summaryrefslogtreecommitdiff
path: root/lib/Transforms/Scalar/LoopStrengthReduce.cpp
blob: fd11e00df264945eb621cf67c1132ae32405aa16 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
//===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This transformation analyzes and transforms the induction variables (and
// computations derived from them) into forms suitable for efficient execution
// on the target.
//
// This pass performs a strength reduction on array references inside loops that
// have as one or more of their components the loop induction variable, it
// rewrites expressions to take advantage of scaled-index addressing modes
// available on the target, and it performs a variety of other optimizations
// related to loop induction variables.
//
// Terminology note: this code has a lot of handling for "post-increment" or
// "post-inc" users. This is not talking about post-increment addressing modes;
// it is instead talking about code like this:
//
//   %i = phi [ 0, %entry ], [ %i.next, %latch ]
//   ...
//   %i.next = add %i, 1
//   %c = icmp eq %i.next, %n
//
// The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
// it's useful to think about these as the same register, with some uses using
// the value of the register before the add and some using // it after. In this
// example, the icmp is a post-increment user, since it uses %i.next, which is
// the value of the induction variable after the increment. The other common
// case of post-increment users is users outside the loop.
//
// TODO: More sophistication in the way Formulae are generated and filtered.
//
// TODO: Handle multiple loops at a time.
//
// TODO: Should TargetLowering::AddrMode::BaseGV be changed to a ConstantExpr
//       instead of a GlobalValue?
//
// TODO: When truncation is free, truncate ICmp users' operands to make it a
//       smaller encoding (on x86 at least).
//
// TODO: When a negated register is used by an add (such as in a list of
//       multiple base registers, or as the increment expression in an addrec),
//       we may not actually need both reg and (-1 * reg) in registers; the
//       negation can be implemented by using a sub instead of an add. The
//       lack of support for taking this into consideration when making
//       register pressure decisions is partly worked around by the "Special"
//       use kind.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "loop-reduce"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Analysis/IVUsers.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ValueHandle.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetLowering.h"
#include <algorithm>
using namespace llvm;

namespace {

/// RegSortData - This class holds data which is used to order reuse candidates.
class RegSortData {
public:
  /// UsedByIndices - This represents the set of LSRUse indices which reference
  /// a particular register.
  SmallBitVector UsedByIndices;

  RegSortData() {}

  void print(raw_ostream &OS) const;
  void dump() const;
};

}

void RegSortData::print(raw_ostream &OS) const {
  OS << "[NumUses=" << UsedByIndices.count() << ']';
}

void RegSortData::dump() const {
  print(errs()); errs() << '\n';
}

namespace {

/// RegUseTracker - Map register candidates to information about how they are
/// used.
class RegUseTracker {
  typedef DenseMap<const SCEV *, RegSortData> RegUsesTy;

  RegUsesTy RegUsesMap;
  SmallVector<const SCEV *, 16> RegSequence;

public:
  void CountRegister(const SCEV *Reg, size_t LUIdx);
  void DropRegister(const SCEV *Reg, size_t LUIdx);
  void DropUse(size_t LUIdx);

  bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;

  const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;

  void clear();

  typedef SmallVectorImpl<const SCEV *>::iterator iterator;
  typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator;
  iterator begin() { return RegSequence.begin(); }
  iterator end()   { return RegSequence.end(); }
  const_iterator begin() const { return RegSequence.begin(); }
  const_iterator end() const   { return RegSequence.end(); }
};

}

void
RegUseTracker::CountRegister(const SCEV *Reg, size_t LUIdx) {
  std::pair<RegUsesTy::iterator, bool> Pair =
    RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
  RegSortData &RSD = Pair.first->second;
  if (Pair.second)
    RegSequence.push_back(Reg);
  RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
  RSD.UsedByIndices.set(LUIdx);
}

void
RegUseTracker::DropRegister(const SCEV *Reg, size_t LUIdx) {
  RegUsesTy::iterator It = RegUsesMap.find(Reg);
  assert(It != RegUsesMap.end());
  RegSortData &RSD = It->second;
  assert(RSD.UsedByIndices.size() > LUIdx);
  RSD.UsedByIndices.reset(LUIdx);
}

void
RegUseTracker::DropUse(size_t LUIdx) {
  // Remove the use index from every register's use list.
  for (RegUsesTy::iterator I = RegUsesMap.begin(), E = RegUsesMap.end();
       I != E; ++I)
    I->second.UsedByIndices.reset(LUIdx);
}

bool
RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
  if (!RegUsesMap.count(Reg)) return false;
  const SmallBitVector &UsedByIndices =
    RegUsesMap.find(Reg)->second.UsedByIndices;
  int i = UsedByIndices.find_first();
  if (i == -1) return false;
  if ((size_t)i != LUIdx) return true;
  return UsedByIndices.find_next(i) != -1;
}

const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
  RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
  assert(I != RegUsesMap.end() && "Unknown register!");
  return I->second.UsedByIndices;
}

void RegUseTracker::clear() {
  RegUsesMap.clear();
  RegSequence.clear();
}

namespace {

/// Formula - This class holds information that describes a formula for
/// computing satisfying a use. It may include broken-out immediates and scaled
/// registers.
struct Formula {
  /// AM - This is used to represent complex addressing, as well as other kinds
  /// of interesting uses.
  TargetLowering::AddrMode AM;

  /// BaseRegs - The list of "base" registers for this use. When this is
  /// non-empty, AM.HasBaseReg should be set to true.
  SmallVector<const SCEV *, 2> BaseRegs;

  /// ScaledReg - The 'scaled' register for this use. This should be non-null
  /// when AM.Scale is not zero.
  const SCEV *ScaledReg;

  Formula() : ScaledReg(0) {}

  void InitialMatch(const SCEV *S, Loop *L,
                    ScalarEvolution &SE, DominatorTree &DT);

  unsigned getNumRegs() const;
  const Type *getType() const;

  void DeleteBaseReg(const SCEV *&S);

  bool referencesReg(const SCEV *S) const;
  bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
                                  const RegUseTracker &RegUses) const;

  void print(raw_ostream &OS) const;
  void dump() const;
};

