summaryrefslogtreecommitdiff
path: root/include/llvm/DerivedTypes.h
blob: 39a87b80d3690c2ffc6cb04e158de8da1f8a1e46 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
//===-- llvm/DerivedTypes.h - Classes for handling data types ----*- C++ -*--=//
//
// This file contains the declarations of classes that represent "derived 
// types".  These are things like "arrays of x" or "structure of x, y, z" or
// "method returning x taking (y,z) as parameters", etc...
//
// The implementations of these classes live in the Type.cpp file.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_DERIVED_TYPES_H
#define LLVM_DERIVED_TYPES_H

#include "llvm/Type.h"

template<class ValType, class TypeClass> class TypeMap;
class FunctionValType;
class ArrayValType;
class StructValType;
class PointerValType;

class DerivedType : public Type {
  char isRefining;                                   // Used for recursive types

  // AbstractTypeUsers - Implement a list of the users that need to be notified
  // if I am a type, and I get resolved into a more concrete type.
  //
  ///// FIXME: kill mutable nonsense when Type's are not const
  mutable std::vector<AbstractTypeUser *> AbstractTypeUsers;

protected:
  inline DerivedType(PrimitiveID id) : Type("", id) {
    isRefining = 0;
  }
  ~DerivedType() {
    assert(AbstractTypeUsers.empty());
  }

  // typeIsRefined - Notify AbstractTypeUsers of this type that the current type
  // has been refined a bit.  The pointer is still valid and still should be
  // used, but the subtypes have changed.
  //
  void typeIsRefined();

  // dropAllTypeUses - When this (abstract) type is resolved to be equal to
  // another (more concrete) type, we must eliminate all references to other
  // types, to avoid some circular reference problems.  This also removes the
  // type from the internal tables of available types.
  virtual void dropAllTypeUses(bool inMap) = 0;
  

  void refineAbstractTypeToInternal(const Type *NewType, bool inMap);

public:

  //===--------------------------------------------------------------------===//
  // Abstract Type handling methods - These types have special lifetimes, which
  // are managed by (add|remove)AbstractTypeUser. See comments in
  // AbstractTypeUser.h for more information.

  // addAbstractTypeUser - Notify an abstract type that there is a new user of
  // it.  This function is called primarily by the PATypeHandle class.
  //
  void addAbstractTypeUser(AbstractTypeUser *U) const;

  // removeAbstractTypeUser - Notify an abstract type that a user of the class
  // no longer has a handle to the type.  This function is called primarily by
  // the PATypeHandle class.  When there are no users of the abstract type, it
  // is annihilated, because there is no way to get a reference to it ever
  // again.
  //
  void removeAbstractTypeUser(AbstractTypeUser *U) const;

  // refineAbstractTypeTo - This function is used to when it is discovered that
  // the 'this' abstract type is actually equivalent to the NewType specified.
  // This causes all users of 'this' to switch to reference the more concrete
  // type NewType and for 'this' to be deleted.
  //
  void refineAbstractTypeTo(const Type *NewType) {
    refineAbstractTypeToInternal(NewType, true);
  }

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const DerivedType *T) { return true; }
  static inline bool classof(const Type *T) {
    return T->isDerivedType();
  }
  static inline bool classof(const Value *V) {
    return isa<Type>(V) && classof(cast<Type>(V));
  }
};




struct FunctionType : public DerivedType {
  typedef std::vector<PATypeHandle> ParamTypes;
  friend class TypeMap<FunctionValType, FunctionType>;
private:
  PATypeHandle ResultType;
  ParamTypes ParamTys;
  bool isVarArgs;

  FunctionType(const FunctionType &);                   // Do not implement
  const FunctionType &operator=(const FunctionType &);  // Do not implement
protected:
  // This should really be private, but it squelches a bogus warning
  // from GCC to make them protected:  warning: `class FunctionType' only 
  // defines private constructors and has no friends

  // Private ctor - Only can be created by a static member...
  FunctionType(const Type *Result, const std::vector<const Type*> &Params, 
               bool IsVarArgs);

  // dropAllTypeUses - When this (abstract) type is resolved to be equal to
  // another (more concrete) type, we must eliminate all references to other
  // types, to avoid some circular reference problems.  This also removes the
  // type from the internal tables of available types.
  virtual void dropAllTypeUses(bool inMap);

public:

  inline bool isVarArg() const { return isVarArgs; }
  inline const Type *getReturnType() const { return ResultType; }
  inline const ParamTypes &getParamTypes() const { return ParamTys; }

  // Parameter type accessors...
  const Type *getParamType(unsigned i) const { return ParamTys[i]; }

  // getNumParams - Return the number of fixed parameters this function type
  // requires.  This does not consider varargs.
  //
  unsigned getNumParams() const { return ParamTys.size(); }


  virtual const Type *getContainedType(unsigned i) const {
    return i == 0 ? ResultType : 
                    (i <= ParamTys.size() ? ParamTys[i-1].get() : 0);
  }
  virtual unsigned getNumContainedTypes() const { return ParamTys.size()+1; }

