summaryrefslogtreecommitdiff
path: root/include/llvm/Analysis/AliasAnalysis.h
blob: 7b003d8a6914dbb2394c0c4a06e76d4140b777d6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
//===- llvm/Analysis/AliasAnalysis.h - Alias Analysis Interface -*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the generic AliasAnalysis interface, which is used as the
// common interface used by all clients of alias analysis information, and
// implemented by all alias analysis implementations.  Mod/Ref information is
// also captured by this interface.
//
// Implementations of this interface must implement the various virtual methods,
// which automatically provides functionality for the entire suite of client
// APIs.
//
// This API represents memory as a (Pointer, Size) pair.  The Pointer component
// specifies the base memory address of the region, the Size specifies how large
// of an area is being queried, or UnknownSize if the size is not known.
// Pointers that point to two completely different objects in memory never
// alias, regardless of the value of the Size component.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_ANALYSIS_ALIAS_ANALYSIS_H
#define LLVM_ANALYSIS_ALIAS_ANALYSIS_H

#include "llvm/Support/CallSite.h"
#include "llvm/System/IncludeFile.h"
#include <vector>

namespace llvm {

class LoadInst;
class StoreInst;
class VAArgInst;
class TargetData;
class Pass;
class AnalysisUsage;

class AliasAnalysis {
protected:
  const TargetData *TD;

private:
  AliasAnalysis *AA;       // Previous Alias Analysis to chain to.

protected:
  /// InitializeAliasAnalysis - Subclasses must call this method to initialize
  /// the AliasAnalysis interface before any other methods are called.  This is
  /// typically called by the run* methods of these subclasses.  This may be
  /// called multiple times.
  ///
  void InitializeAliasAnalysis(Pass *P);

  /// getAnalysisUsage - All alias analysis implementations should invoke this
  /// directly (using AliasAnalysis::getAnalysisUsage(AU)).
  virtual void getAnalysisUsage(AnalysisUsage &AU) const;

public:
  static char ID; // Class identification, replacement for typeinfo
  AliasAnalysis() : TD(0), AA(0) {}
  virtual ~AliasAnalysis();  // We want to be subclassed

  /// UnknownSize - This is a special value which can be used with the
  /// size arguments in alias queries to indicate that the caller does not
  /// know the sizes of the potential memory references.
  static unsigned const UnknownSize = ~0u;

  /// getTargetData - Return a pointer to the current TargetData object, or
  /// null if no TargetData object is available.
  ///
  const TargetData *getTargetData() const { return TD; }

  /// getTypeStoreSize - Return the TargetData store size for the given type,
  /// if known, or a conservative value otherwise.
  ///
  unsigned getTypeStoreSize(const Type *Ty);

  //===--------------------------------------------------------------------===//
  /// Alias Queries...
  ///

  /// Alias analysis result - Either we know for sure that it does not alias, we
  /// know for sure it must alias, or we don't know anything: The two pointers
  /// _might_ alias.  This enum is designed so you can do things like:
  ///     if (AA.alias(P1, P2)) { ... }
  /// to check to see if two pointers might alias.
  ///
  /// See docs/AliasAnalysis.html for more information on the specific meanings
  /// of these values.
  ///
  enum AliasResult { NoAlias = 0, MayAlias = 1, MustAlias = 2 };

  /// alias - The main low level interface to the alias analysis implementation.
  /// Returns a Result indicating whether the two pointers are aliased to each
  /// other.  This is the interface that must be implemented by specific alias
  /// analysis implementations.
  ///
  virtual AliasResult alias(const Value *V1, unsigned V1Size,
                            const Value *V2, unsigned V2Size);

  /// alias - A convenience wrapper for the case where the sizes are unknown.
  AliasResult alias(const Value *V1, const Value *V2) {
    return alias(V1, UnknownSize, V2, UnknownSize);
  }

  /// isNoAlias - A trivial helper function to check to see if the specified
  /// pointers are no-alias.
  bool isNoAlias(const Value *V1, unsigned V1Size,
                 const Value *V2, unsigned V2Size) {
    return alias(V1, V1Size, V2, V2Size) == NoAlias;
  }

  /// pointsToConstantMemory - If the specified pointer is known to point into
  /// constant global memory, return true.  This allows disambiguation of store
  /// instructions from constant pointers.
  ///
  virtual bool pointsToConstantMemory(const Value *P);

  //===--------------------------------------------------------------------===//
  /// Simple mod/ref information...
  ///