}

/// DoInitialMatch - Recursion helper for InitialMatch.
static void DoInitialMatch(const SCEV *S, Loop *L,
                           SmallVectorImpl<const SCEV *> &Good,
                           SmallVectorImpl<const SCEV *> &Bad,
                           ScalarEvolution &SE, DominatorTree &DT) {
  // Collect expressions which properly dominate the loop header.
  if (S->properlyDominates(L->getHeader(), &DT)) {
    Good.push_back(S);
    return;
  }

  // Look at add operands.
  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
    for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
         I != E; ++I)
      DoInitialMatch(*I, L, Good, Bad, SE, DT);
    return;
  }

  // Look at addrec operands.
  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
    if (!AR->getStart()->isZero()) {
      DoInitialMatch(AR->getStart(), L, Good, Bad, SE, DT);
      DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
                                      AR->getStepRecurrence(SE),
                                      AR->getLoop()),
                     L, Good, Bad, SE, DT);
      return;
    }

  // Handle a multiplication by -1 (negation) if it didn't fold.
  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
    if (Mul->getOperand(0)->isAllOnesValue()) {
      SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
      const SCEV *NewMul = SE.getMulExpr(Ops);

      SmallVector<const SCEV *, 4> MyGood;
      SmallVector<const SCEV *, 4> MyBad;
      DoInitialMatch(NewMul, L, MyGood, MyBad, SE, DT);
      const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
        SE.getEffectiveSCEVType(NewMul->getType())));
      for (SmallVectorImpl<const SCEV *>::const_iterator I = MyGood.begin(),
           E = MyGood.end(); I != E; ++I)
        Good.push_back(SE.getMulExpr(NegOne, *I));
      for (SmallVectorImpl<const SCEV *>::const_iterator I = MyBad.begin(),
           E = MyBad.end(); I != E; ++I)
        Bad.push_back(SE.getMulExpr(NegOne, *I));
      return;
    }

  // Ok, we can't do anything interesting. Just stuff the whole thing into a
  // register and hope for the best.
  Bad.push_back(S);
}

/// InitialMatch - Incorporate loop-variant parts of S into this Formula,
/// attempting to keep all loop-invariant and loop-computable values in a
/// single base register.
void Formula::InitialMatch(const SCEV *S, Loop *L,
                           ScalarEvolution &SE, DominatorTree &DT) {
  SmallVector<const SCEV *, 4> Good;
  SmallVector<const SCEV *, 4> Bad;
  DoInitialMatch(S, L, Good, Bad, SE, DT);
  if (!Good.empty()) {
    const SCEV *Sum = SE.getAddExpr(Good);
    if (!Sum->isZero())
      BaseRegs.push_back(Sum);
    AM.HasBaseReg = true;
  }
  if (!Bad.empty()) {
    const SCEV *Sum = SE.getAddExpr(Bad);
    if (!Sum->isZero())
      BaseRegs.push_back(Sum);
    AM.HasBaseReg = true;
  }
}

/// getNumRegs - Return the total number of register operands used by this
/// formula. This does not include register uses implied by non-constant
/// addrec strides.
unsigned Formula::getNumRegs() const {
  return !!ScaledReg + BaseRegs.size();
}

/// getType - Return the type of this formula, if it has one, or null
/// otherwise. This type is meaningless except for the bit size.
const Type *Formula::getType() const {
  return !BaseRegs.empty() ? BaseRegs.front()->getType() :
         ScaledReg ? ScaledReg->getType() :
         AM.BaseGV ? AM.BaseGV->getType() :
         0;
}

/// DeleteBaseReg - Delete the given base reg from the BaseRegs list.
void Formula::DeleteBaseReg(const SCEV *&S) {
  if (&S != &BaseRegs.back())
    std::swap(S, BaseRegs.back());
  BaseRegs.pop_back();
}

/// referencesReg - Test if this formula references the given register.
bool Formula::referencesReg(const SCEV *S) const {
  return S == ScaledReg ||
         std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end();
}

/// hasRegsUsedByUsesOtherThan - Test whether this formula uses registers
/// which are used by uses other than the use with the given index.
bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
                                         const RegUseTracker &RegUses) const {
  if (ScaledReg)
    if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
      return true;
  for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
       E = BaseRegs.end(); I != E; ++I)
    if (RegUses.isRegUsedByUsesOtherThan(*I, LUIdx))
      return true;
  return false;
}

void Formula::print(raw_ostream &OS) const {
  bool First = true;
  if (AM.BaseGV) {
    if (!First) OS << " + "; else First = false;
    WriteAsOperand(OS, AM.BaseGV, /*PrintType=*/false);
  }
  if (AM.BaseOffs != 0) {
    if (!First) OS << " + "; else First = false;
    OS << AM.BaseOffs;
  }
  for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
       E = BaseRegs.end(); I != E; ++I) {
    if (!First) OS << " + "; else First = false;
    OS << "reg(" << **I << ')';
  }
  if (AM.HasBaseReg && BaseRegs.empty()) {
    if (!First) OS << " + "; else First = false;
    OS << "**error: HasBaseReg**";
  } else if (!AM.HasBaseReg && !BaseRegs.empty()) {
    if (!First) OS << " + "; else First = false;
    OS << "**error: !HasBaseReg**";
  }
  if (AM.Scale != 0) {
    if (!First) OS << " + "; else First = false;
    OS << AM.Scale << "*reg(";
    if (ScaledReg)
      OS << *ScaledReg;
    else
      OS << "<unknown>";
    OS << ')';
  }
}

void Formula::dump() const {
  print(errs()); errs() << '\n';
}

/// isAddRecSExtable - Return true if the given addrec can be sign-extended
/// without changing its value.
static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
  const Type *WideTy =
    IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
  return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
}

/// isAddSExtable - Return true if the given add can be sign-extended
/// without changing its value.
static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
  const Type *WideTy =
    IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
  return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
}

