summaryrefslogtreecommitdiff
path: root/lib/Target/X86/X86SchedHaswell.td
blob: a0a0e8528942ae143ec821f2691c850e2336f278 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
//=- X86SchedHaswell.td - X86 Haswell Scheduling -------------*- tablegen -*-=//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the machine model for Haswell to support instruction
// scheduling and other instruction cost heuristics.
//
//===----------------------------------------------------------------------===//

def HaswellModel : SchedMachineModel {
  // All x86 instructions are modeled as a single micro-op, and HW can decode 4
  // instructions per cycle.
  let IssueWidth = 4;
  let MicroOpBufferSize = 192; // Based on the reorder buffer.
  let LoadLatency = 4;
  let MispredictPenalty = 16;

  // FIXME: SSE4 and AVX are unimplemented. This flag is set to allow
  // the scheduler to assign a default model to unrecognized opcodes.
  let CompleteModel = 0;
}

let SchedModel = HaswellModel in {

// Haswell can issue micro-ops to 8 different ports in one cycle.

// Ports 0, 1, 5, and 6 handle all computation.
// Port 4 gets the data half of stores. Store data can be available later than
// the store address, but since we don't model the latency of stores, we can
// ignore that.
// Ports 2 and 3 are identical. They handle loads and the address half of
// stores. Port 7 can handle address calculations.
def HWPort0 : ProcResource<1>;
def HWPort1 : ProcResource<1>;
def HWPort2 : ProcResource<1>;
def HWPort3 : ProcResource<1>;
def HWPort4 : ProcResource<1>;
def HWPort5 : ProcResource<1>;
def HWPort6 : ProcResource<1>;
def HWPort7 : ProcResource<1>;

// Many micro-ops are capable of issuing on multiple ports.
def HWPort01  : ProcResGroup<[HWPort0, HWPort1]>;
def HWPort23  : ProcResGroup<[HWPort2, HWPort3]>;
def HWPort237 : ProcResGroup<[HWPort2, HWPort3, HWPort7]>;
def HWPort05  : ProcResGroup<[HWPort0, HWPort5]>;
def HWPort06 : ProcResGroup<[HWPort0, HWPort6]>;
def HWPort15  : ProcResGroup<[HWPort1, HWPort5]>;
def HWPort16  : ProcResGroup<[HWPort1, HWPort6]>;
def HWPort015 : ProcResGroup<[HWPort0, HWPort1, HWPort5]>;
def HWPort056: ProcResGroup<[HWPort0, HWPort5, HWPort6]>;
def HWPort0156: ProcResGroup<[HWPort0, HWPort1, HWPort5, HWPort6]>;

// 60 Entry Unified Scheduler
def HWPortAny : ProcResGroup<[HWPort0, HWPort1, HWPort2, HWPort3, HWPort4,
                              HWPort5, HWPort6, HWPort7]> {
  let BufferSize=60;
}

// Integer division issued on port 0.
def HWDivider : ProcResource<1>;

// Loads are 4 cycles, so ReadAfterLd registers needn't be available until 4
// cycles after the memory operand.
def : ReadAdvance<ReadAfterLd, 4>;

// Many SchedWrites are defined in pairs with and without a folded load.
// Instructions with folded loads are usually micro-fused, so they only appear
// as two micro-ops when queued in the reservation station.
// This multiclass defines the resource usage for variants with and without
// folded loads.
multiclass HWWriteResPair<X86FoldableSchedWrite SchedRW,
                          ProcResourceKind ExePort,
                          int Lat> {
  // Register variant is using a single cycle on ExePort.
  def : WriteRes<SchedRW, [ExePort]> { let Latency = Lat; }

  // Memory variant also uses a cycle on port 2/3 and adds 4 cycles to the
  // latency.
  def : WriteRes<SchedRW.Folded, [HWPort23, ExePort]> {
     let Latency = !add(Lat, 4);
  }
}

// A folded store needs a cycle on port 4 for the store data, but it does not
// need an extra port 2/3 cycle to recompute the address.
def : WriteRes<WriteRMW, [HWPort4]>;

// Store_addr on 237.
// Store_data on 4.
def : WriteRes<WriteStore, [HWPort237, HWPort4]>;
def : WriteRes<WriteLoad,  [HWPort23]> { let Latency = 4; }
def : WriteRes<WriteMove,  [HWPort0156]>;
def : WriteRes<WriteZero,  []>;

defm : HWWriteResPair<WriteALU,   HWPort0156, 1>;
defm : HWWriteResPair<WriteIMul,  HWPort1,   3>;
def  : WriteRes<WriteIMulH, []> { let Latency = 3; }
defm : HWWriteResPair<WriteShift, HWPort06,  1>;
defm : HWWriteResPair<WriteJump,  HWPort06,   1>;

// This is for simple LEAs with one or two input operands.
// The complex ones can only execute on port 1, and they require two cycles on
// the port to read all inputs. We don't model that.
def : WriteRes<WriteLEA, [HWPort15]>;

// This is quite rough, latency depends on the dividend.
def : WriteRes<WriteIDiv, [HWPort0, HWDivider]> {
  let Latency = 25;
  let ResourceCycles = [1, 10];
}
def : WriteRes<WriteIDivLd, [HWPort23, HWPort0, HWDivider]> {
  let Latency = 29;
  let ResourceCycles = [1, 1, 10];
}

// Scalar and vector floating point.
defm : HWWriteResPair<WriteFAdd,   HWPort1, 3>;
defm : HWWriteResPair<WriteFMul,   HWPort0, 5>;
defm : HWWriteResPair<WriteFDiv,   HWPort0, 12>; // 10-14 cycles.
defm : HWWriteResPair<WriteFRcp,   HWPort0, 5>;
defm : HWWriteResPair<WriteFSqrt,  HWPort0, 15>;
defm : HWWriteResPair<WriteCvtF2I, HWPort1, 3>;
defm : HWWriteResPair<WriteCvtI2F, HWPort1, 4>;
defm : HWWriteResPair<WriteCvtF2F, HWPort1, 3>;
defm : HWWriteResPair<WriteFShuffle,  HWPort5,  1>;
defm : HWWriteResPair<WriteFBlend,  HWPort015,  1>;
defm : HWWriteResPair<WriteFShuffle256,  HWPort5,  3>;

def : WriteRes<WriteFVarBlend, [HWPort5]> {
  let Latency = 2;
  let ResourceCycles = [2];
}
def : WriteRes<WriteFVarBlendLd, [HWPort5, HWPort23]> {
  let Latency = 6;
  let ResourceCycles = [2, 1];
}

