summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--include/llvm/Analysis/BlockFrequencyInfoImpl.h483
-rw-r--r--include/llvm/Support/ScaledNumber.h480
-rw-r--r--lib/Analysis/BlockFrequencyInfoImpl.cpp190
-rw-r--r--lib/Support/ScaledNumber.cpp187
4 files changed, 667 insertions, 673 deletions
diff --git a/include/llvm/Analysis/BlockFrequencyInfoImpl.h b/include/llvm/Analysis/BlockFrequencyInfoImpl.h
index 519d01342d..73408016e0 100644
--- a/include/llvm/Analysis/BlockFrequencyInfoImpl.h
+++ b/include/llvm/Analysis/BlockFrequencyInfoImpl.h
@@ -33,489 +33,6 @@
//===----------------------------------------------------------------------===//
//
-// ScaledNumber definition.
-//
-// TODO: Move to include/llvm/Support/ScaledNumber.h
-//
-//===----------------------------------------------------------------------===//
-namespace llvm {
-
-class ScaledNumberBase {
-public:
- static const int DefaultPrecision = 10;
-
- static void dump(uint64_t D, int16_t E, int Width);
- static raw_ostream &print(raw_ostream &OS, uint64_t D, int16_t E, int Width,
- unsigned Precision);
- static std::string toString(uint64_t D, int16_t E, int Width,
- unsigned Precision);
- static int countLeadingZeros32(uint32_t N) { return countLeadingZeros(N); }
- static int countLeadingZeros64(uint64_t N) { return countLeadingZeros(N); }
- static uint64_t getHalf(uint64_t N) { return (N >> 1) + (N & 1); }
-
- static std::pair<uint64_t, bool> splitSigned(int64_t N) {
- if (N >= 0)
- return std::make_pair(N, false);
- uint64_t Unsigned = N == INT64_MIN ? UINT64_C(1) << 63 : uint64_t(-N);
- return std::make_pair(Unsigned, true);
- }
- static int64_t joinSigned(uint64_t U, bool IsNeg) {
- if (U > uint64_t(INT64_MAX))
- return IsNeg ? INT64_MIN : INT64_MAX;
- return IsNeg ? -int64_t(U) : int64_t(U);
- }
-};
-
-/// \brief Simple representation of a scaled number.
-///
-/// ScaledNumber is a number represented by digits and a scale. It uses simple
-/// saturation arithmetic and every operation is well-defined for every value.
-/// It's somewhat similar in behaviour to a soft-float, but is *not* a
-/// replacement for one. If you're doing numerics, look at \a APFloat instead.
-/// Nevertheless, we've found these semantics useful for modelling certain cost
-/// metrics.
-///
-/// The number is split into a signed scale and unsigned digits. The number
-/// represented is \c getDigits()*2^getScale(). In this way, the digits are
-/// much like the mantissa in the x87 long double, but there is no canonical
-/// form so the same number can be represented by many bit representations.
-///
-/// ScaledNumber is templated on the underlying integer type for digits, which
-/// is expected to be unsigned.
-///
-/// Unlike APFloat, ScaledNumber does not model architecture floating point
-/// behaviour -- while this might make it a little faster and easier to reason
-/// about, it certainly makes it more dangerous for general numerics.
-///
-/// ScaledNumber is totally ordered. However, there is no canonical form, so
-/// there are multiple representations of most scalars. E.g.:
-///
-/// ScaledNumber(8u, 0) == ScaledNumber(4u, 1)
-/// ScaledNumber(4u, 1) == ScaledNumber(2u, 2)
-/// ScaledNumber(2u, 2) == ScaledNumber(1u, 3)
-///
-/// ScaledNumber implements most arithmetic operations. Precision is kept
-/// where possible. Uses simple saturation arithmetic, so that operations
-/// saturate to 0.0 or getLargest() rather than under or overflowing. It has
-/// some extra arithmetic for unit inversion. 0.0/0.0 is defined to be 0.0.
-/// Any other division by 0.0 is defined to be getLargest().
-///
-/// As a convenience for modifying the exponent, left and right shifting are
-/// both implemented, and both interpret negative shifts as positive shifts in
-/// the opposite direction.
-///
-/// Scales are limited to the range accepted by x87 long double. This makes
-/// it trivial to add functionality to convert to APFloat (this is already
-/// relied on for the implementation of printing).
-///
-/// Possible (and conflicting) future directions:
-///
-/// 1. Turn this into a wrapper around \a APFloat.
-/// 2. Share the algorithm implementations with \a APFloat.
-/// 3. Allow \a ScaledNumber to represent a signed number.
-template <class DigitsT> class ScaledNumber : ScaledNumberBase {
-public:
- static_assert(!std::numeric_limits<DigitsT>::is_signed,
- "only unsigned floats supported");
-
- typedef DigitsT DigitsType;
-
-private:
- typedef std::numeric_limits<DigitsType> DigitsLimits;
-
- static const int Width = sizeof(DigitsType) * 8;
- static_assert(Width <= 64, "invalid integer width for digits");
-
-private:
- DigitsType Digits;
- int16_t Scale;
-
-public:
- ScaledNumber() : Digits(0), Scale(0) {}
-
- ScaledNumber(DigitsType Digits, int16_t Scale)
- : Digits(Digits), Scale(Scale) {}
-
-private:
- ScaledNumber(const std::pair<uint64_t, int16_t> &X)
- : Digits(X.first), Scale(X.second) {}
-
-public:
- static ScaledNumber getZero() { return ScaledNumber(0, 0); }
- static ScaledNumber getOne() { return ScaledNumber(1, 0); }
- static ScaledNumber getLargest() {
- return ScaledNumber(DigitsLimits::max(), ScaledNumbers::MaxScale);
- }
- static ScaledNumber get(uint64_t N) { return adjustToWidth(N, 0); }
- static ScaledNumber getInverse(uint64_t N) {
- return get(N).invert();
- }
- static ScaledNumber getFraction(DigitsType N, DigitsType D) {
- return getQuotient(N, D);
- }
-
- int16_t getScale() const { return Scale; }
- DigitsType getDigits() const { return Digits; }
-
- /// \brief Convert to the given integer type.
- ///
- /// Convert to \c IntT using simple saturating arithmetic, truncating if
- /// necessary.
- template <class IntT> IntT toInt() const;
-
- bool isZero() const { return !Digits; }
- bool isLargest() const { return *this == getLargest(); }
- bool isOne() const {
- if (Scale > 0 || Scale <= -Width)
- return false;
- return Digits == DigitsType(1) << -Scale;
- }
-
- /// \brief The log base 2, rounded.
- ///
- /// Get the lg of the scalar. lg 0 is defined to be INT32_MIN.
