcands) {
- assert(mcands.size() >= 1 && "Should have at least one candidate here.");
- for (unsigned i=0, N = mcands.size(); i < N; i++)
- if (instructionHasLastUse(methodLiveVarInfo,
- candsAsHeap.getNode(mcands[i])))
- return i;
- return -1;
-}
-
-inline int
-SchedPriorities::chooseByRule3(std::vector<candIndex>& mcands) {
- assert(mcands.size() >= 1 && "Should have at least one candidate here.");
- int maxUses = candsAsHeap.getNode(mcands[0])->getNumOutEdges();
- int indexWithMaxUses = 0;
- for (unsigned i=1, N = mcands.size(); i < N; i++) {
- int numUses = candsAsHeap.getNode(mcands[i])->getNumOutEdges();
- if (numUses > maxUses) {
- maxUses = numUses;
- indexWithMaxUses = i;
- }
- }
- return indexWithMaxUses;
-}
-
-const SchedGraphNode*
-SchedPriorities::getNextHighest(const SchedulingManager& S,
- cycles_t curTime) {
- int nextIdx = -1;
- const SchedGraphNode* nextChoice = NULL;
-
- if (mcands.size() == 0)
- findSetWithMaxDelay(mcands, S);
-
- while (nextIdx < 0 && mcands.size() > 0) {
- nextIdx = chooseByRule1(mcands); // rule 1
-
- if (nextIdx == -1)
- nextIdx = chooseByRule2(mcands); // rule 2
-
- if (nextIdx == -1)
- nextIdx = chooseByRule3(mcands); // rule 3
-
- if (nextIdx == -1)
- nextIdx = 0; // default to first choice by delays
-
- // We have found the next best candidate. Check if it ready in
- // the current cycle, and if it is feasible.
- // If not, remove it from mcands and continue. Refill mcands if
- // it becomes empty.
- nextChoice = candsAsHeap.getNode(mcands[nextIdx]);
- if (getEarliestReadyTimeForNode(nextChoice) > curTime
- || ! instrIsFeasible(S, nextChoice->getMachineInstr()->getOpcode()))
- {
- mcands.erase(mcands.begin() + nextIdx);
- nextIdx = -1;
- if (mcands.size() == 0)
- findSetWithMaxDelay(mcands, S);
- }
- }
-
- if (nextIdx >= 0) {
- mcands.erase(mcands.begin() + nextIdx);
- return nextChoice;
- } else
- return NULL;
-}
-
-
-void
-SchedPriorities::findSetWithMaxDelay(std::vector<candIndex>& mcands,
- const SchedulingManager& S)
-{
- if (mcands.size() == 0 && nextToTry != candsAsHeap.end())
- { // out of choices at current maximum delay;
- // put nodes with next highest delay in mcands
- candIndex next = nextToTry;
- cycles_t maxDelay = candsAsHeap.getDelay(next);
- for (; next != candsAsHeap.end()
- && candsAsHeap.getDelay(next) == maxDelay; ++next)
- mcands.push_back(next);
-
- nextToTry = next;
-
- if (SchedDebugLevel >= Sched_PrintSchedTrace) {
- std::cerr << " Cycle " << (long)getTime() << ": "
- << "Next highest delay = " << (long)maxDelay << " : "
- << mcands.size() << " Nodes with this delay: ";
- for (unsigned i=0; i < mcands.size(); i++)
- std::cerr << candsAsHeap.getNode(mcands[i])->getNodeId() << ", ";
- std::cerr << "\n";
- }
- }
-}
-
-
-bool
-SchedPriorities::instructionHasLastUse(FunctionLiveVarInfo &LVI,
- const SchedGraphNode* graphNode) {
- const MachineInstr *MI = graphNode->getMachineInstr();
-
- hash_map<const MachineInstr*, bool>::const_iterator
- ui = lastUseMap.find(MI);
- if (ui != lastUseMap.end())
- return ui->second;
-
- // else check if instruction is a last use and save it in the hash_map
- bool hasLastUse = false;
- const BasicBlock* bb = graphNode->getMachineBasicBlock().getBasicBlock();
- const ValueSet &LVs = LVI.getLiveVarSetBeforeMInst(MI, bb);
-
- for (MachineInstr::const_val_op_iterator OI = MI->begin(), OE = MI->end();
- OI != OE; ++OI)
- if (!LVs.count(*OI)) {
- hasLastUse = true;
- break;
- }
-
- return lastUseMap[MI] = hasLastUse;
-}
-
-} // End llvm namespace
diff --git a/lib/CodeGen/InstrSched/SchedPriorities.h b/lib/CodeGen/InstrSched/SchedPriorities.h
deleted file mode 100644
index dd807f788e..0000000000
--- a/lib/CodeGen/InstrSched/SchedPriorities.h
+++ /dev/null
@@ -1,221 +0,0 @@
-//===-- SchedPriorities.h - Encapsulate scheduling heuristics --*- C++ -*--===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// Strategy:
-// Priority ordering rules:
-// (1) Max delay, which is the order of the heap S.candsAsHeap.