/// isMulSExtable - Return true if the given mul can be sign-extended
/// without changing its value.
static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
  const Type *WideTy =
    IntegerType::get(SE.getContext(),
                     SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
  return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
}

/// getExactSDiv - Return an expression for LHS /s RHS, if it can be determined
/// and if the remainder is known to be zero,  or null otherwise. If
/// IgnoreSignificantBits is true, expressions like (X * Y) /s Y are simplified
/// to Y, ignoring that the multiplication may overflow, which is useful when
/// the result will be used in a context where the most significant bits are
/// ignored.
static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
                                ScalarEvolution &SE,
                                bool IgnoreSignificantBits = false) {
  // Handle the trivial case, which works for any SCEV type.
  if (LHS == RHS)
    return SE.getConstant(LHS->getType(), 1);

  // Handle a few RHS special cases.
  const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
  if (RC) {
    const APInt &RA = RC->getValue()->getValue();
    // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
    // some folding.
    if (RA.isAllOnesValue())
      return SE.getMulExpr(LHS, RC);
    // Handle x /s 1 as x.
    if (RA == 1)
      return LHS;
  }

  // Check for a division of a constant by a constant.
  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
    if (!RC)
      return 0;
    const APInt &LA = C->getValue()->getValue();
    const APInt &RA = RC->getValue()->getValue();
    if (LA.srem(RA) != 0)
      return 0;
    return SE.getConstant(LA.sdiv(RA));
  }

  // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
    if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) {
      const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
                                       IgnoreSignificantBits);
      if (!Start) return 0;
      const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
                                      IgnoreSignificantBits);
      if (!Step) return 0;
      return SE.getAddRecExpr(Start, Step, AR->getLoop());
    }
    return 0;
  }

  // Distribute the sdiv over add operands, if the add doesn't overflow.
  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
    if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
      SmallVector<const SCEV *, 8> Ops;
      for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
           I != E; ++I) {
        const SCEV *Op = getExactSDiv(*I, RHS, SE,
                                      IgnoreSignificantBits);
        if (!Op) return 0;
        Ops.push_back(Op);
      }
      return SE.getAddExpr(Ops);
    }
    return 0;
  }

  // Check for a multiply operand that we can pull RHS out of.
  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
    if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
      SmallVector<const SCEV *, 4> Ops;
      bool Found = false;
      for (SCEVMulExpr::op_iterator I = Mul->op_begin(), E = Mul->op_end();
           I != E; ++I) {
        const SCEV *S = *I;
        if (!Found)
          if (const SCEV *Q = getExactSDiv(S, RHS, SE,
                                           IgnoreSignificantBits)) {
            S = Q;
            Found = true;
          }
        Ops.push_back(S);
      }
      return Found ? SE.getMulExpr(Ops) : 0;
    }
    return 0;
  }

  // Otherwise we don't know.
  return 0;
}

/// ExtractImmediate - If S involves the addition of a constant integer value,
/// return that integer value, and mutate S to point to a new SCEV with that
/// value excluded.
static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
    if (C->getValue()->getValue().getMinSignedBits() <= 64) {
      S = SE.getConstant(C->getType(), 0);
      return C->getValue()->getSExtValue();
    }
  } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
    SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
    int64_t Result = ExtractImmediate(NewOps.front(), SE);
    S = SE.getAddExpr(NewOps);
    return Result;
  } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
    SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
    int64_t Result = ExtractImmediate(NewOps.front(), SE);
    S = SE.getAddRecExpr(NewOps, AR->getLoop());
    return Result;
  }
  return 0;
}

/// ExtractSymbol - If S involves the addition of a GlobalValue address,
/// return that symbol, and mutate S to point to a new SCEV with that
/// value excluded.
static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
    if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
      S = SE.getConstant(GV->getType(), 0);
      return GV;
    }
  } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
    SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
    GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
    S = SE.getAddExpr(NewOps);
    return Result;
  } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
    SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
    GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
    S = SE.getAddRecExpr(NewOps, AR->getLoop());
    return Result;
  }
  return 0;
}

/// isAddressUse - Returns true if the specified instruction is using the
/// specified value as an address.
static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
  bool isAddress = isa<LoadInst>(Inst);
  if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
    if (SI->getOperand(1) == OperandVal)
      isAddress = true;
  } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
    // Addressing modes can also be folded into prefetches and a variety
    // of intrinsics.
    switch (II->getIntrinsicID()) {
      default: break;
      case Intrinsic::prefetch:
      case Intrinsic::x86_sse2_loadu_dq:
      case Intrinsic::x86_sse2_loadu_pd:
      case Intrinsic::x86_sse_loadu_ps:
      case Intrinsic::x86_sse_storeu_ps:
      case Intrinsic::x86_sse2_storeu_pd:
      case Intrinsic::x86_sse2_storeu_dq:
      case Intrinsic::x86_sse2_storel_dq:
        if (II->getArgOperand(0) == OperandVal)
          isAddress = true;
        break;
    }
  }
  return isAddress;
}

/// getAccessType - Return the type of the memory being accessed.
static const Type *getAccessType(const Instruction *Inst) {
  const Type *AccessTy = Inst->getType();
  if (const StoreInst *SI = dyn_cast<StoreInst>(Inst))
    AccessTy = SI->getOperand(0)->getType();
  else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
    // Addressing modes can also be folded into prefetches and a variety
    // of intrinsics.
    switch (II->getIntrinsicID()) {
    default: break;
    case Intrinsic::x86_sse_storeu_ps:
    case Intrinsic::x86_sse2_storeu_pd:
    case Intrinsic::x86_sse2_storeu_dq:
    case Intrinsic::x86_sse2_storel_dq:
      AccessTy = II->getArgOperand(0)->getType();
      break;
    }
  }