- int32_t lg() const { return ScaledNumbers::getLg(Digits, Scale); }
-
- /// \brief The log base 2, rounded towards INT32_MIN.
- ///
- /// Get the lg floor. lg 0 is defined to be INT32_MIN.
- int32_t lgFloor() const { return ScaledNumbers::getLgFloor(Digits, Scale); }
-
- /// \brief The log base 2, rounded towards INT32_MAX.
- ///
- /// Get the lg ceiling. lg 0 is defined to be INT32_MIN.
- int32_t lgCeiling() const {
- return ScaledNumbers::getLgCeiling(Digits, Scale);
- }
-
- bool operator==(const ScaledNumber &X) const { return compare(X) == 0; }
- bool operator<(const ScaledNumber &X) const { return compare(X) < 0; }
- bool operator!=(const ScaledNumber &X) const { return compare(X) != 0; }
- bool operator>(const ScaledNumber &X) const { return compare(X) > 0; }
- bool operator<=(const ScaledNumber &X) const { return compare(X) <= 0; }
- bool operator>=(const ScaledNumber &X) const { return compare(X) >= 0; }
-
- bool operator!() const { return isZero(); }
-
- /// \brief Convert to a decimal representation in a string.
- ///
- /// Convert to a string. Uses scientific notation for very large/small
- /// numbers. Scientific notation is used roughly for numbers outside of the
- /// range 2^-64 through 2^64.
- ///
- /// \c Precision indicates the number of decimal digits of precision to use;
- /// 0 requests the maximum available.
- ///
- /// As a special case to make debugging easier, if the number is small enough
- /// to convert without scientific notation and has more than \c Precision
- /// digits before the decimal place, it's printed accurately to the first
- /// digit past zero. E.g., assuming 10 digits of precision:
- ///
- /// 98765432198.7654... => 98765432198.8
- /// 8765432198.7654... => 8765432198.8
- /// 765432198.7654... => 765432198.8
- /// 65432198.7654... => 65432198.77
- /// 5432198.7654... => 5432198.765
- std::string toString(unsigned Precision = DefaultPrecision) {
- return ScaledNumberBase::toString(Digits, Scale, Width, Precision);
- }
-
- /// \brief Print a decimal representation.
- ///
- /// Print a string. See toString for documentation.
- raw_ostream &print(raw_ostream &OS,
- unsigned Precision = DefaultPrecision) const {
- return ScaledNumberBase::print(OS, Digits, Scale, Width, Precision);
- }
- void dump() const { return ScaledNumberBase::dump(Digits, Scale, Width); }
-
- ScaledNumber &operator+=(const ScaledNumber &X) {
- std::tie(Digits, Scale) =
- ScaledNumbers::getSum(Digits, Scale, X.Digits, X.Scale);
- // Check for exponent past MaxScale.
- if (Scale > ScaledNumbers::MaxScale)
- *this = getLargest();
- return *this;
- }
- ScaledNumber &operator-=(const ScaledNumber &X) {
- std::tie(Digits, Scale) =
- ScaledNumbers::getDifference(Digits, Scale, X.Digits, X.Scale);
- return *this;
- }
- ScaledNumber &operator*=(const ScaledNumber &X);
- ScaledNumber &operator/=(const ScaledNumber &X);
- ScaledNumber &operator<<=(int16_t Shift) {
- shiftLeft(Shift);
- return *this;
- }
- ScaledNumber &operator>>=(int16_t Shift) {
- shiftRight(Shift);
- return *this;
- }
-
-private:
- void shiftLeft(int32_t Shift);
- void shiftRight(int32_t Shift);
-
- /// \brief Adjust two floats to have matching exponents.
- ///
- /// Adjust \c this and \c X to have matching exponents. Returns the new \c X
- /// by value. Does nothing if \a isZero() for either.
- ///
- /// The value that compares smaller will lose precision, and possibly become
- /// \a isZero().
- ScaledNumber matchScales(ScaledNumber X) {
- ScaledNumbers::matchScales(Digits, Scale, X.Digits, X.Scale);
- return X;
- }
-
-public:
- /// \brief Scale a large number accurately.
- ///
- /// Scale N (multiply it by this). Uses full precision multiplication, even
- /// if Width is smaller than 64, so information is not lost.
- uint64_t scale(uint64_t N) const;
- uint64_t scaleByInverse(uint64_t N) const {
- // TODO: implement directly, rather than relying on inverse. Inverse is
- // expensive.
- return inverse().scale(N);
- }
- int64_t scale(int64_t N) const {
- std::pair<uint64_t, bool> Unsigned = splitSigned(N);
- return joinSigned(scale(Unsigned.first), Unsigned.second);
- }
- int64_t scaleByInverse(int64_t N) const {
- std::pair<uint64_t, bool> Unsigned = splitSigned(N);
- return joinSigned(scaleByInverse(Unsigned.first), Unsigned.second);
- }
-
- int compare(const ScaledNumber &X) const {
- return ScaledNumbers::compare(Digits, Scale, X.Digits, X.Scale);
- }
- int compareTo(uint64_t N) const {
- ScaledNumber Scaled = get(N);
- int Compare = compare(Scaled);
- if (Width == 64 || Compare != 0)
- return Compare;
-
- // Check for precision loss. We know *this == RoundTrip.
- uint64_t RoundTrip = Scaled.template toInt<uint64_t>();
- return N == RoundTrip ? 0 : RoundTrip < N ? -1 : 1;
- }
- int compareTo(int64_t N) const { return N < 0 ? 1 : compareTo(uint64_t(N)); }
-
- ScaledNumber &invert() { return *this = ScaledNumber::get(1) / *this; }
- ScaledNumber inverse() const { return ScaledNumber(*this).invert(); }
-
-private:
- static ScaledNumber getProduct(DigitsType LHS, DigitsType RHS) {
- return ScaledNumbers::getProduct(LHS, RHS);
- }
- static ScaledNumber getQuotient(DigitsType Dividend, DigitsType Divisor) {
- return ScaledNumbers::getQuotient(Dividend, Divisor);
- }
-
- static int countLeadingZerosWidth(DigitsType Digits) {
- if (Width == 64)
- return countLeadingZeros64(Digits);
- if (Width == 32)
- return countLeadingZeros32(Digits);
- return countLeadingZeros32(Digits) + Width - 32;
- }
-
- /// \brief Adjust a number to width, rounding up if necessary.
- ///
- /// Should only be called for \c Shift close to zero.
- ///
- /// \pre Shift >= MinScale && Shift + 64 <= MaxScale.
- static ScaledNumber adjustToWidth(uint64_t N, int32_t Shift) {
- assert(Shift >= ScaledNumbers::MinScale && "Shift should be close to 0");
- assert(Shift <= ScaledNumbers::MaxScale - 64 &&
- "Shift should be close to 0");
- auto Adjusted = ScaledNumbers::getAdjusted<DigitsT>(N, Shift);
- return Adjusted;
- }
-
- static ScaledNumber getRounded(ScaledNumber P, bool Round) {
- // Saturate.