// Vector integer operations.
defm : HWWriteResPair<WriteVecShift, HWPort0,  1>;
defm : HWWriteResPair<WriteVecLogic, HWPort015, 1>;
defm : HWWriteResPair<WriteVecALU,   HWPort15,  1>;
defm : HWWriteResPair<WriteVecIMul,  HWPort0,   5>;
defm : HWWriteResPair<WriteShuffle,  HWPort5,  1>;
defm : HWWriteResPair<WriteBlend,  HWPort15,  1>;
defm : HWWriteResPair<WriteShuffle256,  HWPort5,  3>;

def : WriteRes<WriteVarBlend, [HWPort5]> {
  let Latency = 2;
  let ResourceCycles = [2];
}
def : WriteRes<WriteVarBlendLd, [HWPort5, HWPort23]> {
  let Latency = 6;
  let ResourceCycles = [2, 1];
}

def : WriteRes<WriteVarVecShift, [HWPort0, HWPort5]> {
  let Latency = 2;
  let ResourceCycles = [2, 1];
}
def : WriteRes<WriteVarVecShiftLd, [HWPort0, HWPort5, HWPort23]> {
  let Latency = 6;
  let ResourceCycles = [2, 1, 1];
}

def : WriteRes<WriteMPSAD, [HWPort0, HWPort5]> {
  let Latency = 6;
  let ResourceCycles = [1, 2];
}
def : WriteRes<WriteMPSADLd, [HWPort23, HWPort0, HWPort5]> {
  let Latency = 6;
  let ResourceCycles = [1, 1, 2];
}

// String instructions.
// Packed Compare Implicit Length Strings, Return Mask
def : WriteRes<WritePCmpIStrM, [HWPort0]> {
  let Latency = 10;
  let ResourceCycles = [3];
}
def : WriteRes<WritePCmpIStrMLd, [HWPort0, HWPort23]> {
  let Latency = 10;
  let ResourceCycles = [3, 1];
}

// Packed Compare Explicit Length Strings, Return Mask
def : WriteRes<WritePCmpEStrM, [HWPort0, HWPort16, HWPort5]> {
  let Latency = 10;
  let ResourceCycles = [3, 2, 4];
}
def : WriteRes<WritePCmpEStrMLd, [HWPort05, HWPort16, HWPort23]> {
  let Latency = 10;
  let ResourceCycles = [6, 2, 1];
}

// Packed Compare Implicit Length Strings, Return Index
def : WriteRes<WritePCmpIStrI, [HWPort0]> {
  let Latency = 11;
  let ResourceCycles = [3];
}
def : WriteRes<WritePCmpIStrILd, [HWPort0, HWPort23]> {
  let Latency = 11;
  let ResourceCycles = [3, 1];
}

// Packed Compare Explicit Length Strings, Return Index
def : WriteRes<WritePCmpEStrI, [HWPort05, HWPort16]> {
  let Latency = 11;
  let ResourceCycles = [6, 2];
}
def : WriteRes<WritePCmpEStrILd, [HWPort0, HWPort16, HWPort5, HWPort23]> {
  let Latency = 11;
  let ResourceCycles = [3, 2, 2, 1];
}

// AES Instructions.
def : WriteRes<WriteAESDecEnc, [HWPort5]> {
  let Latency = 7;
  let ResourceCycles = [1];
}
def : WriteRes<WriteAESDecEncLd, [HWPort5, HWPort23]> {
  let Latency = 7;
  let ResourceCycles = [1, 1];
}

def : WriteRes<WriteAESIMC, [HWPort5]> {
  let Latency = 14;
  let ResourceCycles = [2];
}
def : WriteRes<WriteAESIMCLd, [HWPort5, HWPort23]> {
  let Latency = 14;
  let ResourceCycles = [2, 1];
}

def : WriteRes<WriteAESKeyGen, [HWPort0, HWPort5]> {
  let Latency = 10;
  let ResourceCycles = [2, 8];
}
def : WriteRes<WriteAESKeyGenLd, [HWPort0, HWPort5, HWPort23]> {
  let Latency = 10;
  let ResourceCycles = [2, 7, 1];
}

// Carry-less multiplication instructions.
def : WriteRes<WriteCLMul, [HWPort0, HWPort5]> {
  let Latency = 7;
  let ResourceCycles = [2, 1];
}
def : WriteRes<WriteCLMulLd, [HWPort0, HWPort5, HWPort23]> {
  let Latency = 7;
  let ResourceCycles = [2, 1, 1];
}

def : WriteRes<WriteSystem,     [HWPort0156]> { let Latency = 100; }
def : WriteRes<WriteMicrocoded, [HWPort0156]> { let Latency = 100; }
def : WriteRes<WriteFence,  [HWPort23, HWPort4]>;
def : WriteRes<WriteNop, []>;

// Exceptions.