  // All pointers have the same requirements, so canonicalize them to an
  // arbitrary pointer type to minimize variation.
  if (const PointerType *PTy = dyn_cast<PointerType>(AccessTy))
    AccessTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
                                PTy->getAddressSpace());

  return AccessTy;
}

/// DeleteTriviallyDeadInstructions - If any of the instructions is the
/// specified set are trivially dead, delete them and see if this makes any of
/// their operands subsequently dead.
static bool
DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) {
  bool Changed = false;

  while (!DeadInsts.empty()) {
    Instruction *I = dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val());

    if (I == 0 || !isInstructionTriviallyDead(I))
      continue;

    for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
      if (Instruction *U = dyn_cast<Instruction>(*OI)) {
        *OI = 0;
        if (U->use_empty())
          DeadInsts.push_back(U);
      }

    I->eraseFromParent();
    Changed = true;
  }

  return Changed;
}

namespace {

/// Cost - This class is used to measure and compare candidate formulae.
class Cost {
  /// TODO: Some of these could be merged. Also, a lexical ordering
  /// isn't always optimal.
  unsigned NumRegs;
  unsigned AddRecCost;
  unsigned NumIVMuls;
  unsigned NumBaseAdds;
  unsigned ImmCost;
  unsigned SetupCost;

public:
  Cost()
    : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0),
      SetupCost(0) {}

  unsigned getNumRegs() const { return NumRegs; }

  bool operator<(const Cost &Other) const;

  void Loose();

  void RateFormula(const Formula &F,
                   SmallPtrSet<const SCEV *, 16> &Regs,
                   const DenseSet<const SCEV *> &VisitedRegs,
                   const Loop *L,
                   const SmallVectorImpl<int64_t> &Offsets,
                   ScalarEvolution &SE, DominatorTree &DT);

  void print(raw_ostream &OS) const;
  void dump() const;

private:
  void RateRegister(const SCEV *Reg,
                    SmallPtrSet<const SCEV *, 16> &Regs,
                    const Loop *L,
                    ScalarEvolution &SE, DominatorTree &DT);
  void RatePrimaryRegister(const SCEV *Reg,
                           SmallPtrSet<const SCEV *, 16> &Regs,
                           const Loop *L,
                           ScalarEvolution &SE, DominatorTree &DT);
};

}

/// RateRegister - Tally up interesting quantities from the given register.
void Cost::RateRegister(const SCEV *Reg,
                        SmallPtrSet<const SCEV *, 16> &Regs,
                        const Loop *L,
                        ScalarEvolution &SE, DominatorTree &DT) {
  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
    if (AR->getLoop() == L)
      AddRecCost += 1; /// TODO: This should be a function of the stride.

    // If this is an addrec for a loop that's already been visited by LSR,
    // don't second-guess its addrec phi nodes. LSR isn't currently smart
    // enough to reason about more than one loop at a time. Consider these
    // registers free and leave them alone.
    else if (L->contains(AR->getLoop()) ||
             (!AR->getLoop()->contains(L) &&
              DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))) {
      for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin();
           PHINode *PN = dyn_cast<PHINode>(I); ++I)
        if (SE.isSCEVable(PN->getType()) &&
            (SE.getEffectiveSCEVType(PN->getType()) ==
             SE.getEffectiveSCEVType(AR->getType())) &&
            SE.getSCEV(PN) == AR)
          return;

      // If this isn't one of the addrecs that the loop already has, it
      // would require a costly new phi and add. TODO: This isn't
      // precisely modeled right now.
      ++NumBaseAdds;
      if (!Regs.count(AR->getStart()))
        RateRegister(AR->getStart(), Regs, L, SE, DT);
    }

    // Add the step value register, if it needs one.
    // TODO: The non-affine case isn't precisely modeled here.
    if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1)))
      if (!Regs.count(AR->getStart()))
        RateRegister(AR->getOperand(1), Regs, L, SE, DT);
  }
  ++NumRegs;

  // Rough heuristic; favor registers which don't require extra setup
  // instructions in the preheader.
  if (!isa<SCEVUnknown>(Reg) &&
      !isa<SCEVConstant>(Reg) &&
      !(isa<SCEVAddRecExpr>(Reg) &&
        (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) ||
         isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart()))))
    ++SetupCost;
}

/// RatePrimaryRegister - Record this register in the set. If we haven't seen it
/// before, rate it.
void Cost::RatePrimaryRegister(const SCEV *Reg,
                               SmallPtrSet<const SCEV *, 16> &Regs,
                               const Loop *L,
                               ScalarEvolution &SE, DominatorTree &DT) {
  if (Regs.insert(Reg))
    RateRegister(Reg, Regs, L, SE, DT);
}

void Cost::RateFormula(const Formula &F,
                       SmallPtrSet<const SCEV *, 16> &Regs,
                       const DenseSet<const SCEV *> &VisitedRegs,
                       const Loop *L,
                       const SmallVectorImpl<int64_t> &Offsets,
                       ScalarEvolution &SE, DominatorTree &DT) {
  // Tally up the registers.
  if (const SCEV *ScaledReg = F.ScaledReg) {
    if (VisitedRegs.count(ScaledReg)) {
      Loose();
      return;
    }
    RatePrimaryRegister(ScaledReg, Regs, L, SE, DT);
  }
  for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
       E = F.BaseRegs.end(); I != E; ++I) {
    const SCEV *BaseReg = *I;
    if (VisitedRegs.count(BaseReg)) {
      Loose();
      return;
    }
    RatePrimaryRegister(BaseReg, Regs, L, SE, DT);

    NumIVMuls += isa<SCEVMulExpr>(BaseReg) &&
                 BaseReg->hasComputableLoopEvolution(L);
  }

  if (F.BaseRegs.size() > 1)
    NumBaseAdds += F.BaseRegs.size() - 1;

  // Tally up the non-zero immediates.
  for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
       E = Offsets.end(); I != E; ++I) {
    int64_t Offset = (uint64_t)*I + F.AM.BaseOffs;
    if (F.AM.BaseGV)
      ImmCost += 64; // Handle symbolic values conservatively.
                     // TODO: This should probably be the pointer size.
    else if (Offset != 0)
      ImmCost += APInt(64, Offset, true).getMinSignedBits();
  }
}

