summaryrefslogtreecommitdiff
path: root/lib/Analysis/LoadValueNumbering.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Analysis/LoadValueNumbering.cpp')
-rw-r--r--lib/Analysis/LoadValueNumbering.cpp530
1 files changed, 0 insertions, 530 deletions
diff --git a/lib/Analysis/LoadValueNumbering.cpp b/lib/Analysis/LoadValueNumbering.cpp
deleted file mode 100644
index f99ebb4a83..0000000000
--- a/lib/Analysis/LoadValueNumbering.cpp
+++ /dev/null
@@ -1,530 +0,0 @@
-//===- LoadValueNumbering.cpp - Load Value #'ing Implementation -*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements a value numbering pass that value numbers load and call
-// instructions. To do this, it finds lexically identical load instructions,
-// and uses alias analysis to determine which loads are guaranteed to produce
-// the same value. To value number call instructions, it looks for calls to
-// functions that do not write to memory which do not have intervening
-// instructions that clobber the memory that is read from.
-//
-// This pass builds off of another value numbering pass to implement value
-// numbering for non-load and non-call instructions. It uses Alias Analysis so
-// that it can disambiguate the load instructions. The more powerful these base
-// analyses are, the more powerful the resultant value numbering will be.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Analysis/LoadValueNumbering.h"
-#include "llvm/Constants.h"
-#include "llvm/Function.h"
-#include "llvm/Instructions.h"
-#include "llvm/Pass.h"
-#include "llvm/Type.h"
-#include "llvm/Analysis/ValueNumbering.h"
-#include "llvm/Analysis/AliasAnalysis.h"
-#include "llvm/Analysis/Dominators.h"
-#include "llvm/Support/CFG.h"
-#include "llvm/Support/Compiler.h"
-#include "llvm/Target/TargetData.h"
-#include <set>
-#include <algorithm>
-using namespace llvm;
-
-namespace {
- // FIXME: This should not be a FunctionPass.
- struct VISIBILITY_HIDDEN LoadVN : public FunctionPass, public ValueNumbering {
- static char ID; // Class identification, replacement for typeinfo
- LoadVN() : FunctionPass((intptr_t)&ID) {}
-
- /// Pass Implementation stuff. This doesn't do any analysis.
- ///
- bool runOnFunction(Function &) { return false; }
-
- /// getAnalysisUsage - Does not modify anything. It uses Value Numbering
- /// and Alias Analysis.
- ///
- virtual void getAnalysisUsage(AnalysisUsage &AU) const;
-
- /// getEqualNumberNodes - Return nodes with the same value number as the
- /// specified Value. This fills in the argument vector with any equal
- /// values.
- ///
- virtual void getEqualNumberNodes(Value *V1,
- std::vector<Value*> &RetVals) const;
-
- /// deleteValue - This method should be called whenever an LLVM Value is
- /// deleted from the program, for example when an instruction is found to be
- /// redundant and is eliminated.
- ///
- virtual void deleteValue(Value *V) {
- getAnalysis<AliasAnalysis>().deleteValue(V);
- }
-
- /// copyValue - This method should be used whenever a preexisting value in
- /// the program is copied or cloned, introducing a new value. Note that
- /// analysis implementations should tolerate clients that use this method to
- /// introduce the same value multiple times: if the analysis already knows
- /// about a value, it should ignore the request.
- ///
- virtual void copyValue(Value *From, Value *To) {
- getAnalysis<AliasAnalysis>().copyValue(From, To);
- }
-
- /// getCallEqualNumberNodes - Given a call instruction, find other calls
- /// that have the same value number.
- void getCallEqualNumberNodes(CallInst *CI,
- std::vector<Value*> &RetVals) const;
- };
-}
-
-char LoadVN::ID = 0;
-// Register this pass...
-static RegisterPass<LoadVN>
-X("load-vn", "Load Value Numbering", false, true);
-
-// Declare that we implement the ValueNumbering interface
-static RegisterAnalysisGroup<ValueNumbering> Y(X);
-
-FunctionPass *llvm::createLoadValueNumberingPass() { return new LoadVN(); }
-
-
-/// getAnalysisUsage - Does not modify anything. It uses Value Numbering and
-/// Alias Analysis.