//-- Specific Scheduling Models --//
def Write2ALU : SchedWriteRes<[HWPort0156]> {
  let Latency = 2;
  let ResourceCycles = [2];
}
def Write2ALULd : SchedWriteRes<[HWPort0156, HWPort23]> {
  let Latency = 6;
  let ResourceCycles = [2, 1];
}

def Write3ALU : SchedWriteRes<[HWPort0156]> {
  let Latency = 3;
  let ResourceCycles = [3];
}

def WriteStore2Addr1Data : SchedWriteRes<[HWPort237, HWPort4]> {
  let Latency = 1;
  let ResourceCycles = [2, 1];
}

def WritePort06 : SchedWriteRes<[HWPort06]>;

def WriteALUStore2Addr1Data : SchedWriteRes<[HWPort0156, HWPort237, HWPort4]> {
  let Latency = 1;
  let ResourceCycles = [1, 2, 1];
}

def Write2ALUStore2Addr1Data : SchedWriteRes<[HWPort0156, HWPort237, HWPort4]> {
  let Latency = 1;
  let ResourceCycles = [2, 2, 1];
}

def Write3ALUStore2Addr1Data : SchedWriteRes<[HWPort0156, HWPort237, HWPort4]> {
  let Latency = 1;
  let ResourceCycles = [3, 2, 1];
}

def Write2Shift : SchedWriteRes<[HWPort06]> {
  let Latency = 1;
  let NumMicroOps = 2;
  let ResourceCycles = [2];
}

def Write3Shift : SchedWriteRes<[HWPort06]> {
  let Latency = 2;
  let NumMicroOps = 3;
  let ResourceCycles = [3];
}

def WriteP1Lat3 : SchedWriteRes<[HWPort1]> {
  let Latency = 3;
}
def WriteP1Lat3Ld : SchedWriteRes<[HWPort1, HWPort23]> {
  let Latency = 7;
}
def WriteP15 : SchedWriteRes<[HWPort15]>;
def WriteP15Ld : SchedWriteRes<[HWPort15, HWPort23]> {
  let Latency = 4;
}

def WriteP01P5 : SchedWriteRes<[HWPort01, HWPort5]> {
  let NumMicroOps = 2;
}

def WriteP0156_P23 : SchedWriteRes<[HWPort0156, HWPort23]> {
  let NumMicroOps = 2;
}
def Write2P0156_P23 : SchedWriteRes<[HWPort0156, HWPort23]> {
  let NumMicroOps = 3;
  let ResourceCycles = [2, 1];
}

def Write5P0156 : SchedWriteRes<[HWPort0156]> {
  let NumMicroOps = 5;
  let ResourceCycles = [5];
}

def WriteP01 : SchedWriteRes<[HWPort01]>;

def Write2P01 : SchedWriteRes<[HWPort01]> {
  let NumMicroOps = 2;
}

def Write3P01 : SchedWriteRes<[HWPort01]> {
  let NumMicroOps = 3;
}

def WriteP0 : SchedWriteRes<[HWPort0]>;
def WriteP1 : SchedWriteRes<[HWPort1]>;
def WriteP1_P23 : SchedWriteRes<[HWPort1, HWPort23]> {
  let NumMicroOps = 2;
}

def Write2P1 : SchedWriteRes<[HWPort1]> {
  let NumMicroOps = 2;
  let ResourceCycles = [2];
}

def Write2P1_P23 : SchedWriteRes<[HWPort1, HWPort23]> {
  let NumMicroOps = 3;
}

def WriteP5 : SchedWriteRes<[HWPort5]>;

def WriteP015 : SchedWriteRes<[HWPort015]>;

//=== Integer Instructions ===//
//-- Move instructions --//

// MOV.
def : InstRW<[WriteALULd], (instregex "MOV16rm")>;

// MOV with
def : InstRW<[WriteLoad], (instregex "MOV(S|Z)X32rm(8|16)")>;

// CMOVcc.
def : InstRW<[Write2ALU],
      (instregex "CMOV(O|NO|B|AE|E|NE|BE|A|S|NS|P|NP|L|GE|LE|G)(16|32|64)rr")>;
def : InstRW<[Write2ALULd, ReadAfterLd],
      (instregex "CMOV(O|NO|B|AE|E|NE|BE|A|S|NS|P|NP|L|GE|LE|G)(16|32|64)rm")>;

// XCHG.
def WriteXCHG : SchedWriteRes<[HWPort0156]> {
  let Latency = 2;
  let ResourceCycles = [3];
}

def : InstRW<[WriteXCHG], (instregex "XCHG(8|16|32|64)rr", "XCHG(16|32|64)ar")>;

def WriteXCHGrm : SchedWriteRes<[]> {
  let Latency = 21;
  let NumMicroOps = 8;
}
def : InstRW<[WriteXCHGrm], (instregex "XCHG(8|16|32|64)rm")>;

// XLAT.
def WriteXLAT : SchedWriteRes<[]> {
  let Latency = 7;
  let NumMicroOps = 3;
}
def : InstRW<[WriteXLAT], (instregex "XLAT")>;


// PUSH.
def : InstRW<[WriteStore2Addr1Data], (instregex "PUSH(16|32)rmm")>;

def WritePushF : SchedWriteRes<[HWPort1, HWPort4, HWPort237, HWPort06]> {
  let NumMicroOps = 4;
}
def : InstRW<[WritePushF], (instregex "PUSHF(16|32)")>;

def WritePushA : SchedWriteRes<[]> {
  let NumMicroOps = 19;
}
def : InstRW<[WritePushA], (instregex "PUSHA(16|32)")>;

// POP.
def : InstRW<[WriteStore2Addr1Data], (instregex "POP(16|32)rmm")>;

def WritePopF : SchedWriteRes<[]> {
  let NumMicroOps = 9;
}
def : InstRW<[WritePopF], (instregex "POPF(16|32)")>;

def WritePopA : SchedWriteRes<[]> {
  let NumMicroOps = 18;
}
def : InstRW<[WritePopA], (instregex "POPA(16|32)")>;

// LAHF SAHF.
def : InstRW<[WritePort06], (instregex "(S|L)AHF")>;

// BSWAP.
def WriteBSwap32 : SchedWriteRes<[HWPort15]>;
def : InstRW<[WriteBSwap32], (instregex "BSWAP32r")>;

def WriteBSwap64 : SchedWriteRes<[HWPort06, HWPort15]> {
  let NumMicroOps = 2;
}
def : InstRW<[WriteBSwap64], (instregex "BSWAP64r")>;