/// Loose - Set this cost to a loosing value.
void Cost::Loose() {
  NumRegs = ~0u;
  AddRecCost = ~0u;
  NumIVMuls = ~0u;
  NumBaseAdds = ~0u;
  ImmCost = ~0u;
  SetupCost = ~0u;
}

/// operator< - Choose the lower cost.
bool Cost::operator<(const Cost &Other) const {
  if (NumRegs != Other.NumRegs)
    return NumRegs < Other.NumRegs;
  if (AddRecCost != Other.AddRecCost)
    return AddRecCost < Other.AddRecCost;
  if (NumIVMuls != Other.NumIVMuls)
    return NumIVMuls < Other.NumIVMuls;
  if (NumBaseAdds != Other.NumBaseAdds)
    return NumBaseAdds < Other.NumBaseAdds;
  if (ImmCost != Other.ImmCost)
    return ImmCost < Other.ImmCost;
  if (SetupCost != Other.SetupCost)
    return SetupCost < Other.SetupCost;
  return false;
}

void Cost::print(raw_ostream &OS) const {
  OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s");
  if (AddRecCost != 0)
    OS << ", with addrec cost " << AddRecCost;
  if (NumIVMuls != 0)
    OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s");
  if (NumBaseAdds != 0)
    OS << ", plus " << NumBaseAdds << " base add"
       << (NumBaseAdds == 1 ? "" : "s");
  if (ImmCost != 0)
    OS << ", plus " << ImmCost << " imm cost";
  if (SetupCost != 0)
    OS << ", plus " << SetupCost << " setup cost";
}

void Cost::dump() const {
  print(errs()); errs() << '\n';
}

namespace {

/// LSRFixup - An operand value in an instruction which is to be replaced
/// with some equivalent, possibly strength-reduced, replacement.
struct LSRFixup {
  /// UserInst - The instruction which will be updated.
  Instruction *UserInst;

  /// OperandValToReplace - The operand of the instruction which will
  /// be replaced. The operand may be used more than once; every instance
  /// will be replaced.
  Value *OperandValToReplace;

  /// PostIncLoops - If this user is to use the post-incremented value of an
  /// induction variable, this variable is non-null and holds the loop
  /// associated with the induction variable.
  PostIncLoopSet PostIncLoops;

  /// LUIdx - The index of the LSRUse describing the expression which
  /// this fixup needs, minus an offset (below).
  size_t LUIdx;

  /// Offset - A constant offset to be added to the LSRUse expression.
  /// This allows multiple fixups to share the same LSRUse with different
  /// offsets, for example in an unrolled loop.
  int64_t Offset;

  bool isUseFullyOutsideLoop(const Loop *L) const;

  LSRFixup();

  void print(raw_ostream &OS) const;
  void dump() const;
};

}

LSRFixup::LSRFixup()
  : UserInst(0), OperandValToReplace(0), LUIdx(~size_t(0)), Offset(0) {}

/// isUseFullyOutsideLoop - Test whether this fixup always uses its
/// value outside of the given loop.
bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
  // PHI nodes use their value in their incoming blocks.
  if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
      if (PN->getIncomingValue(i) == OperandValToReplace &&
          L->contains(PN->getIncomingBlock(i)))
        return false;
    return true;
  }

  return !L->contains(UserInst);
}

void LSRFixup::print(raw_ostream &OS) const {
  OS << "UserInst=";
  // Store is common and interesting enough to be worth special-casing.
  if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
    OS << "store ";
    WriteAsOperand(OS, Store->getOperand(0), /*PrintType=*/false);
  } else if (UserInst->getType()->isVoidTy())
    OS << UserInst->getOpcodeName();
  else
    WriteAsOperand(OS, UserInst, /*PrintType=*/false);

  OS << ", OperandValToReplace=";
  WriteAsOperand(OS, OperandValToReplace, /*PrintType=*/false);

  for (PostIncLoopSet::const_iterator I = PostIncLoops.begin(),
       E = PostIncLoops.end(); I != E; ++I) {
    OS << ", PostIncLoop=";
    WriteAsOperand(OS, (*I)->getHeader(), /*PrintType=*/false);
  }

  if (LUIdx != ~size_t(0))
    OS << ", LUIdx=" << LUIdx;

  if (Offset != 0)
    OS << ", Offset=" << Offset;
}

void LSRFixup::dump() const {
  print(errs()); errs() << '\n';
}

namespace {

/// UniquifierDenseMapInfo - A DenseMapInfo implementation for holding
/// DenseMaps and DenseSets of sorted SmallVectors of const SCEV*.
struct UniquifierDenseMapInfo {
  static SmallVector<const SCEV *, 2> getEmptyKey() {
    SmallVector<const SCEV *, 2> V;
    V.push_back(reinterpret_cast<const SCEV *>(-1));
    return V;
  }

  static SmallVector<const SCEV *, 2> getTombstoneKey() {
    SmallVector<const SCEV *, 2> V;
    V.push_back(reinterpret_cast<const SCEV *>(-2));
    return V;
  }

  static unsigned getHashValue(const SmallVector<const SCEV *, 2> &V) {
    unsigned Result = 0;
    for (SmallVectorImpl<const SCEV *>::const_iterator I = V.begin(),
         E = V.end(); I != E; ++I)
      Result ^= DenseMapInfo<const SCEV *>::getHashValue(*I);
    return Result;
  }

  static bool isEqual(const SmallVector<const SCEV *, 2> &LHS,
                      const SmallVector<const SCEV *, 2> &RHS) {
    return LHS == RHS;
  }
};