-// (2) Instruction that frees up a register.
-// (3) Instruction that has the maximum number of dependent instructions.
-// Note that rules 2 and 3 are only used if issue conflicts prevent
-// choosing a higher priority instruction by rule 1.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_CODEGEN_SCHEDPRIORITIES_H
-#define LLVM_CODEGEN_SCHEDPRIORITIES_H
-
-#include "SchedGraph.h"
-#include "llvm/CodeGen/InstrScheduling.h"
-#include "llvm/Target/TargetSchedInfo.h"
-#include "llvm/ADT/hash_set"
-#include <list>
-
-namespace llvm {
-
-class Function;
-class MachineInstr;
-class SchedulingManager;
-class FunctionLiveVarInfo;
-
-//---------------------------------------------------------------------------
-// Debug option levels for instruction scheduling
-
-enum SchedDebugLevel_t {
- Sched_NoDebugInfo,
- Sched_Disable,
- Sched_PrintMachineCode,
- Sched_PrintSchedTrace,
- Sched_PrintSchedGraphs,
-};
-
-extern SchedDebugLevel_t SchedDebugLevel;
-
-//---------------------------------------------------------------------------
-// Function: instrIsFeasible
-//
-// Purpose:
-// Used by the priority analysis to filter out instructions
-// that are not feasible to issue in the current cycle.
-// Should only be used during schedule construction..
-//---------------------------------------------------------------------------
-
-bool instrIsFeasible(const SchedulingManager &S, MachineOpCode opCode);
-
-
-
-struct NodeDelayPair {
- const SchedGraphNode* node;
- cycles_t delay;
- NodeDelayPair(const SchedGraphNode* n, cycles_t d) : node(n), delay(d) {}
- inline bool operator<(const NodeDelayPair& np) { return delay < np.delay; }
-};
-
-inline bool
-NDPLessThan(const NodeDelayPair* np1, const NodeDelayPair* np2)
-{
- return np1->delay < np2->delay;
-}
-
-class NodeHeap : public std::list<NodeDelayPair*> {
- NodeHeap(const NodeHeap&); // DO NOT IMPLEMENT
- void operator=(const NodeHeap&); // DO NOT IMPLEMENT
-public:
- typedef std::list<NodeDelayPair*>::iterator iterator;
- typedef std::list<NodeDelayPair*>::const_iterator const_iterator;
-
-public:
- NodeHeap() : _size(0) {}
-
- inline unsigned size() const { return _size; }
-
- const SchedGraphNode* getNode (const_iterator i) const { return (*i)->node; }
- cycles_t getDelay(const_iterator i) const { return (*i)->delay;}
-
- inline void makeHeap() {
- // make_heap(begin(), end(), NDPLessThan);
- }
-
- inline iterator findNode(const SchedGraphNode* node) {
- for (iterator I=begin(); I != end(); ++I)
- if (getNode(I) == node)
- return I;
- return end();
- }
-
- inline void removeNode (const SchedGraphNode* node) {
- iterator ndpPtr = findNode(node);
- if (ndpPtr != end())
- {
- delete *ndpPtr;
- erase(ndpPtr);
- --_size;
- }
- };
-
- void insert(const SchedGraphNode* node, cycles_t delay) {
- NodeDelayPair* ndp = new NodeDelayPair(node, delay);
- if (_size == 0 || front()->delay < delay)
- push_front(ndp);
- else
- {
- iterator I=begin();
- for ( ; I != end() && getDelay(I) >= delay; ++I)
- ;
- std::list<NodeDelayPair*>::insert(I, ndp);
- }
- _size++;
- }
-private:
- unsigned int _size;
-};
-
-
-class SchedPriorities {
- SchedPriorities(const SchedPriorities&); // DO NOT IMPLEMENT
- void operator=(const SchedPriorities &); // DO NOT IMPLEMENT
-public:
- SchedPriorities(const Function *F, const SchedGraph *G,
- FunctionLiveVarInfo &LVI);
-
-
- // This must be called before scheduling begins.