-///
-void LoadVN::getAnalysisUsage(AnalysisUsage &AU) const {
- AU.setPreservesAll();
- AU.addRequiredTransitive<AliasAnalysis>();
- AU.addRequired<ValueNumbering>();
- AU.addRequiredTransitive<DominatorTree>();
- AU.addRequiredTransitive<TargetData>();
-}
-
-static bool isPathTransparentTo(BasicBlock *CurBlock, BasicBlock *Dom,
- Value *Ptr, unsigned Size, AliasAnalysis &AA,
- std::set<BasicBlock*> &Visited,
- std::map<BasicBlock*, bool> &TransparentBlocks){
- // If we have already checked out this path, or if we reached our destination,
- // stop searching, returning success.
- if (CurBlock == Dom || !Visited.insert(CurBlock).second)
- return true;
-
- // Check whether this block is known transparent or not.
- std::map<BasicBlock*, bool>::iterator TBI =
- TransparentBlocks.find(CurBlock);
-
- if (TBI == TransparentBlocks.end()) {
- // If this basic block can modify the memory location, then the path is not
- // transparent!
- if (AA.canBasicBlockModify(*CurBlock, Ptr, Size)) {
- TransparentBlocks.insert(TBI, std::make_pair(CurBlock, false));
- return false;
- }
- TransparentBlocks.insert(TBI, std::make_pair(CurBlock, true));
- } else if (!TBI->second)
- // This block is known non-transparent, so that path can't be either.
- return false;
-
- // The current block is known to be transparent. The entire path is
- // transparent if all of the predecessors paths to the parent is also
- // transparent to the memory location.
- for (pred_iterator PI = pred_begin(CurBlock), E = pred_end(CurBlock);
- PI != E; ++PI)
- if (!isPathTransparentTo(*PI, Dom, Ptr, Size, AA, Visited,
- TransparentBlocks))
- return false;
- return true;
-}
-
-/// getCallEqualNumberNodes - Given a call instruction, find other calls that
-/// have the same value number.
-void LoadVN::getCallEqualNumberNodes(CallInst *CI,
- std::vector<Value*> &RetVals) const {
- Function *CF = CI->getCalledFunction();
- if (CF == 0) return; // Indirect call.
- AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
- AliasAnalysis::ModRefBehavior MRB = AA.getModRefBehavior(CI);
- if (MRB != AliasAnalysis::DoesNotAccessMemory &&
- MRB != AliasAnalysis::OnlyReadsMemory)
- return; // Nothing we can do for now.
-
- // Scan all of the arguments of the function, looking for one that is not
- // global. In particular, we would prefer to have an argument or instruction
- // operand to chase the def-use chains of.
- Value *Op = CF;
- for (User::op_iterator i = CI->op_begin() + 1, e = CI->op_end(); i != e; ++i)
- if (isa<Argument>(*i) ||
- isa<Instruction>(*i)) {
- Op = *i;
- break;
- }
-
- // Identify all lexically identical calls in this function.
- std::vector<CallInst*> IdenticalCalls;
-
- Function *CIFunc = CI->getParent()->getParent();
- for (Value::use_iterator UI = Op->use_begin(), E = Op->use_end(); UI != E;
- ++UI)
- if (CallInst *C = dyn_cast<CallInst>(*UI))
- if (C->getNumOperands() == CI->getNumOperands() &&
- C->getOperand(0) == CI->getOperand(0) &&
- C->getParent()->getParent() == CIFunc && C != CI) {
- bool AllOperandsEqual = true;
- for (User::op_iterator i = CI->op_begin() + 1, j = C->op_begin() + 1,
- e = CI->op_end(); i != e; ++i, ++j)
- if (*j != *i) {
- AllOperandsEqual = false;
- break;
- }
-
- if (AllOperandsEqual)
- IdenticalCalls.push_back(C);
- }
-
- if (IdenticalCalls.empty()) return;
-
- // Eliminate duplicates, which could occur if we chose a value that is passed
- // into a call site multiple times.
- std::sort(IdenticalCalls.begin(), IdenticalCalls.end());
- IdenticalCalls.erase(std::unique(IdenticalCalls.begin(),IdenticalCalls.end()),
- IdenticalCalls.end());
-
- // If the call reads memory, we must make sure that there are no stores
- // between the calls in question.
- //
- // FIXME: This should use mod/ref information. What we really care about it
- // whether an intervening instruction could modify memory that is read, not
- // ANY memory.