// MOVBE.
def : InstRW<[Write2ALULd], (instregex "MOVBE(16|64)rm")>;

def WriteMoveBE32rm : SchedWriteRes<[HWPort15, HWPort23]> {
  let NumMicroOps = 2;
}
def : InstRW<[WriteMoveBE32rm], (instregex "MOVBE32rm")>;

def WriteMoveBE16mr : SchedWriteRes<[HWPort06, HWPort237, HWPort4]> {
  let NumMicroOps = 3;
}
def : InstRW<[WriteMoveBE16mr], (instregex "MOVBE16mr")>;

def WriteMoveBE32mr : SchedWriteRes<[HWPort15, HWPort237, HWPort4]> {
  let NumMicroOps = 3;
}
def : InstRW<[WriteMoveBE32mr], (instregex "MOVBE32mr")>;

def WriteMoveBE64mr : SchedWriteRes<[HWPort06, HWPort15, HWPort237, HWPort4]> {
  let NumMicroOps = 4;
}
def : InstRW<[WriteMoveBE64mr], (instregex "MOVBE64mr")>;


//-- Arithmetic instructions --//
// ADD SUB.
def : InstRW<[Write2ALUStore2Addr1Data],
              (instregex "(ADD|SUB)(8|16|32|64)m(r|i)",
              "(ADD|SUB)(8|16|32|64)mi8", "(ADD|SUB)64mi32")>;

// ADC SBB.
def : InstRW<[Write2ALU], (instregex "(ADC|SBB)(8|16|32|64)r(r|i)",
                           "(ADC|SBB)(16|32|64)ri8",
                           "(ADC|SBB)64ri32",
                           "(ADC|SBB)(8|16|32|64)rr_REV")>;

def : InstRW<[Write2ALULd, ReadAfterLd], (instregex "(ADC|SBB)(8|16|32|64)rm")>;

def : InstRW<[Write3ALUStore2Addr1Data],
             (instregex "(ADC|SBB)(8|16|32|64)m(r|i)",
              "(ADC|SBB)(16|32|64)mi8",
              "(ADC|SBB)64mi32")>;

// INC DEC NOT NEG.
def : InstRW<[WriteALUStore2Addr1Data],
             (instregex "(INC|DEC|NOT|NEG)(8|16|32|64)m",
              "(INC|DEC)64(16|32)m")>;
              
// MUL IMUL.
def WriteMul16 : SchedWriteRes<[HWPort1, HWPort0156]> {
  let Latency = 4;
  let NumMicroOps = 4;
}
def WriteMul16Ld : SchedWriteRes<[HWPort1, HWPort0156, HWPort23]> {
  let Latency = 8;
  let NumMicroOps = 5;
}
def : InstRW<[WriteMul16], (instregex "IMUL16r", "MUL16r")>;
def : InstRW<[WriteMul16Ld], (instregex "IMUL16m", "MUL16m")>;

def WriteMul32 : SchedWriteRes<[HWPort1, HWPort0156]> {
  let Latency = 4;
  let NumMicroOps = 3;
}
def WriteMul32Ld : SchedWriteRes<[HWPort1, HWPort0156, HWPort23]> {
  let Latency = 8;
  let NumMicroOps = 4;
}
def : InstRW<[WriteMul32], (instregex "IMUL32r", "MUL32r")>;
def : InstRW<[WriteMul32Ld], (instregex "IMUL32m", "MUL32m")>;

def WriteMul64 : SchedWriteRes<[HWPort1, HWPort6]> {
  let Latency = 3;
  let NumMicroOps = 2;
}
def WriteMul64Ld : SchedWriteRes<[HWPort1, HWPort6, HWPort23]> {
  let Latency = 7;
  let NumMicroOps = 3;
}
def : InstRW<[WriteMul64], (instregex "IMUL64r", "MUL64r")>;
def : InstRW<[WriteMul64Ld], (instregex "IMUL64m", "MUL64m")>;

def WriteMul16rri : SchedWriteRes<[HWPort1, HWPort0156]> {
  let Latency = 4;
  let NumMicroOps = 2;
}
def WriteMul16rmi : SchedWriteRes<[HWPort1, HWPort0156, HWPort23]> {
  let Latency = 8;
  let NumMicroOps = 3;
}
def : InstRW<[WriteMul16rri], (instregex "IMUL16rri", "IMUL16rri8")>;
def : InstRW<[WriteMul16rmi], (instregex "IMUL16rmi", "IMUL16rmi8")>;

// MULX.
def WriteMulX32 : SchedWriteRes<[HWPort1, HWPort056]> {
  let Latency = 4;
  let NumMicroOps = 3;
  let ResourceCycles = [1, 2];
}
def WriteMulX32Ld : SchedWriteRes<[HWPort1, HWPort056, HWPort23]> {
  let Latency = 8;
  let NumMicroOps = 4;
  let ResourceCycles = [1, 2, 1];
}
def : InstRW<[WriteMulX32], (instregex "MULX32rr")>;
def : InstRW<[WriteMulX32Ld], (instregex "MULX32rm")>;

def WriteMulX64 : SchedWriteRes<[HWPort1, HWPort6]> {
  let Latency = 4;
  let NumMicroOps = 2;
}
def WriteMulX64Ld : SchedWriteRes<[HWPort1, HWPort6, HWPort23]> {
  let Latency = 8;
  let NumMicroOps = 3;
}
def : InstRW<[WriteMulX64], (instregex "MULX64rr")>;
def : InstRW<[WriteMulX64Ld], (instregex "MULX64rm")>;

// DIV.
def WriteDiv8 : SchedWriteRes<[HWPort0, HWPort1, HWPort5, HWPort6]> {
  let Latency = 22;
  let NumMicroOps = 9;
}
def : InstRW<[WriteDiv8], (instregex "DIV8r")>;

def WriteDiv16 : SchedWriteRes<[HWPort0, HWPort1, HWPort5, HWPort6]> {
  let Latency = 23;
  let NumMicroOps = 10;
}
def : InstRW<[WriteDiv16], (instregex "DIV16r")>;

def WriteDiv32 : SchedWriteRes<[HWPort0, HWPort1, HWPort5, HWPort6]> {
  let Latency = 22;
  let NumMicroOps = 10;
}
def : InstRW<[WriteDiv32], (instregex "DIV32r")>;

def WriteDiv64 : SchedWriteRes<[HWPort0, HWPort1, HWPort5, HWPort6]> {
  let Latency = 32;
  let NumMicroOps = 36;
}
def : InstRW<[WriteDiv64], (instregex "DIV64r")>;