- if (P.isLargest())
- return P;
-
- return ScaledNumbers::getRounded(P.Digits, P.Scale, Round);
- }
-};
-
-#define SCALED_NUMBER_BOP(op, base) \
- template <class DigitsT> \
- ScaledNumber<DigitsT> operator op(const ScaledNumber<DigitsT> &L, \
- const ScaledNumber<DigitsT> &R) { \
- return ScaledNumber<DigitsT>(L) base R; \
- }
-SCALED_NUMBER_BOP(+, += )
-SCALED_NUMBER_BOP(-, -= )
-SCALED_NUMBER_BOP(*, *= )
-SCALED_NUMBER_BOP(/, /= )
-SCALED_NUMBER_BOP(<<, <<= )
-SCALED_NUMBER_BOP(>>, >>= )
-#undef SCALED_NUMBER_BOP
-
-template <class DigitsT>
-raw_ostream &operator<<(raw_ostream &OS, const ScaledNumber<DigitsT> &X) {
- return X.print(OS, 10);
-}
-
-#define SCALED_NUMBER_COMPARE_TO_TYPE(op, T1, T2) \
- template <class DigitsT> \
- bool operator op(const ScaledNumber<DigitsT> &L, T1 R) { \
- return L.compareTo(T2(R)) op 0; \
- } \
- template <class DigitsT> \
- bool operator op(T1 L, const ScaledNumber<DigitsT> &R) { \
- return 0 op R.compareTo(T2(L)); \
- }
-#define SCALED_NUMBER_COMPARE_TO(op) \
- SCALED_NUMBER_COMPARE_TO_TYPE(op, uint64_t, uint64_t) \
- SCALED_NUMBER_COMPARE_TO_TYPE(op, uint32_t, uint64_t) \
- SCALED_NUMBER_COMPARE_TO_TYPE(op, int64_t, int64_t) \
- SCALED_NUMBER_COMPARE_TO_TYPE(op, int32_t, int64_t)
-SCALED_NUMBER_COMPARE_TO(< )
-SCALED_NUMBER_COMPARE_TO(> )
-SCALED_NUMBER_COMPARE_TO(== )
-SCALED_NUMBER_COMPARE_TO(!= )
-SCALED_NUMBER_COMPARE_TO(<= )
-SCALED_NUMBER_COMPARE_TO(>= )
-#undef SCALED_NUMBER_COMPARE_TO
-#undef SCALED_NUMBER_COMPARE_TO_TYPE
-
-template <class DigitsT>
-uint64_t ScaledNumber<DigitsT>::scale(uint64_t N) const {
- if (Width == 64 || N <= DigitsLimits::max())
- return (get(N) * *this).template toInt<uint64_t>();
-
- // Defer to the 64-bit version.
- return ScaledNumber<uint64_t>(Digits, Scale).scale(N);
-}
-
-template <class DigitsT>
-template <class IntT>
-IntT ScaledNumber<DigitsT>::toInt() const {
- typedef std::numeric_limits<IntT> Limits;
- if (*this < 1)
- return 0;
- if (*this >= Limits::max())
- return Limits::max();
-
- IntT N = Digits;
- if (Scale > 0) {
- assert(size_t(Scale) < sizeof(IntT) * 8);
- return N << Scale;
- }
- if (Scale < 0) {
- assert(size_t(-Scale) < sizeof(IntT) * 8);
- return N >> -Scale;
- }
- return N;
-}
-
-template <class DigitsT>
-ScaledNumber<DigitsT> &ScaledNumber<DigitsT>::
-operator*=(const ScaledNumber &X) {
- if (isZero())
- return *this;
- if (X.isZero())
- return *this = X;
-
- // Save the exponents.
- int32_t Scales = int32_t(Scale) + int32_t(X.Scale);
-
- // Get the raw product.
- *this = getProduct(Digits, X.Digits);
-
- // Combine with exponents.
- return *this <<= Scales;
-}
-template <class DigitsT>
-ScaledNumber<DigitsT> &ScaledNumber<DigitsT>::
-operator/=(const ScaledNumber &X) {
- if (isZero())
- return *this;
- if (X.isZero())
- return *this = getLargest();
-
- // Save the exponents.
- int32_t Scales = int32_t(Scale) - int32_t(X.Scale);
-
- // Get the raw quotient.
- *this = getQuotient(Digits, X.Digits);
-
- // Combine with exponents.
- return *this <<= Scales;
-}
-template <class DigitsT> void ScaledNumber<DigitsT>::shiftLeft(int32_t Shift) {
- if (!Shift || isZero())
- return;
- assert(Shift != INT32_MIN);
- if (Shift < 0) {
- shiftRight(-Shift);
- return;
- }
-
- // Shift as much as we can in the exponent.
- int32_t ScaleShift = std::min(Shift, ScaledNumbers::MaxScale - Scale);
- Scale += ScaleShift;
- if (ScaleShift == Shift)
- return;
-
- // Check this late, since it's rare.
- if (isLargest())
- return;
-
- // Shift the digits themselves.
- Shift -= ScaleShift;
- if (Shift > countLeadingZerosWidth(Digits)) {
- // Saturate.
- *this = getLargest();
- return;
- }
-
- Digits <<= Shift;
- return;
-}
-
-template <class DigitsT> void ScaledNumber<DigitsT>::shiftRight(int32_t Shift) {
- if (!Shift || isZero())
- return;
- assert(Shift != INT32_MIN);
- if (Shift < 0) {
- shiftLeft(-Shift);
- return;
- }
-
- // Shift as much as we can in the exponent.
- int32_t ScaleShift = std::min(Shift, Scale - ScaledNumbers::MinScale);
- Scale -= ScaleShift;
- if (ScaleShift == Shift)
- return;
-
- // Shift the digits themselves.
- Shift -= ScaleShift;
- if (Shift >= Width) {
- // Saturate.
- *this = getZero();
- return;
- }
-
- Digits >>= Shift;
- return;
-}
-
-template <class T> struct isPodLike<ScaledNumber<T>> {
- static const bool value = true;
-};
-}
-
-//===----------------------------------------------------------------------===//
-//
// BlockMass definition.