/// LSRUse - This class holds the state that LSR keeps for each use in
/// IVUsers, as well as uses invented by LSR itself. It includes information
/// about what kinds of things can be folded into the user, information about
/// the user itself, and information about how the use may be satisfied.
/// TODO: Represent multiple users of the same expression in common?
class LSRUse {
  DenseSet<SmallVector<const SCEV *, 2>, UniquifierDenseMapInfo> Uniquifier;

public:
  /// KindType - An enum for a kind of use, indicating what types of
  /// scaled and immediate operands it might support.
  enum KindType {
    Basic,   ///< A normal use, with no folding.
    Special, ///< A special case of basic, allowing -1 scales.
    Address, ///< An address use; folding according to TargetLowering
    ICmpZero ///< An equality icmp with both operands folded into one.
    // TODO: Add a generic icmp too?
  };

  KindType Kind;
  const Type *AccessTy;

  SmallVector<int64_t, 8> Offsets;
  int64_t MinOffset;
  int64_t MaxOffset;

  /// AllFixupsOutsideLoop - This records whether all of the fixups using this
  /// LSRUse are outside of the loop, in which case some special-case heuristics
  /// may be used.
  bool AllFixupsOutsideLoop;

  /// WidestFixupType - This records the widest use type for any fixup using
  /// this LSRUse. FindUseWithSimilarFormula can't consider uses with different
  /// max fixup widths to be equivalent, because the narrower one may be relying
  /// on the implicit truncation to truncate away bogus bits.
  const Type *WidestFixupType;

  /// Formulae - A list of ways to build a value that can satisfy this user.
  /// After the list is populated, one of these is selected heuristically and
  /// used to formulate a replacement for OperandValToReplace in UserInst.
  SmallVector<Formula, 12> Formulae;

  /// Regs - The set of register candidates used by all formulae in this LSRUse.
  SmallPtrSet<const SCEV *, 4> Regs;

  LSRUse(KindType K, const Type *T) : Kind(K), AccessTy(T),
                                      MinOffset(INT64_MAX),
                                      MaxOffset(INT64_MIN),
                                      AllFixupsOutsideLoop(true),
                                      WidestFixupType(0) {}

  bool HasFormulaWithSameRegs(const Formula &F) const;
  bool InsertFormula(const Formula &F);
  void DeleteFormula(Formula &F);
  void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);

  void check() const;

  void print(raw_ostream &OS) const;
  void dump() const;
};

}

/// HasFormula - Test whether this use as a formula which has the same
/// registers as the given formula.
bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
  SmallVector<const SCEV *, 2> Key = F.BaseRegs;
  if (F.ScaledReg) Key.push_back(F.ScaledReg);
  // Unstable sort by host order ok, because this is only used for uniquifying.
  std::sort(Key.begin(), Key.end());
  return Uniquifier.count(Key);
}

/// InsertFormula - If the given formula has not yet been inserted, add it to
/// the list, and return true. Return false otherwise.
bool LSRUse::InsertFormula(const Formula &F) {
  SmallVector<const SCEV *, 2> Key = F.BaseRegs;
  if (F.ScaledReg) Key.push_back(F.ScaledReg);
  // Unstable sort by host order ok, because this is only used for uniquifying.
  std::sort(Key.begin(), Key.end());

  if (!Uniquifier.insert(Key).second)
    return false;

  // Using a register to hold the value of 0 is not profitable.
  assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
         "Zero allocated in a scaled register!");
#ifndef NDEBUG
  for (SmallVectorImpl<const SCEV *>::const_iterator I =
       F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I)
    assert(!(*I)->isZero() && "Zero allocated in a base register!");
#endif

  // Add the formula to the list.
  Formulae.push_back(F);

  // Record registers now being used by this use.
  if (F.ScaledReg) Regs.insert(F.ScaledReg);
  Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());

  return true;
}

/// DeleteFormula - Remove the given formula from this use's list.
void LSRUse::DeleteFormula(Formula &F) {
  if (&F != &Formulae.back())
    std::swap(F, Formulae.back());
  Formulae.pop_back();
  assert(!Formulae.empty() && "LSRUse has no formulae left!");
}

/// RecomputeRegs - Recompute the Regs field, and update RegUses.
void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
  // Now that we've filtered out some formulae, recompute the Regs set.
  SmallPtrSet<const SCEV *, 4> OldRegs = Regs;
  Regs.clear();
  for (SmallVectorImpl<Formula>::const_iterator I = Formulae.begin(),
       E = Formulae.end(); I != E; ++I) {
    const Formula &F = *I;
    if (F.ScaledReg) Regs.insert(F.ScaledReg);
    Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
  }

  // Update the RegTracker.
  for (SmallPtrSet<const SCEV *, 4>::iterator I = OldRegs.begin(),
       E = OldRegs.end(); I != E; ++I)
    if (!Regs.count(*I))
      RegUses.DropRegister(*I, LUIdx);
}

void LSRUse::print(raw_ostream &OS) const {
  OS << "LSR Use: Kind=";
  switch (Kind) {
  case Basic:    OS << "Basic"; break;
  case Special:  OS << "Special"; break;
  case ICmpZero: OS << "ICmpZero"; break;
  case Address:
    OS << "Address of ";
    if (AccessTy->isPointerTy())
      OS << "pointer"; // the full pointer type could be really verbose
    else
      OS << *AccessTy;
  }

  OS << ", Offsets={";
  for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
       E = Offsets.end(); I != E; ++I) {
    OS << *I;
    if (llvm::next(I) != E)
      OS << ',';
  }
  OS << '}';

  if (AllFixupsOutsideLoop)
    OS << ", all-fixups-outside-loop";

  if (WidestFixupType)
    OS << ", widest fixup type: " << *WidestFixupType;
}

void LSRUse::dump() const {
  print(errs()); errs() << '\n';
}

/// isLegalUse - Test whether the use described by AM is "legal", meaning it can
/// be completely folded into the user instruction at isel time. This includes
/// address-mode folding and special icmp tricks.
static bool isLegalUse(const TargetLowering::AddrMode &AM,
                       LSRUse::KindType Kind, const Type *AccessTy,
                       const TargetLowering *TLI) {
  switch (Kind) {
  case LSRUse::Address:
    // If we have low-level target information, ask the target if it can
    // completely fold this address.
    if (TLI) return TLI->isLegalAddressingMode(AM, AccessTy);