def WriteIDiv8 : SchedWriteRes<[HWPort0, HWPort1, HWPort5, HWPort6]> {
  let Latency = 23;
  let NumMicroOps = 9;
}
def : InstRW<[WriteIDiv8], (instregex "IDIV8r")>;

def WriteIDiv16 : SchedWriteRes<[HWPort0, HWPort1, HWPort5, HWPort6]> {
  let Latency = 23;
  let NumMicroOps = 10;
}
def : InstRW<[WriteIDiv16], (instregex "IDIV16r")>;

def WriteIDiv32 : SchedWriteRes<[HWPort0, HWPort1, HWPort5, HWPort6]> {
  let Latency = 22;
  let NumMicroOps = 9;
}
def : InstRW<[WriteIDiv32], (instregex "IDIV32r")>;

def WriteIDiv64 : SchedWriteRes<[HWPort0, HWPort1, HWPort5, HWPort6]> {
  let Latency = 39;
  let NumMicroOps = 59;
}
def : InstRW<[WriteIDiv64], (instregex "IDIV64r")>;

//-- Logic instructions --//
// AND OR XOR.
def : InstRW<[Write2ALUStore2Addr1Data],
             (instregex "(AND|OR|XOR)(8|16|32|64)m(r|i)",
              "(AND|OR|XOR)(8|16|32|64)mi8", "(AND|OR|XOR)64mi32")>;
              

// SHR SHL SAR.
def WriteShiftRMW : SchedWriteRes<[HWPort06, HWPort237, HWPort4]> {
  let NumMicroOps = 4;
  let ResourceCycles = [2, 1, 1];
}
def : InstRW<[WriteShiftRMW], (instregex "S(A|H)(R|L)(8|16|32|64)m(i|1)")>;

def : InstRW<[Write3Shift], (instregex "S(A|H)(R|L)(8|16|32|64)rCL")>;

def WriteShiftClLdRMW : SchedWriteRes<[HWPort06, HWPort23, HWPort4]> {
  let NumMicroOps = 6;
  let ResourceCycles = [3, 2, 1];
}
def : InstRW<[WriteShiftClLdRMW], (instregex "S(A|H)(R|L)(8|16|32|64)mCL")>;

// ROR ROL.
def : InstRW<[Write2Shift], (instregex "RO(R|L)(8|16|32|64)r1")>;

def WriteRotateRMW : SchedWriteRes<[HWPort06, HWPort237, HWPort4]> {
  let NumMicroOps = 5;
  let ResourceCycles = [2, 2, 1];
}
def : InstRW<[WriteRotateRMW], (instregex "RO(R|L)(8|16|32|64)mi")>;

def : InstRW<[Write3Shift], (instregex "RO(R|L)(8|16|32|64)rCL")>;

def WriteRotateRMWCL : SchedWriteRes<[]> {
  let NumMicroOps = 6;
}
def : InstRW<[WriteRotateRMWCL], (instregex "RO(R|L)(8|16|32|64)mCL")>;

// RCR RCL.
def WriteRCr1 : SchedWriteRes<[HWPort06, HWPort0156]> {
  let Latency = 2;
  let NumMicroOps = 3;
  let ResourceCycles = [2, 1];
}
def : InstRW<[WriteRCr1], (instregex "RC(R|L)(8|16|32|64)r1")>;

def WriteRCm1 : SchedWriteRes<[]> {
  let NumMicroOps = 6;
}
def : InstRW<[WriteRCm1], (instregex "RC(R|L)(8|16|32|64)m1")>;

def WriteRCri : SchedWriteRes<[HWPort0156]> {
  let Latency = 6;
  let NumMicroOps = 8;
}
def : InstRW<[WriteRCri], (instregex "RC(R|L)(8|16|32|64)r(i|CL)")>;

def WriteRCmi : SchedWriteRes<[]> {
  let NumMicroOps = 11;
}
def : InstRW<[WriteRCmi], (instregex "RC(R|L)(8|16|32|64)m(i|CL)")>;

// SHRD SHLD.
def WriteShDrr : SchedWriteRes<[HWPort1]> {
  let Latency = 3;
}
def : InstRW<[WriteShDrr], (instregex "SH(R|L)D(16|32|64)rri8")>;

def WriteShDmr : SchedWriteRes<[]> {
  let NumMicroOps = 5;
}
def : InstRW<[WriteShDmr], (instregex "SH(R|L)D(16|32|64)mri8")>;

def WriteShlDCL : SchedWriteRes<[HWPort0156]> {
  let Latency = 3;
  let NumMicroOps = 4;
}
def : InstRW<[WriteShlDCL], (instregex "SHLD(16|32|64)rrCL")>;

def WriteShrDCL : SchedWriteRes<[HWPort0156]> {
  let Latency = 4;
  let NumMicroOps = 4;
}
def : InstRW<[WriteShrDCL], (instregex "SHRD(16|32|64)rrCL")>;

def WriteShDmrCL : SchedWriteRes<[]> {
  let NumMicroOps = 7;
}
def : InstRW<[WriteShDmrCL], (instregex "SH(R|L)D(16|32|64)mrCL")>;

// BT.
def : InstRW<[WriteShift], (instregex "BT(16|32|64)r(r|i8)")>;

def WriteBTmr : SchedWriteRes<[]> {
  let NumMicroOps = 10;
}
def : InstRW<[WriteBTmr], (instregex "BT(16|32|64)mr")>;

def : InstRW<[WriteShiftLd], (instregex "BT(16|32|64)mi8")>;

// BTR BTS BTC.
def : InstRW<[WriteShift], (instregex "BT(R|S|C)(16|32|64)r(r|i8)")>;

def WriteBTRSCmr : SchedWriteRes<[]> {
  let NumMicroOps = 11;
}
def : InstRW<[WriteBTRSCmr], (instregex "BT(R|S|C)(16|32|64)mr")>;

def : InstRW<[WriteShiftLd], (instregex "BT(R|S|C)(16|32|64)mi8")>;