//
// TODO: Make this private to BlockFrequencyInfoImpl or delete.
diff --git a/include/llvm/Support/ScaledNumber.h b/include/llvm/Support/ScaledNumber.h
index e7c329f7bf..c0818d9bf6 100644
--- a/include/llvm/Support/ScaledNumber.h
+++ b/include/llvm/Support/ScaledNumber.h
@@ -27,6 +27,7 @@
#include <algorithm>
#include <cstdint>
#include <limits>
+#include <string>
#include <utility>
namespace llvm {
@@ -413,4 +414,483 @@ inline std::pair<uint64_t, int16_t> getDifference64(uint64_t LDigits,
} // end namespace ScaledNumbers
} // end namespace llvm
+namespace llvm {
+
+class raw_ostream;
+class ScaledNumberBase {
+public:
+ static const int DefaultPrecision = 10;
+
+ static void dump(uint64_t D, int16_t E, int Width);
+ static raw_ostream &print(raw_ostream &OS, uint64_t D, int16_t E, int Width,
+ unsigned Precision);
+ static std::string toString(uint64_t D, int16_t E, int Width,
+ unsigned Precision);
+ static int countLeadingZeros32(uint32_t N) { return countLeadingZeros(N); }
+ static int countLeadingZeros64(uint64_t N) { return countLeadingZeros(N); }
+ static uint64_t getHalf(uint64_t N) { return (N >> 1) + (N & 1); }
+
+ static std::pair<uint64_t, bool> splitSigned(int64_t N) {
+ if (N >= 0)
+ return std::make_pair(N, false);
+ uint64_t Unsigned = N == INT64_MIN ? UINT64_C(1) << 63 : uint64_t(-N);
+ return std::make_pair(Unsigned, true);
+ }
+ static int64_t joinSigned(uint64_t U, bool IsNeg) {
+ if (U > uint64_t(INT64_MAX))
+ return IsNeg ? INT64_MIN : INT64_MAX;
+ return IsNeg ? -int64_t(U) : int64_t(U);
+ }
+};
+
+/// \brief Simple representation of a scaled number.
+///
+/// ScaledNumber is a number represented by digits and a scale. It uses simple
+/// saturation arithmetic and every operation is well-defined for every value.
+/// It's somewhat similar in behaviour to a soft-float, but is *not* a
+/// replacement for one. If you're doing numerics, look at \a APFloat instead.
+/// Nevertheless, we've found these semantics useful for modelling certain cost
+/// metrics.
+///
+/// The number is split into a signed scale and unsigned digits. The number
+/// represented is \c getDigits()*2^getScale(). In this way, the digits are
+/// much like the mantissa in the x87 long double, but there is no canonical
+/// form so the same number can be represented by many bit representations.
+///
+/// ScaledNumber is templated on the underlying integer type for digits, which
+/// is expected to be unsigned.
+///
+/// Unlike APFloat, ScaledNumber does not model architecture floating point
+/// behaviour -- while this might make it a little faster and easier to reason
+/// about, it certainly makes it more dangerous for general numerics.
+///
+/// ScaledNumber is totally ordered. However, there is no canonical form, so
+/// there are multiple representations of most scalars. E.g.:
+///
+/// ScaledNumber(8u, 0) == ScaledNumber(4u, 1)
+/// ScaledNumber(4u, 1) == ScaledNumber(2u, 2)
+/// ScaledNumber(2u, 2) == ScaledNumber(1u, 3)
+///
+/// ScaledNumber implements most arithmetic operations. Precision is kept
+/// where possible. Uses simple saturation arithmetic, so that operations
+/// saturate to 0.0 or getLargest() rather than under or overflowing. It has
+/// some extra arithmetic for unit inversion. 0.0/0.0 is defined to be 0.0.
+/// Any other division by 0.0 is defined to be getLargest().
+///
+/// As a convenience for modifying the exponent, left and right shifting are
+/// both implemented, and both interpret negative shifts as positive shifts in
+/// the opposite direction.
+///
+/// Scales are limited to the range accepted by x87 long double. This makes
+/// it trivial to add functionality to convert to APFloat (this is already
+/// relied on for the implementation of printing).
+///
+/// Possible (and conflicting) future directions:
+///
+/// 1. Turn this into a wrapper around \a APFloat.
+/// 2. Share the algorithm implementations with \a APFloat.
+/// 3. Allow \a ScaledNumber to represent a signed number.
+template <class DigitsT> class ScaledNumber : ScaledNumberBase {
+public:
+ static_assert(!std::numeric_limits<DigitsT>::is_signed,
+ "only unsigned floats supported");
+
+ typedef DigitsT DigitsType;
+
+private:
+ typedef std::numeric_limits<DigitsType> DigitsLimits;
+
+ static const int Width = sizeof(DigitsType) * 8;
+ static_assert(Width <= 64, "invalid integer width for digits");
+
+private:
+ DigitsType Digits;
+ int16_t Scale;
+
+public:
+ ScaledNumber() : Digits(0), Scale(0) {}
+
+ ScaledNumber(DigitsType Digits, int16_t Scale)
+ : Digits(Digits), Scale(Scale) {}
+
+private:
+ ScaledNumber(const std::pair<uint64_t, int16_t> &X)
+ : Digits(X.first), Scale(X.second) {}
+
+public:
+ static ScaledNumber getZero() { return ScaledNumber(0, 0); }
+ static ScaledNumber getOne() { return ScaledNumber(1, 0); }
+ static ScaledNumber getLargest() {
+ return ScaledNumber(DigitsLimits::max(), ScaledNumbers::MaxScale);
+ }
+ static ScaledNumber get(uint64_t N) { return adjustToWidth(N, 0); }
+ static ScaledNumber getInverse(uint64_t N) {
+ return get(N).invert();
+ }
+ static ScaledNumber getFraction(DigitsType N, DigitsType D) {
+ return getQuotient(N, D);
+ }
+
+ int16_t getScale() const { return Scale; }
+ DigitsType getDigits() const { return Digits; }
+
+ /// \brief Convert to the given integer type.
+ ///
+ /// Convert to \c IntT using simple saturating arithmetic, truncating if
+ /// necessary.
+ template <class IntT> IntT toInt() const;
+
+ bool isZero() const { return !Digits; }
+ bool isLargest() const { return *this == getLargest(); }
+ bool isOne() const {
+ if (Scale > 0 || Scale <= -Width)
+ return false;
+ return Digits == DigitsType(1) << -Scale;
+ }
+
+ /// \brief The log base 2, rounded.
+ ///
+ /// Get the lg of the scalar. lg 0 is defined to be INT32_MIN.
+ int32_t lg() const { return ScaledNumbers::getLg(Digits, Scale); }
+
+ /// \brief The log base 2, rounded towards INT32_MIN.
+ ///
+ /// Get the lg floor. lg 0 is defined to be INT32_MIN.
+ int32_t lgFloor() const { return ScaledNumbers::getLgFloor(Digits, Scale); }
+
+ /// \brief The log base 2, rounded towards INT32_MAX.
+ ///
+ /// Get the lg ceiling. lg 0 is defined to be INT32_MIN.