- //
- if (MRB == AliasAnalysis::OnlyReadsMemory) {
- DominatorTree &DT = getAnalysis<DominatorTree>();
- BasicBlock *CIBB = CI->getParent();
- for (unsigned i = 0; i != IdenticalCalls.size(); ++i) {
- CallInst *C = IdenticalCalls[i];
- bool CantEqual = false;
-
- if (DT.dominates(CIBB, C->getParent())) {
- // FIXME: we currently only handle the case where both calls are in the
- // same basic block.
- if (CIBB != C->getParent()) {
- CantEqual = true;
- } else {
- Instruction *First = CI, *Second = C;
- if (!DT.dominates(CI, C))
- std::swap(First, Second);
-
- // Scan the instructions between the calls, checking for stores or
- // calls to dangerous functions.
- BasicBlock::iterator I = First;
- for (++First; I != BasicBlock::iterator(Second); ++I) {
- if (isa<StoreInst>(I)) {
- // FIXME: We could use mod/ref information to make this much
- // better!
- CantEqual = true;
- break;
- } else if (CallInst *CI = dyn_cast<CallInst>(I)) {
- if (!AA.onlyReadsMemory(CI)) {
- CantEqual = true;
- break;
- }
- } else if (I->mayWriteToMemory()) {
- CantEqual = true;
- break;
- }
- }
- }
-
- } else if (DT.dominates(C->getParent(), CIBB)) {
- // FIXME: We could implement this, but we don't for now.
- CantEqual = true;
- } else {
- // FIXME: if one doesn't dominate the other, we can't tell yet.
- CantEqual = true;
- }
-
-
- if (CantEqual) {
- // This call does not produce the same value as the one in the query.
- std::swap(IdenticalCalls[i--], IdenticalCalls.back());
- IdenticalCalls.pop_back();
- }
- }
- }
-
- // Any calls that are identical and not destroyed will produce equal values!
- for (unsigned i = 0, e = IdenticalCalls.size(); i != e; ++i)
- RetVals.push_back(IdenticalCalls[i]);
-}
-
-// getEqualNumberNodes - Return nodes with the same value number as the
-// specified Value. This fills in the argument vector with any equal values.
-//
-void LoadVN::getEqualNumberNodes(Value *V,
- std::vector<Value*> &RetVals) const {
- // If the alias analysis has any must alias information to share with us, we
- // can definitely use it.
- if (isa<PointerType>(V->getType()))
- getAnalysis<AliasAnalysis>().getMustAliases(V, RetVals);
-
- if (!isa<LoadInst>(V)) {
- if (CallInst *CI = dyn_cast<CallInst>(V))
- getCallEqualNumberNodes(CI, RetVals);
-
- // Not a load instruction? Just chain to the base value numbering
- // implementation to satisfy the request...
- assert(&getAnalysis<ValueNumbering>() != (ValueNumbering*)this &&
- "getAnalysis() returned this!");
-
- return getAnalysis<ValueNumbering>().getEqualNumberNodes(V, RetVals);
- }
-
- // Volatile loads cannot be replaced with the value of other loads.
- LoadInst *LI = cast<LoadInst>(V);
- if (LI->isVolatile())
- return getAnalysis<ValueNumbering>().getEqualNumberNodes(V, RetVals);
-
- Value *LoadPtr = LI->getOperand(0);
- BasicBlock *LoadBB = LI->getParent();
- Function *F = LoadBB->getParent();
-
- // Find out how many bytes of memory are loaded by the load instruction...
- unsigned LoadSize = getAnalysis<TargetData>().getTypeStoreSize(LI->getType());
- AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
-
- // Figure out if the load is invalidated from the entry of the block it is in
- // until the actual instruction. This scans the block backwards from LI. If
- // we see any candidate load or store instructions, then we know that the
- // candidates have the same value # as LI.
- bool LoadInvalidatedInBBBefore = false;
- for (BasicBlock::iterator I = LI; I != LoadBB->begin(); ) {
- --I;
- if (I == LoadPtr) {
- // If we run into an allocation of the value being loaded, then the
- // contents are not initialized.
- if (isa<AllocationInst>(I))
- RetVals.push_back(UndefValue::get(LI->getType()));
-
- // Otherwise, since this is the definition of what we are loading, this
- // loaded value cannot occur before this block.