// BSF BSR.
def : InstRW<[WriteP1Lat3], (instregex "BS(R|F)(16|32|64)rr")>;
def : InstRW<[WriteP1Lat3Ld], (instregex "BS(R|F)(16|32|64)rm")>;

// SETcc.
def : InstRW<[WriteShift],
             (instregex "SET(O|NO|B|AE|E|NE|BE|A|S|NS|P|NP|L|GE|LE|G)r")>;
def WriteSetCCm : SchedWriteRes<[HWPort06, HWPort237, HWPort4]> {
  let NumMicroOps = 3;
}
def : InstRW<[WriteSetCCm],
             (instregex "SET(O|NO|B|AE|E|NE|BE|A|S|NS|P|NP|L|GE|LE|G)m")>;

// CLD STD.
def WriteCldStd : SchedWriteRes<[HWPort15, HWPort6]> {
  let NumMicroOps = 3;
}
def : InstRW<[WriteCldStd], (instregex "STD", "CLD")>;

//LZCNT TZCNT.
def : InstRW<[WriteP1Lat3], (instregex "(L|TZCNT)(16|32|64)rr")>;
def : InstRW<[WriteP1Lat3Ld], (instregex "(L|TZCNT)(16|32|64)rm")>;

// ANDN.
def : InstRW<[WriteP15], (instregex "ANDN(32|64)rr")>;
def : InstRW<[WriteP15Ld], (instregex "ANDN(32|64)rm")>;

// BLSI BLSMSK BLSR.
def : InstRW<[WriteP15], (instregex "BLS(I|MSK|R)(32|64)rr")>;
def : InstRW<[WriteP15Ld], (instregex "BLS(I|MSK|R)(32|64)rm")>;

// BEXTR.
def : InstRW<[Write2ALU], (instregex "BEXTR(32|64)rr")>;
def : InstRW<[Write2ALULd], (instregex "BEXTR(32|64)rm")>;

// BZHI.
def : InstRW<[WriteP15], (instregex "BZHI(32|64)rr")>;
def : InstRW<[WriteP15Ld], (instregex "BZHI(32|64)rm")>;

// PDEP PEXT.
def : InstRW<[WriteP1Lat3], (instregex "PDEP(32|64)rr", "PEXT(32|64)rr")>;
def : InstRW<[WriteP1Lat3Ld], (instregex "PDEP(32|64)rm", "PEXT(32|64)rm")>;

//-- Control transfer instructions --//
// J(E|R)CXZ.
def WriteJCXZ : SchedWriteRes<[HWPort0156, HWPort6]> {
  let NumMicroOps = 2;
}
def : InstRW<[WriteJCXZ], (instregex "JCXZ", "JECXZ_(32|64)", "JRCXZ")>;

// LOOP.
def WriteLOOP : SchedWriteRes<[]> {
  let NumMicroOps = 7;
}
def : InstRW<[WriteLOOP], (instregex "LOOP")>;

// LOOP(N)E
def WriteLOOPE : SchedWriteRes<[]> {
  let NumMicroOps = 11;
}
def : InstRW<[WriteLOOPE], (instregex "LOOPE", "LOOPNE")>;

// CALL.
def WriteCALLr : SchedWriteRes<[HWPort237, HWPort4, HWPort6]> {
  let NumMicroOps = 3;
}
def : InstRW<[WriteCALLr], (instregex "CALL(16|32)r")>;

def WriteCALLm : SchedWriteRes<[HWPort237, HWPort4, HWPort6]> {
  let NumMicroOps = 4;
  let ResourceCycles = [2, 1, 1];
}
def : InstRW<[WriteCALLm], (instregex "CALL(16|32)m")>;

// RET.
def WriteRET : SchedWriteRes<[HWPort237, HWPort6]> {
  let NumMicroOps = 2;
}
def : InstRW<[WriteRET], (instregex "RET(L|Q|W)", "LRET(L|Q|W)")>;

def WriteRETI : SchedWriteRes<[HWPort23, HWPort6, HWPort015]> {
  let NumMicroOps = 4;
  let ResourceCycles = [1, 2, 1];
}
def : InstRW<[WriteRETI], (instregex "RETI(L|Q|W)", "LRETI(L|Q|W)")>;

// BOUND.
def WriteBOUND : SchedWriteRes<[]> {
  let NumMicroOps = 15;
}
def : InstRW<[WriteBOUND], (instregex "BOUNDS(16|32)rm")>;

// INTO.
def WriteINTO : SchedWriteRes<[]> {
  let NumMicroOps = 4;
}
def : InstRW<[WriteINTO], (instregex "INTO")>;


//-- String instructions --//
// LODSB/W.
def : InstRW<[Write2P0156_P23], (instregex "LODS(B|W)")>;

// LODSD/Q.
def : InstRW<[WriteP0156_P23], (instregex "LODS(L|Q)")>;

// STOS.
def WriteSTOS : SchedWriteRes<[HWPort23, HWPort0156, HWPort4]> {
  let NumMicroOps = 3;
}
def : InstRW<[WriteSTOS], (instregex "STOS(B|L|Q|W)")>;

// MOVS.
def WriteMOVS : SchedWriteRes<[HWPort23, HWPort4, HWPort0156]> {
  let Latency = 4;
  let NumMicroOps = 5;
  let ResourceCycles = [2, 1, 2];
}
def : InstRW<[WriteMOVS], (instregex "MOVS(B|L|Q|W)")>;

// SCAS.
def : InstRW<[Write2P0156_P23], (instregex "SCAS(B|W|L|Q)")>;

// CMPS.
def WriteCMPS : SchedWriteRes<[HWPort23, HWPort0156]> {
  let Latency = 4;
  let NumMicroOps = 5;
  let ResourceCycles = [2, 3];
}
def : InstRW<[WriteCMPS], (instregex "CMPS(B|L|Q|W)")>;

//-- Synchronization instructions --//
// XADD.
def WriteXADD : SchedWriteRes<[HWPort237, HWPort6, HWPort0156]> {
  let Latency = 7;
  let NumMicroOps = 5;
}
def : InstRW<[WriteXADD], (instregex "XADD(8|16|32|64)rm")>;