+ int32_t lgCeiling() const {
+ return ScaledNumbers::getLgCeiling(Digits, Scale);
+ }
+
+ bool operator==(const ScaledNumber &X) const { return compare(X) == 0; }
+ bool operator<(const ScaledNumber &X) const { return compare(X) < 0; }
+ bool operator!=(const ScaledNumber &X) const { return compare(X) != 0; }
+ bool operator>(const ScaledNumber &X) const { return compare(X) > 0; }
+ bool operator<=(const ScaledNumber &X) const { return compare(X) <= 0; }
+ bool operator>=(const ScaledNumber &X) const { return compare(X) >= 0; }
+
+ bool operator!() const { return isZero(); }
+
+ /// \brief Convert to a decimal representation in a string.
+ ///
+ /// Convert to a string. Uses scientific notation for very large/small
+ /// numbers. Scientific notation is used roughly for numbers outside of the
+ /// range 2^-64 through 2^64.
+ ///
+ /// \c Precision indicates the number of decimal digits of precision to use;
+ /// 0 requests the maximum available.
+ ///
+ /// As a special case to make debugging easier, if the number is small enough
+ /// to convert without scientific notation and has more than \c Precision
+ /// digits before the decimal place, it's printed accurately to the first
+ /// digit past zero. E.g., assuming 10 digits of precision:
+ ///
+ /// 98765432198.7654... => 98765432198.8
+ /// 8765432198.7654... => 8765432198.8
+ /// 765432198.7654... => 765432198.8
+ /// 65432198.7654... => 65432198.77
+ /// 5432198.7654... => 5432198.765
+ std::string toString(unsigned Precision = DefaultPrecision) {
+ return ScaledNumberBase::toString(Digits, Scale, Width, Precision);
+ }
+
+ /// \brief Print a decimal representation.
+ ///
+ /// Print a string. See toString for documentation.
+ raw_ostream &print(raw_ostream &OS,
+ unsigned Precision = DefaultPrecision) const {
+ return ScaledNumberBase::print(OS, Digits, Scale, Width, Precision);
+ }
+ void dump() const { return ScaledNumberBase::dump(Digits, Scale, Width); }
+
+ ScaledNumber &operator+=(const ScaledNumber &X) {
+ std::tie(Digits, Scale) =
+ ScaledNumbers::getSum(Digits, Scale, X.Digits, X.Scale);
+ // Check for exponent past MaxScale.
+ if (Scale > ScaledNumbers::MaxScale)
+ *this = getLargest();
+ return *this;
+ }
+ ScaledNumber &operator-=(const ScaledNumber &X) {
+ std::tie(Digits, Scale) =
+ ScaledNumbers::getDifference(Digits, Scale, X.Digits, X.Scale);
+ return *this;
+ }
+ ScaledNumber &operator*=(const ScaledNumber &X);
+ ScaledNumber &operator/=(const ScaledNumber &X);
+ ScaledNumber &operator<<=(int16_t Shift) {
+ shiftLeft(Shift);
+ return *this;
+ }
+ ScaledNumber &operator>>=(int16_t Shift) {
+ shiftRight(Shift);
+ return *this;
+ }
+
+private:
+ void shiftLeft(int32_t Shift);
+ void shiftRight(int32_t Shift);
+
+ /// \brief Adjust two floats to have matching exponents.
+ ///
+ /// Adjust \c this and \c X to have matching exponents. Returns the new \c X
+ /// by value. Does nothing if \a isZero() for either.
+ ///
+ /// The value that compares smaller will lose precision, and possibly become
+ /// \a isZero().
+ ScaledNumber matchScales(ScaledNumber X) {
+ ScaledNumbers::matchScales(Digits, Scale, X.Digits, X.Scale);
+ return X;
+ }
+
+public:
+ /// \brief Scale a large number accurately.
+ ///
+ /// Scale N (multiply it by this). Uses full precision multiplication, even
+ /// if Width is smaller than 64, so information is not lost.
+ uint64_t scale(uint64_t N) const;
+ uint64_t scaleByInverse(uint64_t N) const {
+ // TODO: implement directly, rather than relying on inverse. Inverse is
+ // expensive.
+ return inverse().scale(N);
+ }
+ int64_t scale(int64_t N) const {
+ std::pair<uint64_t, bool> Unsigned = splitSigned(N);
+ return joinSigned(scale(Unsigned.first), Unsigned.second);
+ }
+ int64_t scaleByInverse(int64_t N) const {
+ std::pair<uint64_t, bool> Unsigned = splitSigned(N);
+ return joinSigned(scaleByInverse(Unsigned.first), Unsigned.second);
+ }
+
+ int compare(const ScaledNumber &X) const {
+ return ScaledNumbers::compare(Digits, Scale, X.Digits, X.Scale);
+ }
+ int compareTo(uint64_t N) const {
+ ScaledNumber Scaled = get(N);
+ int Compare = compare(Scaled);
+ if (Width == 64 || Compare != 0)
+ return Compare;
+
+ // Check for precision loss. We know *this == RoundTrip.
+ uint64_t RoundTrip = Scaled.template toInt<uint64_t>();
+ return N == RoundTrip ? 0 : RoundTrip < N ? -1 : 1;
+ }
+ int compareTo(int64_t N) const { return N < 0 ? 1 : compareTo(uint64_t(N)); }
+
+ ScaledNumber &invert() { return *this = ScaledNumber::get(1) / *this; }
+ ScaledNumber inverse() const { return ScaledNumber(*this).invert(); }
+
+private:
+ static ScaledNumber getProduct(DigitsType LHS, DigitsType RHS) {
+ return ScaledNumbers::getProduct(LHS, RHS);
+ }
+ static ScaledNumber getQuotient(DigitsType Dividend, DigitsType Divisor) {
+ return ScaledNumbers::getQuotient(Dividend, Divisor);
+ }
+
+ static int countLeadingZerosWidth(DigitsType Digits) {
+ if (Width == 64)
+ return countLeadingZeros64(Digits);
+ if (Width == 32)
+ return countLeadingZeros32(Digits);
+ return countLeadingZeros32(Digits) + Width - 32;
+ }
+
+ /// \brief Adjust a number to width, rounding up if necessary.
+ ///
+ /// Should only be called for \c Shift close to zero.
+ ///
+ /// \pre Shift >= MinScale && Shift + 64 <= MaxScale.
+ static ScaledNumber adjustToWidth(uint64_t N, int32_t Shift) {
+ assert(Shift >= ScaledNumbers::MinScale && "Shift should be close to 0");
+ assert(Shift <= ScaledNumbers::MaxScale - 64 &&
+ "Shift should be close to 0");
+ auto Adjusted = ScaledNumbers::getAdjusted<DigitsT>(N, Shift);
+ return Adjusted;
+ }
+
+ static ScaledNumber getRounded(ScaledNumber P, bool Round) {
+ // Saturate.