- LoadInvalidatedInBBBefore = true;
- break;
- } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
- // If this instruction is a candidate load before LI, we know there are no
- // invalidating instructions between it and LI, so they have the same
- // value number.
- if (LI->getOperand(0) == LoadPtr && !LI->isVolatile())
- RetVals.push_back(I);
- }
-
- if (AA.getModRefInfo(I, LoadPtr, LoadSize) & AliasAnalysis::Mod) {
- // If the invalidating instruction is a store, and its in our candidate
- // set, then we can do store-load forwarding: the load has the same value
- // # as the stored value.
- if (StoreInst *SI = dyn_cast<StoreInst>(I))
- if (SI->getOperand(1) == LoadPtr)
- RetVals.push_back(I->getOperand(0));
-
- LoadInvalidatedInBBBefore = true;
- break;
- }
- }
-
- // Figure out if the load is invalidated between the load and the exit of the
- // block it is defined in. While we are scanning the current basic block, if
- // we see any candidate loads, then we know they have the same value # as LI.
- //
- bool LoadInvalidatedInBBAfter = false;
- {
- BasicBlock::iterator I = LI;
- for (++I; I != LoadBB->end(); ++I) {
- // If this instruction is a load, then this instruction returns the same
- // value as LI.
- if (isa<LoadInst>(I) && cast<LoadInst>(I)->getOperand(0) == LoadPtr)
- RetVals.push_back(I);
-
- if (AA.getModRefInfo(I, LoadPtr, LoadSize) & AliasAnalysis::Mod) {
- LoadInvalidatedInBBAfter = true;
- break;
- }
- }
- }
-
- // If the pointer is clobbered on entry and on exit to the function, there is
- // no need to do any global analysis at all.
- if (LoadInvalidatedInBBBefore && LoadInvalidatedInBBAfter)
- return;
-
- // Now that we know the value is not neccesarily killed on entry or exit to
- // the BB, find out how many load and store instructions (to this location)
- // live in each BB in the function.
- //
- std::map<BasicBlock*, unsigned> CandidateLoads;
- std::set<BasicBlock*> CandidateStores;
-
- for (Value::use_iterator UI = LoadPtr->use_begin(), UE = LoadPtr->use_end();
- UI != UE; ++UI)
- if (LoadInst *Cand = dyn_cast<LoadInst>(*UI)) {// Is a load of source?
- if (Cand->getParent()->getParent() == F && // In the same function?
- // Not in LI's block?
- Cand->getParent() != LoadBB && !Cand->isVolatile())
- ++CandidateLoads[Cand->getParent()]; // Got one.
- } else if (StoreInst *Cand = dyn_cast<StoreInst>(*UI)) {
- if (Cand->getParent()->getParent() == F && !Cand->isVolatile() &&
- Cand->getOperand(1) == LoadPtr) // It's a store THROUGH the ptr.
- CandidateStores.insert(Cand->getParent());
- }
-
- // Get dominators.
- DominatorTree &DT = getAnalysis<DominatorTree>();
-
- // TransparentBlocks - For each basic block the load/store is alive across,
- // figure out if the pointer is invalidated or not. If it is invalidated, the
- // boolean is set to false, if it's not it is set to true. If we don't know
- // yet, the entry is not in the map.
- std::map<BasicBlock*, bool> TransparentBlocks;
-
- // Loop over all of the basic blocks that also load the value. If the value
- // is live across the CFG from the source to destination blocks, and if the
- // value is not invalidated in either the source or destination blocks, add it
- // to the equivalence sets.
- for (std::map<BasicBlock*, unsigned>::iterator
- I = CandidateLoads.begin(), E = CandidateLoads.end(); I != E; ++I) {
- bool CantEqual = false;
-
- // Right now we only can handle cases where one load dominates the other.
- // FIXME: generalize this!
- BasicBlock *BB1 = I->first, *BB2 = LoadBB;
- if (DT.dominates(BB1, BB2)) {
- // The other load dominates LI. If the loaded value is killed entering
- // the LoadBB block, we know the load is not live.
- if (LoadInvalidatedInBBBefore)
- CantEqual = true;
- } else if (DT.dominates(BB2, BB1)) {
- std::swap(BB1, BB2); // Canonicalize
- // LI dominates the other load. If the loaded value is killed exiting
- // the LoadBB block, we know the load is not live.
