summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorMichael Gottesman <mgottesman@apple.com>2013-01-11 20:07:53 +0000
committerMichael Gottesman <mgottesman@apple.com>2013-01-11 20:07:53 +0000
commitcddd8a613e377e3064a2e7ca1d7ac8cb25f9b849 (patch)
treee3ca0b6ced55bef11abe21cf2a092c0e1976972e
parent69e42dbd006c0afb732067ece7327988b1e24c01 (diff)
downloadllvm-cddd8a613e377e3064a2e7ca1d7ac8cb25f9b849.tar.gz
llvm-cddd8a613e377e3064a2e7ca1d7ac8cb25f9b849.tar.bz2
llvm-cddd8a613e377e3064a2e7ca1d7ac8cb25f9b849.tar.xz
Added debug messages to GlobalOpt.
Specifically: 1. Added a missing new line when we emit a debug message saying that we are marking a global variable as constant. 2. Added debug messages that describe what is occuring when GlobalOpt is evaluating a block/function. 3. Added a debug message that says what specific constructor is being evaluated. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@172247 91177308-0d34-0410-b5e6-96231b3b80d8
-rw-r--r--lib/Transforms/IPO/GlobalOpt.cpp127
1 files changed, 110 insertions, 17 deletions
diff --git a/lib/Transforms/IPO/GlobalOpt.cpp b/lib/Transforms/IPO/GlobalOpt.cpp
index ff2964f6fe..1562d72cd0 100644
--- a/lib/Transforms/IPO/GlobalOpt.cpp
+++ b/lib/Transforms/IPO/GlobalOpt.cpp
@@ -1990,7 +1990,7 @@ bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
return Changed;
} else if (GS.StoredType <= GlobalStatus::isInitializerStored) {
- DEBUG(dbgs() << "MARKING CONSTANT: " << *GV);
+ DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n");
GV->setConstant(true);
// Clean up any obviously simplifiable users now.
@@ -2585,24 +2585,38 @@ bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst,
while (1) {
Constant *InstResult = 0;
+ DEBUG(dbgs() << "Evaluating Instruction: " << *CurInst << "\n");
+
if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
- if (!SI->isSimple()) return false; // no volatile/atomic accesses.
+ if (!SI->isSimple()) {
+ DEBUG(dbgs() << "Store is not simple! Can not evaluate.\n");
+ return false; // no volatile/atomic accesses.
+ }
Constant *Ptr = getVal(SI->getOperand(1));
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
+ DEBUG(dbgs() << "Folding constant ptr expression: " << *Ptr);
Ptr = ConstantFoldConstantExpression(CE, TD, TLI);
- if (!isSimpleEnoughPointerToCommit(Ptr))
+ DEBUG(dbgs() << "; To: " << *Ptr << "\n");
+ }
+ if (!isSimpleEnoughPointerToCommit(Ptr)) {
// If this is too complex for us to commit, reject it.
+ DEBUG(dbgs() << "Pointer is too complex for us to evaluate store.");
return false;
+ }
Constant *Val = getVal(SI->getOperand(0));
// If this might be too difficult for the backend to handle (e.g. the addr
// of one global variable divided by another) then we can't commit it.
- if (!isSimpleEnoughValueToCommit(Val, SimpleConstants, TD))
+ if (!isSimpleEnoughValueToCommit(Val, SimpleConstants, TD)) {
+ DEBUG(dbgs() << "Store value is too complex to evaluate store. " << *Val
+ << "\n");
return false;
+ }
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
if (CE->getOpcode() == Instruction::BitCast) {
+ DEBUG(dbgs() << "Attempting to resolve bitcast on constant ptr.\n");
// If we're evaluating a store through a bitcast, then we need
// to pull the bitcast off the pointer type and push it onto the
// stored value.
@@ -2631,6 +2645,8 @@ bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst,
// If we can't improve the situation by introspecting NewTy,
// we have to give up.
} else {
+ DEBUG(dbgs() << "Failed to bitcast constant ptr, can not "
+ "evaluate.\n");
return false;
}
}
@@ -2638,25 +2654,36 @@ bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst,
// If we found compatible types, go ahead and push the bitcast
// onto the stored value.