// CMPXCHG.
def WriteCMPXCHG : SchedWriteRes<[HWPort237, HWPort6, HWPort0156]> {
  let Latency = 6;
  let NumMicroOps = 9;
}
def : InstRW<[WriteCMPXCHG], (instregex "CMPXCHG(8|16|32|64)rm")>;

// CMPXCHG8B.
def WriteCMPXCHG8B : SchedWriteRes<[HWPort237, HWPort6, HWPort0156]> {
  let Latency = 9;
  let NumMicroOps = 16;
}
def : InstRW<[WriteCMPXCHG8B], (instregex "CMPXCHG8B")>;

// CMPXCHG16B.
def WriteCMPXCHG16B : SchedWriteRes<[HWPort237, HWPort6, HWPort0156]> {
  let Latency = 15;
  let NumMicroOps = 22;
}
def : InstRW<[WriteCMPXCHG16B], (instregex "CMPXCHG16B")>;

//-- Other --//
// PAUSE.
def WritePAUSE : SchedWriteRes<[HWPort05, HWPort6]> {
  let NumMicroOps = 5;
  let ResourceCycles = [1, 3];
}
def : InstRW<[WritePAUSE], (instregex "PAUSE")>;

// LEAVE.
def : InstRW<[Write2P0156_P23], (instregex "LEAVE")>;

// XGETBV.
def WriteXGETBV : SchedWriteRes<[]> {
  let NumMicroOps = 8;
}
def : InstRW<[WriteXGETBV], (instregex "XGETBV")>;

// RDTSC.
def WriteRDTSC : SchedWriteRes<[]> {
  let NumMicroOps = 15;
}
def : InstRW<[WriteRDTSC], (instregex "RDTSC")>;

// RDPMC.
def WriteRDPMC : SchedWriteRes<[]> {
  let NumMicroOps = 34;
}
def : InstRW<[WriteRDPMC], (instregex "RDPMC")>;

// RDRAND.
def WriteRDRAND : SchedWriteRes<[HWPort23, HWPort015]> {
  let NumMicroOps = 17;
  let ResourceCycles = [1, 16];
}
def : InstRW<[WriteRDRAND], (instregex "RDRAND(16|32|64)r")>;

//=== Floating Point x87 Instructions ===//
//-- Move instructions --//
// FLD.
def : InstRW<[WriteP01], (instregex "LD_Frr")>;

def WriteLD_F80m : SchedWriteRes<[HWPort01, HWPort23]> {
  let Latency = 4;
  let NumMicroOps = 4;
  let ResourceCycles = [2, 2];
}
def : InstRW<[WriteLD_F80m], (instregex "LD_F80m")>;

// FBLD.
def WriteFBLD : SchedWriteRes<[]> {
  let Latency = 47;
  let NumMicroOps = 43;
}
def : InstRW<[WriteFBLD], (instregex "FBLDm")>;

// FST(P).
def : InstRW<[WriteP01], (instregex "ST_(F|FP)rr")>;

def WriteST_FP80m : SchedWriteRes<[HWPort0156, HWPort23, HWPort4]> {
  let NumMicroOps = 7;
  let ResourceCycles = [3, 2, 2];
}
def : InstRW<[WriteST_FP80m], (instregex "ST_FP80m")>;

// FBSTP.
def WriteFBSTP : SchedWriteRes<[]> {
  let NumMicroOps = 226;
}
def : InstRW<[WriteFBSTP], (instregex "FBSTPm")>;

// FXCHG.
def : InstRW<[WriteNop], (instregex "XCH_F")>;

// FILD.
def WriteFILD : SchedWriteRes<[HWPort01, HWPort23]> {
  let Latency = 6;
  let NumMicroOps = 2;
}
def : InstRW<[WriteFILD], (instregex "ILD_F(16|32|64)m")>;

// FIST(P) FISTTP.
def WriteFIST : SchedWriteRes<[HWPort1, HWPort23, HWPort4]> {
  let Latency = 7;
  let NumMicroOps = 3;
}
def : InstRW<[WriteFIST], (instregex "IST_(F|FP)(16|32)m")>;

// FLDZ.
def : InstRW<[WriteP01], (instregex "LD_F0")>;

// FLD1.
def : InstRW<[Write2P01], (instregex "LD_F1")>;

// FLDPI FLDL2E etc.
def : InstRW<[Write2P01], (instregex "FLDPI", "FLDL2(T|E)" "FLDL(G|N)2")>;

// FCMOVcc.
def WriteFCMOVcc : SchedWriteRes<[HWPort0, HWPort5]> {
  let Latency = 2;
  let NumMicroOps = 3;
  let ResourceCycles = [2, 1];
}
def : InstRW<[WriteFCMOVcc], (instregex "CMOV(B|BE|P|NB|NBE|NE|NP)_F")>;

// FNSTSW.
def WriteFNSTSW : SchedWriteRes<[HWPort0, HWPort0156]> {
  let NumMicroOps = 2;
}
def : InstRW<[WriteFNSTSW], (instregex "FNSTSW16r")>;

def WriteFNSTSWm : SchedWriteRes<[HWPort0, HWPort4, HWPort237]> {
  let Latency = 6;
  let NumMicroOps = 3;
}
def : InstRW<[WriteFNSTSWm], (instregex "FNSTSWm")>;

// FLDCW.
def WriteFLDCW : SchedWriteRes<[HWPort01, HWPort23, HWPort6]> {
  let Latency = 7;
  let NumMicroOps = 3;
}
def : InstRW<[WriteFLDCW], (instregex "FLDCW16m")>;

// FNSTCW.
def WriteFNSTCW : SchedWriteRes<[HWPort237, HWPort4, HWPort6]> {
  let NumMicroOps = 3;
}
def : InstRW<[WriteFNSTCW], (instregex "FNSTCW16m")>;

// FINCSTP FDECSTP.
def : InstRW<[WriteP01], (instregex "FINCSTP", "FDECSTP")>;

// FFREE.
def : InstRW<[WriteP01], (instregex "FFREE")>;