+ if (P.isLargest())
+ return P;
+
+ return ScaledNumbers::getRounded(P.Digits, P.Scale, Round);
+ }
+};
+
+#define SCALED_NUMBER_BOP(op, base) \
+ template <class DigitsT> \
+ ScaledNumber<DigitsT> operator op(const ScaledNumber<DigitsT> &L, \
+ const ScaledNumber<DigitsT> &R) { \
+ return ScaledNumber<DigitsT>(L) base R; \
+ }
+SCALED_NUMBER_BOP(+, += )
+SCALED_NUMBER_BOP(-, -= )
+SCALED_NUMBER_BOP(*, *= )
+SCALED_NUMBER_BOP(/, /= )
+SCALED_NUMBER_BOP(<<, <<= )
+SCALED_NUMBER_BOP(>>, >>= )
+#undef SCALED_NUMBER_BOP
+
+template <class DigitsT>
+raw_ostream &operator<<(raw_ostream &OS, const ScaledNumber<DigitsT> &X) {
+ return X.print(OS, 10);
+}
+
+#define SCALED_NUMBER_COMPARE_TO_TYPE(op, T1, T2) \
+ template <class DigitsT> \
+ bool operator op(const ScaledNumber<DigitsT> &L, T1 R) { \
+ return L.compareTo(T2(R)) op 0; \
+ } \
+ template <class DigitsT> \
+ bool operator op(T1 L, const ScaledNumber<DigitsT> &R) { \
+ return 0 op R.compareTo(T2(L)); \
+ }
+#define SCALED_NUMBER_COMPARE_TO(op) \
+ SCALED_NUMBER_COMPARE_TO_TYPE(op, uint64_t, uint64_t) \
+ SCALED_NUMBER_COMPARE_TO_TYPE(op, uint32_t, uint64_t) \
+ SCALED_NUMBER_COMPARE_TO_TYPE(op, int64_t, int64_t) \
+ SCALED_NUMBER_COMPARE_TO_TYPE(op, int32_t, int64_t)
+SCALED_NUMBER_COMPARE_TO(< )
+SCALED_NUMBER_COMPARE_TO(> )
+SCALED_NUMBER_COMPARE_TO(== )
+SCALED_NUMBER_COMPARE_TO(!= )
+SCALED_NUMBER_COMPARE_TO(<= )
+SCALED_NUMBER_COMPARE_TO(>= )
+#undef SCALED_NUMBER_COMPARE_TO
+#undef SCALED_NUMBER_COMPARE_TO_TYPE
+
+template <class DigitsT>
+uint64_t ScaledNumber<DigitsT>::scale(uint64_t N) const {
+ if (Width == 64 || N <= DigitsLimits::max())
+ return (get(N) * *this).template toInt<uint64_t>();
+
+ // Defer to the 64-bit version.
+ return ScaledNumber<uint64_t>(Digits, Scale).scale(N);
+}
+
+template <class DigitsT>
+template <class IntT>
+IntT ScaledNumber<DigitsT>::toInt() const {
+ typedef std::numeric_limits<IntT> Limits;
+ if (*this < 1)
+ return 0;
+ if (*this >= Limits::max())
+ return Limits::max();
+
+ IntT N = Digits;
+ if (Scale > 0) {
+ assert(size_t(Scale) < sizeof(IntT) * 8);
+ return N << Scale;
+ }
+ if (Scale < 0) {
+ assert(size_t(-Scale) < sizeof(IntT) * 8);
+ return N >> -Scale;
+ }
+ return N;
+}
+
+template <class DigitsT>
+ScaledNumber<DigitsT> &ScaledNumber<DigitsT>::
+operator*=(const ScaledNumber &X) {
+ if (isZero())
+ return *this;
+ if (X.isZero())
+ return *this = X;
+
+ // Save the exponents.
+ int32_t Scales = int32_t(Scale) + int32_t(X.Scale);
+
+ // Get the raw product.
+ *this = getProduct(Digits, X.Digits);
+
+ // Combine with exponents.
+ return *this <<= Scales;
+}
+template <class DigitsT>
+ScaledNumber<DigitsT> &ScaledNumber<DigitsT>::
+operator/=(const ScaledNumber &X) {
+ if (isZero())
+ return *this;
+ if (X.isZero())
+ return *this = getLargest();
+
+ // Save the exponents.
+ int32_t Scales = int32_t(Scale) - int32_t(X.Scale);
+
+ // Get the raw quotient.
+ *this = getQuotient(Digits, X.Digits);
+
+ // Combine with exponents.
+ return *this <<= Scales;
+}
+template <class DigitsT> void ScaledNumber<DigitsT>::shiftLeft(int32_t Shift) {
+ if (!Shift || isZero())
+ return;
+ assert(Shift != INT32_MIN);
+ if (Shift < 0) {
+ shiftRight(-Shift);
+ return;
+ }
+
+ // Shift as much as we can in the exponent.
+ int32_t ScaleShift = std::min(Shift, ScaledNumbers::MaxScale - Scale);
+ Scale += ScaleShift;
+ if (ScaleShift == Shift)
+ return;
+
+ // Check this late, since it's rare.
+ if (isLargest())
+ return;
+
+ // Shift the digits themselves.
+ Shift -= ScaleShift;
+ if (Shift > countLeadingZerosWidth(Digits)) {
+ // Saturate.
+ *this = getLargest();
+ return;
+ }
+
+ Digits <<= Shift;
+ return;
+}
+
+template <class DigitsT> void ScaledNumber<DigitsT>::shiftRight(int32_t Shift) {
+ if (!Shift || isZero())
+ return;
+ assert(Shift != INT32_MIN);
+ if (Shift < 0) {
+ shiftLeft(-Shift);
+ return;
+ }
+
+ // Shift as much as we can in the exponent.
+ int32_t ScaleShift = std::min(Shift, Scale - ScaledNumbers::MinScale);
+ Scale -= ScaleShift;
+ if (ScaleShift == Shift)
+ return;
+
+ // Shift the digits themselves.
+ Shift -= ScaleShift;
+ if (Shift >= Width) {
+ // Saturate.
+ *this = getZero();
+ return;
+ }
+
+ Digits >>= Shift;
+ return;
+}
+
+template <typename T> struct isPodLike;
+template <typename T> struct isPodLike<ScaledNumber<T>> {
+ static const bool value = true;
+};
+
+} // end namespace llvm
+
#endif
diff --git a/lib/Analysis/BlockFrequencyInfoImpl.cpp b/lib/Analysis/BlockFrequencyInfoImpl.cpp
index d8e633c47c..4fd2c11131 100644
--- a/lib/Analysis/BlockFrequencyInfoImpl.cpp
+++ b/lib/Analysis/BlockFrequencyInfoImpl.cpp
@@ -12,7 +12,6 @@
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/BlockFrequencyInfoImpl.h"
-#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/SCCIterator.h"
#include "llvm/Support/raw_ostream.h"
#include <deque>
@@ -24,195 +23,6 @@ using namespace llvm::bfi_detail;
//===----------------------------------------------------------------------===//
//
-// ScaledNumber implementation.