  // refineAbstractType - Called when a contained type is found to be more
  // concrete - this could potentially change us from an abstract type to a
  // concrete type.
  //
  virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);

  static FunctionType *get(const Type *Result,
                           const std::vector<const Type*> &Params,
                           bool isVarArg);


  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const FunctionType *T) { return true; }
  static inline bool classof(const Type *T) {
    return T->getPrimitiveID() == FunctionTyID;
  }
  static inline bool classof(const Value *V) {
    return isa<Type>(V) && classof(cast<Type>(V));
  }
};


// CompositeType - Common super class of ArrayType, StructType, and PointerType
//
class CompositeType : public DerivedType {
protected:
  inline CompositeType(PrimitiveID id) : DerivedType(id) { }
public:

  // getTypeAtIndex - Given an index value into the type, return the type of the
  // element.
  //
  virtual const Type *getTypeAtIndex(const Value *V) const = 0;
  virtual bool indexValid(const Value *V) const = 0;

  // getIndexType - Return the type required of indices for this composite.
  // For structures, this is ubyte, for arrays, this is uint
  //
  virtual const Type *getIndexType() const = 0;


  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const CompositeType *T) { return true; }
  static inline bool classof(const Type *T) {
    return T->getPrimitiveID() == ArrayTyID || 
           T->getPrimitiveID() == StructTyID ||
           T->getPrimitiveID() == PointerTyID;
  }
  static inline bool classof(const Value *V) {
    return isa<Type>(V) && classof(cast<Type>(V));
  }
};


struct StructType : public CompositeType {
  friend class TypeMap<StructValType, StructType>;
  typedef std::vector<PATypeHandle> ElementTypes;

private:
  ElementTypes ETypes;                              // Element types of struct

  StructType(const StructType &);                   // Do not implement
  const StructType &operator=(const StructType &);  // Do not implement

protected:
  // This should really be private, but it squelches a bogus warning
  // from GCC to make them protected:  warning: `class StructType' only 
  // defines private constructors and has no friends

  // Private ctor - Only can be created by a static member...
  StructType(const std::vector<const Type*> &Types);

  // dropAllTypeUses - When this (abstract) type is resolved to be equal to
  // another (more concrete) type, we must eliminate all references to other
  // types, to avoid some circular reference problems.  This also removes the
  // type from the internal tables of available types.
  virtual void dropAllTypeUses(bool inMap);
  
public:
  inline const ElementTypes &getElementTypes() const { return ETypes; }

  virtual const Type *getContainedType(unsigned i) const { 
    return i < ETypes.size() ? ETypes[i].get() : 0;
  }
  virtual unsigned getNumContainedTypes() const { return ETypes.size(); }

  // getTypeAtIndex - Given an index value into the type, return the type of the
  // element.  For a structure type, this must be a constant value...
  //
  virtual const Type *getTypeAtIndex(const Value *V) const ;
  virtual bool indexValid(const Value *V) const;

  // getIndexType - Return the type required of indices for this composite.
  // For structures, this is ubyte, for arrays, this is uint
  //
  virtual const Type *getIndexType() const { return Type::UByteTy; }

  // refineAbstractType - Called when a contained type is found to be more
  // concrete - this could potentially change us from an abstract type to a
  // concrete type.
  //
  virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);

  static StructType *get(const std::vector<const Type*> &Params);

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const StructType *T) { return true; }
  static inline bool classof(const Type *T) {
    return T->getPrimitiveID() == StructTyID;
  }
  static inline bool classof(const Value *V) {
    return isa<Type>(V) && classof(cast<Type>(V));
  }
};


// SequentialType - This is the superclass of the array and pointer type
// classes.  Both of these represent "arrays" in memory.  The array type
// represents a specifically sized array, pointer types are unsized/unknown size
// arrays.  SequentialType holds the common features of both, which stem from
// the fact that both lay their components out in memory identically.
//
class SequentialType : public CompositeType {
  SequentialType(const SequentialType &);                  // Do not implement!
  const SequentialType &operator=(const SequentialType &); // Do not implement!
protected:
  PATypeHandle ElementType;

  SequentialType(PrimitiveID TID, const Type *ElType)
    : CompositeType(TID), ElementType(PATypeHandle(ElType, this)) {
  }

public:
  inline const Type *getElementType() const { return ElementType; }

  virtual const Type *getContainedType(unsigned i) const { 
    return i == 0 ? ElementType.get() : 0;
  }
  virtual unsigned getNumContainedTypes() const { return 1; }

  // getTypeAtIndex - Given an index value into the type, return the type of the
  // element.  For sequential types, there is only one subtype...
  //
  virtual const Type *getTypeAtIndex(const Value *V) const {
    return ElementType.get();
  }
  virtual bool indexValid(const Value *V) const {
    return V->getType() == Type::LongTy;   // Must be a 'long' index
  }

  // getIndexType() - Return the type required of indices for this composite.
  // For structures, this is ubyte, for arrays, this is uint
  //
  virtual const Type *getIndexType() const { return Type::LongTy; }