// FNSAVE.
def WriteFNSAVE : SchedWriteRes<[]> {
  let NumMicroOps = 147;
}
def : InstRW<[WriteFNSAVE], (instregex "FSAVEm")>;

// FRSTOR.
def WriteFRSTOR : SchedWriteRes<[]> {
  let NumMicroOps = 90;
}
def : InstRW<[WriteFRSTOR], (instregex "FRSTORm")>;

//-- Arithmetic instructions --//
// FABS.
def : InstRW<[WriteP0], (instregex "ABS_F")>;

// FCHS.
def : InstRW<[WriteP0], (instregex "CHS_F")>;

// FCOM(P) FUCOM(P).
def : InstRW<[WriteP1], (instregex "COM_FST0r", "COMP_FST0r", "UCOM_Fr",
                         "UCOM_FPr")>;
def : InstRW<[WriteP1_P23], (instregex "FCOM(32|64)m", "FCOMP(32|64)m")>;

// FCOMPP FUCOMPP.
def : InstRW<[Write2P01], (instregex "FCOMPP", "UCOM_FPPr")>;

// FCOMI(P) FUCOMI(P).
def : InstRW<[Write3P01], (instregex "COM_FIr", "COM_FIPr", "UCOM_FIr",
                           "UCOM_FIPr")>;

// FICOM(P).
def : InstRW<[Write2P1_P23], (instregex "FICOM(16|32)m", "FICOMP(16|32)m")>;

// FTST.
def : InstRW<[WriteP1], (instregex "TST_F")>;

// FXAM.
def : InstRW<[Write2P1], (instregex "FXAM")>;

// FPREM.
def WriteFPREM : SchedWriteRes<[]> {
  let Latency = 19;
  let NumMicroOps = 28;
}
def : InstRW<[WriteFPREM], (instregex "FPREM")>;

// FPREM1.
def WriteFPREM1 : SchedWriteRes<[]> {
  let Latency = 27;
  let NumMicroOps = 41;
}
def : InstRW<[WriteFPREM1], (instregex "FPREM1")>;

// FRNDINT.
def WriteFRNDINT : SchedWriteRes<[]> {
  let Latency = 11;
  let NumMicroOps = 17;
}
def : InstRW<[WriteFRNDINT], (instregex "FRNDINT")>;

//-- Math instructions --//
// FSCALE.
def WriteFSCALE : SchedWriteRes<[]> {
  let Latency = 75; // 49-125
  let NumMicroOps = 50; // 25-75
}
def : InstRW<[WriteFSCALE], (instregex "FSCALE")>;

// FXTRACT.
def WriteFXTRACT : SchedWriteRes<[]> {
  let Latency = 15;
  let NumMicroOps = 17;
}
def : InstRW<[WriteFXTRACT], (instregex "FXTRACT")>;

//-- Other instructions --//
// FNOP.
def : InstRW<[WriteP01], (instregex "FNOP")>;

// WAIT.
def : InstRW<[Write2P01], (instregex "WAIT")>;

// FNCLEX.
def : InstRW<[Write5P0156], (instregex "FNCLEX")>;

// FNINIT.
def WriteFNINIT : SchedWriteRes<[]> {
  let NumMicroOps = 26;
}
def : InstRW<[WriteFNINIT], (instregex "FNINIT")>;

//=== Integer MMX and XMM Instructions ===//
//-- Move instructions --//
// MOVD.
// r32/64 <- (x)mm.
def : InstRW<[WriteP0], (instregex "MMX_MOVD64grr", "MMX_MOVD64from64rr",
                         "VMOVPDI2DIrr", "MOVPDI2DIrr")>;

// (x)mm <- r32/64.
def : InstRW<[WriteP5], (instregex "MMX_MOVD64rr", "MMX_MOVD64to64rr",
                         "VMOVDI2PDIrr", "MOVDI2PDIrr")>;

// MOVQ.
// r64 <- (x)mm.
def : InstRW<[WriteP0], (instregex "VMOVPQIto64rr")>;

// (x)mm <- r64.
def : InstRW<[WriteP5], (instregex "VMOV64toPQIrr", "VMOVZQI2PQIrr")>;

// (x)mm <- (x)mm.
def : InstRW<[WriteP015], (instregex "MMX_MOVQ64rr")>;

// (V)MOVDQA/U.
// x <- x.
def : InstRW<[WriteP015], (instregex "MOVDQ(A|U)rr", "VMOVDQ(A|U)rr",
                           "MOVDQ(A|U)rr_REV", "VMOVDQ(A|U)rr_REV",
                           "VMOVDQ(A|U)Yrr", "VMOVDQ(A|U)Yrr_REV")>;

// MOVDQ2Q.
def : InstRW<[WriteP01P5], (instregex "MMX_MOVDQ2Qrr")>;

// MOVQ2DQ.
def : InstRW<[WriteP015], (instregex "MMX_MOVQ2DQrr")>;


// PACKSSWB/DW.
// mm <- mm.
def WriteMMXPACKSSrr : SchedWriteRes<[HWPort5]> {
  let Latency = 2;
  let NumMicroOps = 3;
  let ResourceCycles = [3];
}
def : InstRW<[WriteMMXPACKSSrr], (instregex "MMX_PACKSSDWirr",
                                  "MMX_PACKSSWBirr", "MMX_PACKUSWBirr")>;

// mm <- m64.
def WriteMMXPACKSSrm : SchedWriteRes<[HWPort23, HWPort5]> {
  let Latency = 4;
  let NumMicroOps = 3;
  let ResourceCycles = [1, 3];
}
def : InstRW<[WriteMMXPACKSSrm], (instregex "MMX_PACKSSDWirm",
                                  "MMX_PACKSSWBirm", "MMX_PACKUSWBirm")>;

// VPMOVSX/ZX BW BD BQ DW DQ.
// y <- x.
def WriteVPMOVSX : SchedWriteRes<[HWPort5]> {
  let Latency = 3;
  let NumMicroOps = 1;
}
def : InstRW<[WriteVPMOVSX], (instregex "VPMOV(SX|ZX)(BW|BQ|DW|DQ)Yrr")>;


} // SchedModel