  /// ModRefResult - Represent the result of a mod/ref query.  Mod and Ref are
  /// bits which may be or'd together.
  ///
  enum ModRefResult { NoModRef = 0, Ref = 1, Mod = 2, ModRef = 3 };


  /// ModRefBehavior - Summary of how a function affects memory in the program.
  /// Loads from constant globals are not considered memory accesses for this
  /// interface.  Also, functions may freely modify stack space local to their
  /// invocation without having to report it through these interfaces.
  enum ModRefBehavior {
    // DoesNotAccessMemory - This function does not perform any non-local loads
    // or stores to memory.
    //
    // This property corresponds to the GCC 'const' attribute.
    DoesNotAccessMemory,

    // AccessesArguments - This function accesses function arguments in well
    // known (possibly volatile) ways, but does not access any other memory.
    AccessesArguments,

    // AccessesArgumentsAndGlobals - This function has accesses function
    // arguments and global variables well known (possibly volatile) ways, but
    // does not access any other memory.
    AccessesArgumentsAndGlobals,

    // OnlyReadsMemory - This function does not perform any non-local stores or
    // volatile loads, but may read from any memory location.
    //
    // This property corresponds to the GCC 'pure' attribute.
    OnlyReadsMemory,

    // UnknownModRefBehavior - This indicates that the function could not be
    // classified into one of the behaviors above.
    UnknownModRefBehavior
  };

  /// getModRefBehavior - Return the behavior when calling the given call site.
  virtual ModRefBehavior getModRefBehavior(ImmutableCallSite CS);

  /// getModRefBehavior - Return the behavior when calling the given function.
  /// For use when the call site is not known.
  virtual ModRefBehavior getModRefBehavior(const Function *F);

  /// getIntrinsicModRefBehavior - Return the modref behavior of the intrinsic
  /// with the given id.  Most clients won't need this, because the regular
  /// getModRefBehavior incorporates this information.
  static ModRefBehavior getIntrinsicModRefBehavior(unsigned iid);

  /// doesNotAccessMemory - If the specified call is known to never read or
  /// write memory, return true.  If the call only reads from known-constant
  /// memory, it is also legal to return true.  Calls that unwind the stack
  /// are legal for this predicate.
  ///
  /// Many optimizations (such as CSE and LICM) can be performed on such calls
  /// without worrying about aliasing properties, and many calls have this
  /// property (e.g. calls to 'sin' and 'cos').
  ///
  /// This property corresponds to the GCC 'const' attribute.
  ///
  bool doesNotAccessMemory(ImmutableCallSite CS) {
    return getModRefBehavior(CS) == DoesNotAccessMemory;
  }

  /// doesNotAccessMemory - If the specified function is known to never read or
  /// write memory, return true.  For use when the call site is not known.
  ///
  bool doesNotAccessMemory(const Function *F) {
    return getModRefBehavior(F) == DoesNotAccessMemory;
  }

  /// onlyReadsMemory - If the specified call is known to only read from
  /// non-volatile memory (or not access memory at all), return true.  Calls
  /// that unwind the stack are legal for this predicate.
  ///
  /// This property allows many common optimizations to be performed in the
  /// absence of interfering store instructions, such as CSE of strlen calls.
  ///
  /// This property corresponds to the GCC 'pure' attribute.
  ///
  bool onlyReadsMemory(ImmutableCallSite CS) {
    ModRefBehavior MRB = getModRefBehavior(CS);
    return MRB == DoesNotAccessMemory || MRB == OnlyReadsMemory;
  }

  /// onlyReadsMemory - If the specified function is known to only read from
  /// non-volatile memory (or not access memory at all), return true.  For use
  /// when the call site is not known.
  ///
  bool onlyReadsMemory(const Function *F) {
    ModRefBehavior MRB = getModRefBehavior(F);
    return MRB == DoesNotAccessMemory || MRB == OnlyReadsMemory;
  }


  /// getModRefInfo - Return information about whether or not an instruction may
  /// read or write memory specified by the pointer operand.  An instruction
  /// that doesn't read or write memory may be trivially LICM'd for example.