-//
-//===----------------------------------------------------------------------===//
-static void appendDigit(std::string &Str, unsigned D) {
- assert(D < 10);
- Str += '0' + D % 10;
-}
-
-static void appendNumber(std::string &Str, uint64_t N) {
- while (N) {
- appendDigit(Str, N % 10);
- N /= 10;
- }
-}
-
-static bool doesRoundUp(char Digit) {
- switch (Digit) {
- case '5':
- case '6':
- case '7':
- case '8':
- case '9':
- return true;
- default:
- return false;
- }
-}
-
-static std::string toStringAPFloat(uint64_t D, int E, unsigned Precision) {
- assert(E >= ScaledNumbers::MinScale);
- assert(E <= ScaledNumbers::MaxScale);
-
- // Find a new E, but don't let it increase past MaxScale.
- int LeadingZeros = ScaledNumberBase::countLeadingZeros64(D);
- int NewE = std::min(ScaledNumbers::MaxScale, E + 63 - LeadingZeros);
- int Shift = 63 - (NewE - E);
- assert(Shift <= LeadingZeros);
- assert(Shift == LeadingZeros || NewE == ScaledNumbers::MaxScale);
- D <<= Shift;
- E = NewE;
-
- // Check for a denormal.
- unsigned AdjustedE = E + 16383;
- if (!(D >> 63)) {
- assert(E == ScaledNumbers::MaxScale);
- AdjustedE = 0;
- }
-
- // Build the float and print it.
- uint64_t RawBits[2] = {D, AdjustedE};
- APFloat Float(APFloat::x87DoubleExtended, APInt(80, RawBits));
- SmallVector<char, 24> Chars;
- Float.toString(Chars, Precision, 0);
- return std::string(Chars.begin(), Chars.end());
-}
-
-static std::string stripTrailingZeros(const std::string &Float) {
- size_t NonZero = Float.find_last_not_of('0');
- assert(NonZero != std::string::npos && "no . in floating point string");
-
- if (Float[NonZero] == '.')
- ++NonZero;
-
- return Float.substr(0, NonZero + 1);
-}
-
-std::string ScaledNumberBase::toString(uint64_t D, int16_t E, int Width,
- unsigned Precision) {
- if (!D)
- return "0.0";
-
- // Canonicalize exponent and digits.
- uint64_t Above0 = 0;
- uint64_t Below0 = 0;
- uint64_t Extra = 0;
- int ExtraShift = 0;
- if (E == 0) {
- Above0 = D;
- } else if (E > 0) {
- if (int Shift = std::min(int16_t(countLeadingZeros64(D)), E)) {
- D <<= Shift;
- E -= Shift;
-
- if (!E)
- Above0 = D;
- }
- } else if (E > -64) {
- Above0 = D >> -E;
- Below0 = D << (64 + E);
- } else if (E > -120) {
- Below0 = D >> (-E - 64);
- Extra = D << (128 + E);
- ExtraShift = -64 - E;
- }
-
- // Fall back on APFloat for very small and very large numbers.
- if (!Above0 && !Below0)
- return toStringAPFloat(D, E, Precision);
-
- // Append the digits before the decimal.
- std::string Str;
- size_t DigitsOut = 0;
- if (Above0) {
- appendNumber(Str, Above0);
- DigitsOut = Str.size();
- } else
- appendDigit(Str, 0);
- std::reverse(Str.begin(), Str.end());
-
- // Return early if there's nothing after the decimal.
- if (!Below0)
- return Str + ".0";
-
- // Append the decimal and beyond.
- Str += '.';
- uint64_t Error = UINT64_C(1) << (64 - Width);
-
- // We need to shift Below0 to the right to make space for calculating
- // digits. Save the precision we're losing in Extra.
- Extra = (Below0 & 0xf) << 56 | (Extra >> 8);
- Below0 >>= 4;
- size_t SinceDot = 0;
- size_t AfterDot = Str.size();
- do {
- if (ExtraShift) {
- --ExtraShift;
- Error *= 5;
- } else
- Error *= 10;
-
- Below0 *= 10;
- Extra *= 10;
- Below0 += (Extra >> 60);
- Extra = Extra & (UINT64_MAX >> 4);
- appendDigit(Str, Below0 >> 60);
- Below0 = Below0 & (UINT64_MAX >> 4);
- if (DigitsOut || Str.back() != '0')
- ++DigitsOut;
- ++SinceDot;
- } while (Error && (Below0 << 4 | Extra >> 60) >= Error / 2 &&
- (!Precision || DigitsOut <= Precision || SinceDot < 2));
-
- // Return early for maximum precision.
- if (!Precision || DigitsOut <= Precision)
- return stripTrailingZeros(Str);
-
- // Find where to truncate.
- size_t Truncate =
- std::max(Str.size() - (DigitsOut - Precision), AfterDot + 1);
-
- // Check if there's anything to truncate.
- if (Truncate >= Str.size())
- return stripTrailingZeros(Str);
-
- bool Carry = doesRoundUp(Str[Truncate]);
- if (!Carry)
- return stripTrailingZeros(Str.substr(0, Truncate));
-
- // Round with the first truncated digit.
- for (std::string::reverse_iterator I(Str.begin() + Truncate), E = Str.rend();
- I != E; ++I) {
- if (*I == '.')
- continue;
- if (*I == '9') {
- *I = '0';
- continue;
- }
-
- ++*I;
- Carry = false;
- break;
- }
-
- // Add "1" in front if we still need to carry.
- return stripTrailingZeros(std::string(Carry, '1') + Str.substr(0, Truncate));
-}
-
-raw_ostream &ScaledNumberBase::print(raw_ostream &OS, uint64_t D, int16_t E,
- int Width, unsigned Precision) {
- return OS << toString(D, E, Width, Precision);
-}
-
-void ScaledNumberBase::dump(uint64_t D, int16_t E, int Width) {
- print(dbgs(), D, E, Width, 0) << "[" << Width << ":" << D << "*2^" << E
- << "]";
-}
-
-//===----------------------------------------------------------------------===//
-//
// BlockMass implementation.