Val = ConstantExpr::getBitCast(Val, NewTy);
+
+ DEBUG(dbgs() << "Evaluated bitcast: " << *Val << "\n");
}
+ }
MutatedMemory[Ptr] = Val;
} else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
InstResult = ConstantExpr::get(BO->getOpcode(),
getVal(BO->getOperand(0)),
getVal(BO->getOperand(1)));
+ DEBUG(dbgs() << "Found a BinaryOperator! Simplifying: " << *InstResult
+ << "\n");
} else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) {
InstResult = ConstantExpr::getCompare(CI->getPredicate(),
getVal(CI->getOperand(0)),
getVal(CI->getOperand(1)));
+ DEBUG(dbgs() << "Found a CmpInst! Simplifying: " << *InstResult
+ << "\n");
} else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) {
InstResult = ConstantExpr::getCast(CI->getOpcode(),
getVal(CI->getOperand(0)),
CI->getType());
+ DEBUG(dbgs() << "Found a Cast! Simplifying: " << *InstResult
+ << "\n");
} else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) {
InstResult = ConstantExpr::getSelect(getVal(SI->getOperand(0)),
getVal(SI->getOperand(1)),
getVal(SI->getOperand(2)));
+ DEBUG(dbgs() << "Found a Select! Simplifying: " << *InstResult
+ << "\n");
} else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
Constant *P = getVal(GEP->getOperand(0));
SmallVector<Constant*, 8> GEPOps;
@@ -2666,41 +2693,70 @@ bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst,
InstResult =
ConstantExpr::getGetElementPtr(P, GEPOps,
cast<GEPOperator>(GEP)->isInBounds());
+ DEBUG(dbgs() << "Found a GEP! Simplifying: " << *InstResult
+ << "\n");
} else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
- if (!LI->isSimple()) return false; // no volatile/atomic accesses.
+
+ if (!LI->isSimple()) {
+ DEBUG(dbgs() << "Found a Load! Not a simple load, can not evaluate.\n");
+ return false; // no volatile/atomic accesses.
+ }
+
Constant *Ptr = getVal(LI->getOperand(0));
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
Ptr = ConstantFoldConstantExpression(CE, TD, TLI);
+ DEBUG(dbgs() << "Found a constant pointer expression, constant "
+ "folding: " << *Ptr << "\n");
+ }
InstResult = ComputeLoadResult(Ptr);
- if (InstResult == 0) return false; // Could not evaluate load.
+ if (InstResult == 0) {
+ DEBUG(dbgs() << "Failed to compute load result. Can not evaluate load."
+ "\n");
+ return false; // Could not evaluate load.
+ }
+
+ DEBUG(dbgs() << "Evaluated load: " << *InstResult << "\n");
} else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
- if (AI->isArrayAllocation()) return false; // Cannot handle array allocs.
+ if (AI->isArrayAllocation()) {
+ DEBUG(dbgs() << "Found an array alloca. Can not evaluate.\n");
+ return false; // Cannot handle array allocs.
+ }
Type *Ty = AI->getType()->getElementType();
AllocaTmps.push_back(new GlobalVariable(Ty, false,
GlobalValue::InternalLinkage,
UndefValue::get(Ty),
AI->getName()));
InstResult = AllocaTmps.back();
+ DEBUG(dbgs() << "Found an alloca. Result: " << *InstResult << "\n");
} else if (isa<CallInst>(CurInst) || isa<InvokeInst>(CurInst)) {
CallSite CS(CurInst);
// Debug info can safely be ignored here.
if (isa<DbgInfoIntrinsic>(CS.getInstruction())) {
+ DEBUG(dbgs() << "Ignoring debug info.\n");
++CurInst;
continue;
}
// Cannot handle inline asm.
- if (isa<InlineAsm>(CS.getCalledValue())) return false;
+ if (isa<InlineAsm>(CS.getCalledValue())) {
+ DEBUG(dbgs() << "Found inline asm, can not evaluate.\n");
+ return false;
+ }
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) {
if (MemSetInst *MSI = dyn_cast<MemSetInst>(II)) {
- if (MSI->isVolatile()) return false;
+ if (MSI->isVolatile()) {
+ DEBUG(dbgs() << "Can not optimize a volatile memset " <<
+ "intrinsic.\n");
+ return false;
+ }
Constant *Ptr = getVal(MSI->getDest());
Constant *Val = getVal(MSI->getValue());
Constant *DestVal = ComputeLoadResult(getVal(Ptr));
if (Val->isNullValue() && DestVal && DestVal->isNullValue()) {
// This memset is a no-op.
+ DEBUG(dbgs() << "Ignoring no-op memset.\n");
++CurInst;
continue;
}
@@ -2708,6 +2764,7 @@ bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst,
if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
II->getIntrinsicID() == Intrinsic::lifetime_end) {
+ DEBUG(dbgs() << "Ignoring lifetime intrinsic.\n");
++CurInst;
continue;
}
@@ -2715,8 +2772,10 @@ bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst,
if (II->getIntrinsicID() == Intrinsic::invariant_start) {
// We don't insert an entry into Values, as it doesn't have a
// meaningful return value.