- void initialize ();
-
- cycles_t getTime () const { return curTime; }
- cycles_t getEarliestReadyTime () const { return earliestReadyTime; }
- unsigned getNumReady () const { return candsAsHeap.size(); }
- bool nodeIsReady (const SchedGraphNode* node) const {
- return (candsAsSet.find(node) != candsAsSet.end());
- }
-
- void issuedReadyNodeAt (cycles_t curTime,
- const SchedGraphNode* node);
-
- void insertReady (const SchedGraphNode* node);
-
- void updateTime (cycles_t /*unused*/);
-
- const SchedGraphNode* getNextHighest (const SchedulingManager& S,
- cycles_t curTime);
- // choose next highest priority instr
-
-private:
- typedef NodeHeap::iterator candIndex;
-
-private:
- cycles_t curTime;
- const SchedGraph* graph;
- FunctionLiveVarInfo &methodLiveVarInfo;
- hash_map<const MachineInstr*, bool> lastUseMap;
- std::vector<cycles_t> nodeDelayVec;
- std::vector<cycles_t> nodeEarliestUseVec;
- std::vector<cycles_t> earliestReadyTimeForNode;
- cycles_t earliestReadyTime;
- NodeHeap candsAsHeap; // candidate nodes, ready to go
- hash_set<const SchedGraphNode*> candsAsSet; //same entries as candsAsHeap,
- // but as set for fast lookup
- std::vector<candIndex> mcands; // holds pointers into cands
- candIndex nextToTry; // next cand after the last
- // one tried in this cycle
-
- int chooseByRule1 (std::vector<candIndex>& mcands);
- int chooseByRule2 (std::vector<candIndex>& mcands);
- int chooseByRule3 (std::vector<candIndex>& mcands);
-
- void findSetWithMaxDelay (std::vector<candIndex>& mcands,
- const SchedulingManager& S);
-
- void computeDelays (const SchedGraph* graph);
-
- void initializeReadyHeap (const SchedGraph* graph);
-
- bool instructionHasLastUse (FunctionLiveVarInfo& LVI,
- const SchedGraphNode* graphNode);
-
- // NOTE: The next two return references to the actual vector entries.
- // Use the following two if you don't need to modify the value.
- cycles_t& getNodeDelayRef (const SchedGraphNode* node) {
- assert(node->getNodeId() < nodeDelayVec.size());
- return nodeDelayVec[node->getNodeId()];
- }
- cycles_t& getEarliestReadyTimeForNodeRef (const SchedGraphNode* node) {
- assert(node->getNodeId() < earliestReadyTimeForNode.size());
- return earliestReadyTimeForNode[node->getNodeId()];
- }
-
- cycles_t getNodeDelay (const SchedGraphNode* node) const {
- return ((SchedPriorities*) this)->getNodeDelayRef(node);
- }
- cycles_t getEarliestReadyTimeForNode(const SchedGraphNode* node) const {
- return ((SchedPriorities*) this)->getEarliestReadyTimeForNodeRef(node);
- }
-};
-
-
-inline void SchedPriorities::updateTime(cycles_t c) {
- curTime = c;
- nextToTry = candsAsHeap.begin();
- mcands.clear();
-}
-
-std::ostream &operator<<(std::ostream &os, const NodeDelayPair* nd);
-
-} // End llvm namespace
-
-#endif