- if (LoadInvalidatedInBBAfter)
- CantEqual = true;
- } else {
- // None of these loads can VN the same.
- CantEqual = true;
- }
-
- if (!CantEqual) {
- // Ok, at this point, we know that BB1 dominates BB2, and that there is
- // nothing in the LI block that kills the loaded value. Check to see if
- // the value is live across the CFG.
- std::set<BasicBlock*> Visited;
- for (pred_iterator PI = pred_begin(BB2), E = pred_end(BB2); PI!=E; ++PI)
- if (!isPathTransparentTo(*PI, BB1, LoadPtr, LoadSize, AA,
- Visited, TransparentBlocks)) {
- // None of these loads can VN the same.
- CantEqual = true;
- break;
- }
- }
-
- // If the loads can equal so far, scan the basic block that contains the
- // loads under consideration to see if they are invalidated in the block.
- // For any loads that are not invalidated, add them to the equivalence
- // set!
- if (!CantEqual) {
- unsigned NumLoads = I->second;
- if (BB1 == LoadBB) {
- // If LI dominates the block in question, check to see if any of the
- // loads in this block are invalidated before they are reached.
- for (BasicBlock::iterator BBI = I->first->begin(); ; ++BBI) {
- if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
- if (LI->getOperand(0) == LoadPtr && !LI->isVolatile()) {
- // The load is in the set!
- RetVals.push_back(BBI);
- if (--NumLoads == 0) break; // Found last load to check.
- }
- } else if (AA.getModRefInfo(BBI, LoadPtr, LoadSize)
- & AliasAnalysis::Mod) {
- // If there is a modifying instruction, nothing below it will value
- // # the same.
- break;
- }
- }
- } else {
- // If the block dominates LI, make sure that the loads in the block are
- // not invalidated before the block ends.
- BasicBlock::iterator BBI = I->first->end();
- while (1) {
- --BBI;
- if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
- if (LI->getOperand(0) == LoadPtr && !LI->isVolatile()) {
- // The load is the same as this load!
- RetVals.push_back(BBI);
- if (--NumLoads == 0) break; // Found all of the laods.
- }
- } else if (AA.getModRefInfo(BBI, LoadPtr, LoadSize)
- & AliasAnalysis::Mod) {
- // If there is a modifying instruction, nothing above it will value
- // # the same.
- break;
- }
- }
- }
- }
- }
-
- // Handle candidate stores. If the loaded location is clobbered on entrance
- // to the LoadBB, no store outside of the LoadBB can value number equal, so
- // quick exit.
- if (LoadInvalidatedInBBBefore)
- return;
-
- // Stores in the load-bb are handled above.
- CandidateStores.erase(LoadBB);
-
- for (std::set<BasicBlock*>::iterator I = CandidateStores.begin(),
- E = CandidateStores.end(); I != E; ++I)
- if (DT.dominates(*I, LoadBB)) {
- BasicBlock *StoreBB = *I;
-
- // Check to see if the path from the store to the load is transparent
- // w.r.t. the memory location.
- bool CantEqual = false;
- std::set<BasicBlock*> Visited;
- for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
- PI != E; ++PI)
- if (!isPathTransparentTo(*PI, StoreBB, LoadPtr, LoadSize, AA,
- Visited, TransparentBlocks)) {
- // None of these stores can VN the same.
- CantEqual = true;
- break;
- }
- Visited.clear();
- if (!CantEqual) {
- // Okay, the path from the store block to the load block is clear, and
- // we know that there are no invalidating instructions from the start
- // of the load block to the load itself. Now we just scan the store
- // block.
-
- BasicBlock::iterator BBI = StoreBB->end();
- while (1) {
- assert(BBI != StoreBB->begin() &&
- "There is a store in this block of the pointer, but the store"
- " doesn't mod the address being stored to?? Must be a bug in"
- " the alias analysis implementation!");
- --BBI;
- if (AA.getModRefInfo(BBI, LoadPtr, LoadSize) & AliasAnalysis::Mod) {
- // If the invalidating instruction is one of the candidates,
- // then it provides the value the load loads.
- if (StoreInst *SI = dyn_cast<StoreInst>(BBI))
- if (SI->getOperand(1) == LoadPtr)
- RetVals.push_back(SI->getOperand(0));
- break;
- }
- }
- }
- }
-}