    // Otherwise, just guess that reg+reg addressing is legal.
    return !AM.BaseGV && AM.BaseOffs == 0 && AM.Scale <= 1;

  case LSRUse::ICmpZero:
    // There's not even a target hook for querying whether it would be legal to
    // fold a GV into an ICmp.
    if (AM.BaseGV)
      return false;

    // ICmp only has two operands; don't allow more than two non-trivial parts.
    if (AM.Scale != 0 && AM.HasBaseReg && AM.BaseOffs != 0)
      return false;

    // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
    // putting the scaled register in the other operand of the icmp.
    if (AM.Scale != 0 && AM.Scale != -1)
      return false;

    // If we have low-level target information, ask the target if it can fold an
    // integer immediate on an icmp.
    if (AM.BaseOffs != 0) {
      if (TLI) return TLI->isLegalICmpImmediate(-AM.BaseOffs);
      return false;
    }

    return true;

  case LSRUse::Basic:
    // Only handle single-register values.
    return !AM.BaseGV && AM.Scale == 0 && AM.BaseOffs == 0;

  case LSRUse::Special:
    // Only handle -1 scales, or no scale.
    return AM.Scale == 0 || AM.Scale == -1;
  }

  return false;
}

static bool isLegalUse(TargetLowering::AddrMode AM,
                       int64_t MinOffset, int64_t MaxOffset,
                       LSRUse::KindType Kind, const Type *AccessTy,
                       const TargetLowering *TLI) {
  // Check for overflow.
  if (((int64_t)((uint64_t)AM.BaseOffs + MinOffset) > AM.BaseOffs) !=
      (MinOffset > 0))
    return false;
  AM.BaseOffs = (uint64_t)AM.BaseOffs + MinOffset;
  if (isLegalUse(AM, Kind, AccessTy, TLI)) {
    AM.BaseOffs = (uint64_t)AM.BaseOffs - MinOffset;
    // Check for overflow.
    if (((int64_t)((uint64_t)AM.BaseOffs + MaxOffset) > AM.BaseOffs) !=
        (MaxOffset > 0))
      return false;
    AM.BaseOffs = (uint64_t)AM.BaseOffs + MaxOffset;
    return isLegalUse(AM, Kind, AccessTy, TLI);
  }
  return false;
}

static bool isAlwaysFoldable(int64_t BaseOffs,
                             GlobalValue *BaseGV,
                             bool HasBaseReg,
                             LSRUse::KindType Kind, const Type *AccessTy,
                             const TargetLowering *TLI) {
  // Fast-path: zero is always foldable.
  if (BaseOffs == 0 && !BaseGV) return true;

  // Conservatively, create an address with an immediate and a
  // base and a scale.
  TargetLowering::AddrMode AM;
  AM.BaseOffs = BaseOffs;
  AM.BaseGV = BaseGV;
  AM.HasBaseReg = HasBaseReg;
  AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;

  // Canonicalize a scale of 1 to a base register if the formula doesn't
  // already have a base register.
  if (!AM.HasBaseReg && AM.Scale == 1) {
    AM.Scale = 0;
    AM.HasBaseReg = true;
  }

  return isLegalUse(AM, Kind, AccessTy, TLI);
}

static bool isAlwaysFoldable(const SCEV *S,
                             int64_t MinOffset, int64_t MaxOffset,
                             bool HasBaseReg,
                             LSRUse::KindType Kind, const Type *AccessTy,
                             const TargetLowering *TLI,
                             ScalarEvolution &SE) {
  // Fast-path: zero is always foldable.
  if (S->isZero()) return true;

  // Conservatively, create an address with an immediate and a
  // base and a scale.
  int64_t BaseOffs = ExtractImmediate(S, SE);
  GlobalValue *BaseGV = ExtractSymbol(S, SE);

  // If there's anything else involved, it's not foldable.
  if (!S->isZero()) return false;

  // Fast-path: zero is always foldable.
  if (BaseOffs == 0 && !BaseGV) return true;

  // Conservatively, create an address with an immediate and a
  // base and a scale.
  TargetLowering::AddrMode AM;
  AM.BaseOffs = BaseOffs;
  AM.BaseGV = BaseGV;
  AM.HasBaseReg = HasBaseReg;
  AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;

  return isLegalUse(AM, MinOffset, MaxOffset, Kind, AccessTy, TLI);
}

namespace {

/// UseMapDenseMapInfo - A DenseMapInfo implementation for holding
/// DenseMaps and DenseSets of pairs of const SCEV* and LSRUse::Kind.
struct UseMapDenseMapInfo {
  static std::pair<const SCEV *, LSRUse::KindType> getEmptyKey() {
    return std::make_pair(reinterpret_cast<const SCEV *>(-1), LSRUse::Basic);
  }

  static std::pair<const SCEV *, LSRUse::KindType> getTombstoneKey() {
    return std::make_pair(reinterpret_cast<const SCEV *>(-2), LSRUse::Basic);
  }

  static unsigned
  getHashValue(const std::pair<const SCEV *, LSRUse::KindType> &V) {
    unsigned Result = DenseMapInfo<const SCEV *>::getHashValue(V.first);
    Result ^= DenseMapInfo<unsigned>::getHashValue(unsigned(V.second));
    return Result;
  }

  static bool isEqual(const std::pair<const SCEV *, LSRUse::KindType> &LHS,
                      const std::pair<const SCEV *, LSRUse::KindType> &RHS) {
    return LHS == RHS;
  }
};

/// FormulaSorter - This class implements an ordering for formulae which sorts
/// the by their standalone cost.
class FormulaSorter {
  /// These two sets are kept empty, so that we compute standalone costs.
  DenseSet<const SCEV *> VisitedRegs;
  SmallPtrSet<const SCEV *, 16> Regs;
  Loop *L;
  LSRUse *LU;
  ScalarEvolution &SE;
  DominatorTree &DT;

public:
  FormulaSorter(Loop *l, LSRUse &lu, ScalarEvolution &se, DominatorTree &dt)
    : L(l), LU(&lu), SE(se), DT(dt) {}

  bool operator()(const Formula &A, const Formula &B) {
    Cost CostA;
    CostA.RateFormula(A, Regs, VisitedRegs, L, LU->Offsets, SE, DT);
    Regs.clear();
    Cost CostB;
    CostB.RateFormula(B, Regs, VisitedRegs, L, LU->Offsets, SE, DT);
    Regs.clear();
    return CostA < CostB;
  }
};