//
//===----------------------------------------------------------------------===//
diff --git a/lib/Support/ScaledNumber.cpp b/lib/Support/ScaledNumber.cpp
index 10b23273d0..3fe027ba33 100644
--- a/lib/Support/ScaledNumber.cpp
+++ b/lib/Support/ScaledNumber.cpp
@@ -13,6 +13,9 @@
#include "llvm/Support/ScaledNumber.h"
+#include "llvm/ADT/APFloat.h"
+#include "llvm/Support/Debug.h"
+
using namespace llvm;
using namespace llvm::ScaledNumbers;
@@ -130,3 +133,187 @@ int ScaledNumbers::compareImpl(uint64_t L, uint64_t R, int ScaleDiff) {
return L > L_adjusted << ScaleDiff ? 1 : 0;
}
+
+static void appendDigit(std::string &Str, unsigned D) {
+ assert(D < 10);
+ Str += '0' + D % 10;
+}
+
+static void appendNumber(std::string &Str, uint64_t N) {
+ while (N) {
+ appendDigit(Str, N % 10);
+ N /= 10;
+ }
+}
+
+static bool doesRoundUp(char Digit) {
+ switch (Digit) {
+ case '5':
+ case '6':
+ case '7':
+ case '8':
+ case '9':
+ return true;
+ default:
+ return false;
+ }
+}
+
+static std::string toStringAPFloat(uint64_t D, int E, unsigned Precision) {
+ assert(E >= ScaledNumbers::MinScale);
+ assert(E <= ScaledNumbers::MaxScale);
+
+ // Find a new E, but don't let it increase past MaxScale.
+ int LeadingZeros = ScaledNumberBase::countLeadingZeros64(D);
+ int NewE = std::min(ScaledNumbers::MaxScale, E + 63 - LeadingZeros);
+ int Shift = 63 - (NewE - E);
+ assert(Shift <= LeadingZeros);
+ assert(Shift == LeadingZeros || NewE == ScaledNumbers::MaxScale);
+ D <<= Shift;
+ E = NewE;
+
+ // Check for a denormal.
+ unsigned AdjustedE = E + 16383;
+ if (!(D >> 63)) {
+ assert(E == ScaledNumbers::MaxScale);
+ AdjustedE = 0;
+ }
+
+ // Build the float and print it.
+ uint64_t RawBits[2] = {D, AdjustedE};
+ APFloat Float(APFloat::x87DoubleExtended, APInt(80, RawBits));
+ SmallVector<char, 24> Chars;
+ Float.toString(Chars, Precision, 0);
+ return std::string(Chars.begin(), Chars.end());
+}
+
+static std::string stripTrailingZeros(const std::string &Float) {
+ size_t NonZero = Float.find_last_not_of('0');
+ assert(NonZero != std::string::npos && "no . in floating point string");
+
+ if (Float[NonZero] == '.')
+ ++NonZero;
+
+ return Float.substr(0, NonZero + 1);
+}
+
+std::string ScaledNumberBase::toString(uint64_t D, int16_t E, int Width,
+ unsigned Precision) {
+ if (!D)
+ return "0.0";
+
+ // Canonicalize exponent and digits.
+ uint64_t Above0 = 0;
+ uint64_t Below0 = 0;
+ uint64_t Extra = 0;
+ int ExtraShift = 0;
+ if (E == 0) {
+ Above0 = D;
+ } else if (E > 0) {
+ if (int Shift = std::min(int16_t(countLeadingZeros64(D)), E)) {
+ D <<= Shift;
+ E -= Shift;
+
+ if (!E)
+ Above0 = D;
+ }
+ } else if (E > -64) {
+ Above0 = D >> -E;
+ Below0 = D << (64 + E);
+ } else if (E > -120) {
+ Below0 = D >> (-E - 64);
+ Extra = D << (128 + E);
+ ExtraShift = -64 - E;
+ }
+
+ // Fall back on APFloat for very small and very large numbers.
+ if (!Above0 && !Below0)
+ return toStringAPFloat(D, E, Precision);
+
+ // Append the digits before the decimal.
+ std::string Str;
+ size_t DigitsOut = 0;
+ if (Above0) {
+ appendNumber(Str, Above0);
+ DigitsOut = Str.size();
+ } else
+ appendDigit(Str, 0);
+ std::reverse(Str.begin(), Str.end());
+
+ // Return early if there's nothing after the decimal.
+ if (!Below0)
+ return Str + ".0";
+
+ // Append the decimal and beyond.
+ Str += '.';
+ uint64_t Error = UINT64_C(1) << (64 - Width);
+
+ // We need to shift Below0 to the right to make space for calculating
+ // digits. Save the precision we're losing in Extra.
+ Extra = (Below0 & 0xf) << 56 | (Extra >> 8);
+ Below0 >>= 4;
+ size_t SinceDot = 0;
+ size_t AfterDot = Str.size();
+ do {
+ if (ExtraShift) {
+ --ExtraShift;
+ Error *= 5;
+ } else
+ Error *= 10;
+
+ Below0 *= 10;
+ Extra *= 10;
+ Below0 += (Extra >> 60);
+ Extra = Extra & (UINT64_MAX >> 4);
+ appendDigit(Str, Below0 >> 60);
+ Below0 = Below0 & (UINT64_MAX >> 4);
+ if (DigitsOut || Str.back() != '0')
+ ++DigitsOut;
+ ++SinceDot;
+ } while (Error && (Below0 << 4 | Extra >> 60) >= Error / 2 &&
+ (!Precision || DigitsOut <= Precision || SinceDot < 2));
+
+ // Return early for maximum precision.
+ if (!Precision || DigitsOut <= Precision)
+ return stripTrailingZeros(Str);
+
+ // Find where to truncate.
+ size_t Truncate =
+ std::max(Str.size() - (DigitsOut - Precision), AfterDot + 1);
+
+ // Check if there's anything to truncate.
+ if (Truncate >= Str.size())
+ return stripTrailingZeros(Str);
+
+ bool Carry = doesRoundUp(Str[Truncate]);
+ if (!Carry)
+ return stripTrailingZeros(Str.substr(0, Truncate));
+
+ // Round with the first truncated digit.
+ for (std::string::reverse_iterator I(Str.begin() + Truncate), E = Str.rend();
+ I != E; ++I) {
+ if (*I == '.')
+ continue;
+ if (*I == '9') {
+ *I = '0';
+ continue;
+ }
+
+ ++*I;
+ Carry = false;
+ break;
+ }
+
+ // Add "1" in front if we still need to carry.
+ return stripTrailingZeros(std::string(Carry, '1') + Str.substr(0, Truncate));
+}
+
+raw_ostream &ScaledNumberBase::print(raw_ostream &OS, uint64_t D, int16_t E,
+ int Width, unsigned Precision) {
+ return OS << toString(D, E, Width, Precision);
+}
+
+void ScaledNumberBase::dump(uint64_t D, int16_t E, int Width) {
+ print(dbgs(), D, E, Width, 0) << "[" << Width << ":" << D << "*2^" << E
+ << "]";
+}