  /// getModRefInfo (for call sites) - Return whether information about whether
  /// a particular call site modifies or reads the memory specified by the
  /// pointer.
  ///
  virtual ModRefResult getModRefInfo(ImmutableCallSite CS,
                                     const Value *P, unsigned Size);

  /// getModRefInfo - Return information about whether two call sites may refer
  /// to the same set of memory locations.  This function returns NoModRef if
  /// the two calls refer to disjoint memory locations, Ref if CS1 reads memory
  /// written by CS2, Mod if CS1 writes to memory read or written by CS2, or
  /// ModRef if CS1 might read or write memory accessed by CS2.
  ///
  virtual ModRefResult getModRefInfo(ImmutableCallSite CS1,
                                     ImmutableCallSite CS2);

public:
  /// Convenience functions...
  ModRefResult getModRefInfo(const LoadInst *L, const Value *P, unsigned Size);
  ModRefResult getModRefInfo(const StoreInst *S, const Value *P, unsigned Size);
  ModRefResult getModRefInfo(const VAArgInst* I, const Value* P, unsigned Size);
  ModRefResult getModRefInfo(const CallInst *C, const Value *P, unsigned Size) {
    return getModRefInfo(ImmutableCallSite(C), P, Size);
  }
  ModRefResult getModRefInfo(const InvokeInst *I,
                             const Value *P, unsigned Size) {
    return getModRefInfo(ImmutableCallSite(I), P, Size);
  }
  ModRefResult getModRefInfo(const Instruction *I,
                             const Value *P, unsigned Size) {
    switch (I->getOpcode()) {
    case Instruction::VAArg:  return getModRefInfo((const VAArgInst*)I, P,Size);
    case Instruction::Load:   return getModRefInfo((const LoadInst*)I, P, Size);
    case Instruction::Store:  return getModRefInfo((const StoreInst*)I, P,Size);
    case Instruction::Call:   return getModRefInfo((const CallInst*)I, P, Size);
    case Instruction::Invoke: return getModRefInfo((const InvokeInst*)I,P,Size);
    default:                  return NoModRef;
    }
  }

  //===--------------------------------------------------------------------===//
  /// Higher level methods for querying mod/ref information.
  ///

  /// canBasicBlockModify - Return true if it is possible for execution of the
  /// specified basic block to modify the value pointed to by Ptr.
  ///
  bool canBasicBlockModify(const BasicBlock &BB, const Value *P, unsigned Size);

  /// canInstructionRangeModify - Return true if it is possible for the
  /// execution of the specified instructions to modify the value pointed to by
  /// Ptr.  The instructions to consider are all of the instructions in the
  /// range of [I1,I2] INCLUSIVE.  I1 and I2 must be in the same basic block.
  ///
  bool canInstructionRangeModify(const Instruction &I1, const Instruction &I2,
                                 const Value *Ptr, unsigned Size);

  //===--------------------------------------------------------------------===//
  /// Methods that clients should call when they transform the program to allow
  /// alias analyses to update their internal data structures.  Note that these
  /// methods may be called on any instruction, regardless of whether or not
  /// they have pointer-analysis implications.
  ///

  /// deleteValue - This method should be called whenever an LLVM Value is
  /// deleted from the program, for example when an instruction is found to be
  /// redundant and is eliminated.
  ///
  virtual void deleteValue(Value *V);

  /// copyValue - This method should be used whenever a preexisting value in the
  /// program is copied or cloned, introducing a new value.  Note that analysis
  /// implementations should tolerate clients that use this method to introduce
  /// the same value multiple times: if the analysis already knows about a
  /// value, it should ignore the request.
  ///
  virtual void copyValue(Value *From, Value *To);

  /// replaceWithNewValue - This method is the obvious combination of the two
  /// above, and it provided as a helper to simplify client code.
  ///
  void replaceWithNewValue(Value *Old, Value *New) {
    copyValue(Old, New);
    deleteValue(Old);
  }
};

/// isNoAliasCall - Return true if this pointer is returned by a noalias
/// function.
bool isNoAliasCall(const Value *V);

/// isIdentifiedObject - Return true if this pointer refers to a distinct and
/// identifiable object.  This returns true for:
///    Global Variables and Functions (but not Global Aliases)
///    Allocas and Mallocs
///    ByVal and NoAlias Arguments
///    NoAlias returns
///
bool isIdentifiedObject(const Value *V);

} // End llvm namespace

// Because of the way .a files work, we must force the BasicAA implementation to
// be pulled in if the AliasAnalysis header is included.  Otherwise we run
// the risk of AliasAnalysis being used, but the default implementation not
// being linked into the tool that uses it.
FORCE_DEFINING_FILE_TO_BE_LINKED(AliasAnalysis)
FORCE_DEFINING_FILE_TO_BE_LINKED(BasicAliasAnalysis)

#endif