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const SequentialType *T) { return true; }
  static inline bool classof(const Type *T) {
    return T->getPrimitiveID() == ArrayTyID ||
           T->getPrimitiveID() == PointerTyID;
  }
  static inline bool classof(const Value *V) {
    return isa<Type>(V) && classof(cast<Type>(V));
  }
};


class ArrayType : public SequentialType {
  friend class TypeMap<ArrayValType, ArrayType>;
  unsigned NumElements;

  ArrayType(const ArrayType &);                   // Do not implement
  const ArrayType &operator=(const ArrayType &);  // Do not implement
protected:
  // This should really be private, but it squelches a bogus warning
  // from GCC to make them protected:  warning: `class ArrayType' only 
  // defines private constructors and has no friends

  // Private ctor - Only can be created by a static member...
  ArrayType(const Type *ElType, unsigned NumEl);

  // dropAllTypeUses - When this (abstract) type is resolved to be equal to
  // another (more concrete) type, we must eliminate all references to other
  // types, to avoid some circular reference problems.  This also removes the
  // type from the internal tables of available types.
  virtual void dropAllTypeUses(bool inMap);

public:
  inline unsigned    getNumElements() const { return NumElements; }

  // refineAbstractType - Called when a contained type is found to be more
  // concrete - this could potentially change us from an abstract type to a
  // concrete type.
  //
  virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);

  static ArrayType *get(const Type *ElementType, unsigned NumElements);

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const ArrayType *T) { return true; }
  static inline bool classof(const Type *T) {
    return T->getPrimitiveID() == ArrayTyID;
  }
  static inline bool classof(const Value *V) {
    return isa<Type>(V) && classof(cast<Type>(V));
  }
};



class PointerType : public SequentialType {
  friend class TypeMap<PointerValType, PointerType>;
  PointerType(const PointerType &);                   // Do not implement
  const PointerType &operator=(const PointerType &);  // Do not implement
protected:
  // This should really be private, but it squelches a bogus warning
  // from GCC to make them protected:  warning: `class PointerType' only 
  // defines private constructors and has no friends

  // Private ctor - Only can be created by a static member...
  PointerType(const Type *ElType);

  // dropAllTypeUses - When this (abstract) type is resolved to be equal to
  // another (more concrete) type, we must eliminate all references to other
  // types, to avoid some circular reference problems.  This also removes the
  // type from the internal tables of available types.
  virtual void dropAllTypeUses(bool inMap);
public:
  // PointerType::get - Named constructor for pointer types...
  static PointerType *get(const Type *ElementType);

  // refineAbstractType - Called when a contained type is found to be more
  // concrete - this could potentially change us from an abstract type to a
  // concrete type.
  //
  virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const PointerType *T) { return true; }
  static inline bool classof(const Type *T) {
    return T->getPrimitiveID() == PointerTyID;
  }
  static inline bool classof(const Value *V) {
    return isa<Type>(V) && classof(cast<Type>(V));
  }
};


class OpaqueType : public DerivedType {
  OpaqueType(const OpaqueType &);                   // DO NOT IMPLEMENT
  const OpaqueType &operator=(const OpaqueType &);  // DO NOT IMPLEMENT
protected:
  // This should really be private, but it squelches a bogus warning
  // from GCC to make them protected:  warning: `class OpaqueType' only 
  // defines private constructors and has no friends

  // Private ctor - Only can be created by a static member...
  OpaqueType();

  // dropAllTypeUses - When this (abstract) type is resolved to be equal to
  // another (more concrete) type, we must eliminate all references to other
  // types, to avoid some circular reference problems.
  virtual void dropAllTypeUses(bool inMap) {}  // No type uses

public:

  // get - Static factory method for the OpaqueType class...
  static OpaqueType *get() {
    return new OpaqueType();           // All opaque types are distinct
  }

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const OpaqueType *T) { return true; }
  static inline bool classof(const Type *T) {
    return T->getPrimitiveID() == OpaqueTyID;
  }
  static inline bool classof(const Value *V) {
    return isa<Type>(V) && classof(cast<Type>(V));
  }
};


// Define some inline methods for the AbstractTypeUser.h:PATypeHandle class.
// These are defined here because they MUST be inlined, yet are dependent on 
// the definition of the Type class.  Of course Type derives from Value, which
// contains an AbstractTypeUser instance, so there is no good way to factor out
// the code.  Hence this bit of uglyness.
//
inline void PATypeHandle::addUser() {
  assert(Ty && "Type Handle has a null type!");
  if (Ty->isAbstract())
    cast<DerivedType>(Ty)->addAbstractTypeUser(User);
}
inline void PATypeHandle::removeUser() {
  if (Ty->isAbstract())
    cast<DerivedType>(Ty)->removeAbstractTypeUser(User);
}

inline void PATypeHandle::removeUserFromConcrete() {
  if (!Ty->isAbstract())
    cast<DerivedType>(Ty)->removeAbstractTypeUser(User);
}

#endif