- if (!II->use_empty())
+ if (!II->use_empty()) {
+ DEBUG(dbgs() << "Found unused invariant_start. Cant evaluate.\n");
return false;
+ }
ConstantInt *Size = cast<ConstantInt>(II->getArgOperand(0));
Value *PtrArg = getVal(II->getArgOperand(1));
Value *Ptr = PtrArg->stripPointerCasts();
@@ -2724,20 +2783,30 @@ bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst,
Type *ElemTy = cast<PointerType>(GV->getType())->getElementType();
if (!Size->isAllOnesValue() &&
Size->getValue().getLimitedValue() >=
- TD->getTypeStoreSize(ElemTy))
+ TD->getTypeStoreSize(ElemTy)) {
Invariants.insert(GV);
+ DEBUG(dbgs() << "Found a global var that is an invariant: " << *GV
+ << "\n");
+ } else {
+ DEBUG(dbgs() << "Found a global var, but can not treat it as an "
+ "invariant.\n");
+ }
}
// Continue even if we do nothing.
++CurInst;
continue;
}
+
+ DEBUG(dbgs() << "Unknown intrinsic. Can not evaluate.\n");
return false;
}
// Resolve function pointers.
Function *Callee = dyn_cast<Function>(getVal(CS.getCalledValue()));
- if (!Callee || Callee->mayBeOverridden())
+ if (!Callee || Callee->mayBeOverridden()) {
+ DEBUG(dbgs() << "Can not resolve function pointer.\n");
return false; // Cannot resolve.
+ }
SmallVector<Constant*, 8> Formals;
for (User::op_iterator i = CS.arg_begin(), e = CS.arg_end(); i != e; ++i)
@@ -2747,22 +2816,38 @@ bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst,
// If this is a function we can constant fold, do it.
if (Constant *C = ConstantFoldCall(Callee, Formals, TLI)) {
InstResult = C;
+ DEBUG(dbgs() << "Constant folded function call. Result: " <<
+ *InstResult << "\n");
} else {
+ DEBUG(dbgs() << "Can not constant fold function call.\n");
return false;
}
} else {
- if (Callee->getFunctionType()->isVarArg())
+ if (Callee->getFunctionType()->isVarArg()) {
+ DEBUG(dbgs() << "Can not constant fold vararg function call.\n");
return false;
+ }
Constant *RetVal;
// Execute the call, if successful, use the return value.
ValueStack.push_back(new DenseMap<Value*, Constant*>);
- if (!EvaluateFunction(Callee, RetVal, Formals))
+ if (!EvaluateFunction(Callee, RetVal, Formals)) {
+ DEBUG(dbgs() << "Failed to evaluate function.\n");
return false;
+ }
delete ValueStack.pop_back_val();
InstResult = RetVal;
+
+ if (InstResult != NULL) {
+ DEBUG(dbgs() << "Successfully evaluated function. Result: " <<
+ InstResult << "\n\n");
+ } else {
+ DEBUG(dbgs() << "Successfully evaluated function. Result: 0\n\n");
+ }
}
} else if (isa<TerminatorInst>(CurInst)) {
+ DEBUG(dbgs() << "Found a terminator instruction.\n");
+
if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) {
if (BI->isUnconditional()) {
NextBB = BI->getSuccessor(0);
@@ -2788,13 +2873,17 @@ bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst,
NextBB = 0;
} else {
// invoke, unwind, resume, unreachable.
+ DEBUG(dbgs() << "Can not handle terminator.");
return false; // Cannot handle this terminator.
}
// We succeeded at evaluating this block!
+ DEBUG(dbgs() << "Successfully evaluated block.\n");
return true;
} else {
// Did not know how to evaluate this!
+ DEBUG(dbgs() << "Failed to evaluate block due to unhandled instruction."
+ "\n");
return false;
}
@@ -2808,6 +2897,7 @@ bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst,
// If we just processed an invoke, we finished evaluating the block.
if (InvokeInst *II = dyn_cast<InvokeInst>(CurInst)) {
NextBB = II->getNormalDest();
+ DEBUG(dbgs() << "Found an invoke instruction. Finished Block.\n\n");
return true;
}
@@ -2846,6 +2936,8 @@ bool Evaluator::EvaluateFunction(Function *F, Constant *&RetVal,
while (1) {
BasicBlock *NextBB = 0; // Initialized to avoid compiler warnings.
+ DEBUG(dbgs() << "Trying to evaluate BB: " << *CurBB << "\n");
+
if (!EvaluateBlock(CurInst, NextBB))
return false;
@@ -2925,6 +3017,7 @@ bool GlobalOpt::OptimizeGlobalCtorsList(GlobalVariable *&GCL) {
}
break;
}
+ DEBUG(dbgs() << "Optimizing Global Constructor: " << *F << "\n");
// We cannot simplify external ctor functions.
if (F->empty()) continue;