/// LSRInstance - This class holds state for the main loop strength reduction
/// logic.
class LSRInstance {
  IVUsers &IU;
  ScalarEvolution &SE;
  DominatorTree &DT;
  LoopInfo &LI;
  const TargetLowering *const TLI;
  Loop *const L;
  bool Changed;

  /// IVIncInsertPos - This is the insert position that the current loop's
  /// induction variable increment should be placed. In simple loops, this is
  /// the latch block's terminator. But in more complicated cases, this is a
  /// position which will dominate all the in-loop post-increment users.
  Instruction *IVIncInsertPos;

  /// Factors - Interesting factors between use strides.
  SmallSetVector<int64_t, 8> Factors;

  /// Types - Interesting use types, to facilitate truncation reuse.
  SmallSetVector<const Type *, 4> Types;

  /// Fixups - The list of operands which are to be replaced.
  SmallVector<LSRFixup, 16> Fixups;

  /// Uses - The list of interesting uses.
  SmallVector<LSRUse, 16> Uses;

  /// RegUses - Track which uses use which register candidates.
  RegUseTracker RegUses;

  void OptimizeShadowIV();
  bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
  ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
  void OptimizeLoopTermCond();

  void CollectInterestingTypesAndFactors();
  void CollectFixupsAndInitialFormulae();

  LSRFixup &getNewFixup() {
    Fixups.push_back(LSRFixup());
    return Fixups.back();
  }

  // Support for sharing of LSRUses between LSRFixups.
  typedef DenseMap<std::pair<const SCEV *, LSRUse::KindType>,
                   size_t,
                   UseMapDenseMapInfo> UseMapTy;
  UseMapTy UseMap;

  bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
                          LSRUse::KindType Kind, const Type *AccessTy);

  std::pair<size_t, int64_t> getUse(const SCEV *&Expr,
                                    LSRUse::KindType Kind,
                                    const Type *AccessTy);

  void DeleteUse(LSRUse &LU);

  LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);

public:
  void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
  void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
  void CountRegisters(const Formula &F, size_t LUIdx);
  bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);

  void CollectLoopInvariantFixupsAndFormulae();

  void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
                              unsigned Depth = 0);
  void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
  void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
  void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
  void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
  void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
  void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
  void GenerateCrossUseConstantOffsets();
  void GenerateAllReuseFormulae();

  void FilterOutUndesirableDedicatedRegisters();

  size_t EstimateSearchSpaceComplexity() const;
  void NarrowSearchSpaceUsingHeuristics();

  void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
                    Cost &SolutionCost,
                    SmallVectorImpl<const Formula *> &Workspace,
                    const Cost &CurCost,
                    const SmallPtrSet<const SCEV *, 16> &CurRegs,
                    DenseSet<const SCEV *> &VisitedRegs) const;
  void Solve(SmallVectorImpl<const Formula *> &Solution) const;

  BasicBlock::iterator
    HoistInsertPosition(BasicBlock::iterator IP,
                        const SmallVectorImpl<Instruction *> &Inputs) const;
  BasicBlock::iterator AdjustInsertPositionForExpand(BasicBlock::iterator IP,
                                                     const LSRFixup &LF,
                                                     const LSRUse &LU) const;

  Value *Expand(const LSRFixup &LF,
                const Formula &F,
                BasicBlock::iterator IP,
                SCEVExpander &Rewriter,
                SmallVectorImpl<WeakVH> &DeadInsts) const;
  void RewriteForPHI(PHINode *PN, const LSRFixup &LF,
                     const Formula &F,
                     SCEVExpander &Rewriter,
                     SmallVectorImpl<WeakVH> &DeadInsts,
                     Pass *P) const;
  void Rewrite(const LSRFixup &LF,
               const Formula &F,
               SCEVExpander &Rewriter,
               SmallVectorImpl<WeakVH> &DeadInsts,
               Pass *P) const;
  void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
                         Pass *P);

  LSRInstance(const TargetLowering *tli, Loop *l, Pass *P);

  bool getChanged() const { return Changed; }

  void print_factors_and_types(raw_ostream &OS) const;
  void print_fixups(raw_ostream &OS) const;
  void print_uses(raw_ostream &OS) const;
  void print(raw_ostream &OS) const;
  void dump() const;
};

}

/// OptimizeShadowIV - If IV is used in a int-to-float cast
/// inside the loop then try to eliminate the cast operation.
void LSRInstance::OptimizeShadowIV() {
  const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
    return;

  for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
       UI != E; /* empty */) {
    IVUsers::const_iterator CandidateUI = UI;
    ++UI;
    Instruction *ShadowUse = CandidateUI->getUser();
    const Type *DestTy = NULL;

    /* If shadow use is a int->float cast then insert a second IV
       to eliminate this cast.

         for (unsigned i = 0; i < n; ++i)
           foo((double)i);

       is transformed into

         double d = 0.0;
         for (unsigned i = 0; i < n; ++i, ++d)
           foo(d);
    */
    if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser()))
      DestTy = UCast->getDestTy();
    else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser()))
      DestTy = SCast->getDestTy();
    if (!DestTy) continue;

    if (TLI) {
      // If target does not support DestTy natively then do not apply
      // this transformation.
      EVT DVT = TLI->getValueType(DestTy);
      if (!TLI->isTypeLegal(DVT)) continue;
    }

    PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
    if (!PH) continue;
    if (PH->getNumIncomingValues() != 2) continue;

    const Type *SrcTy = PH->getType();
    int Mantissa = DestTy->getFPMantissaWidth();
    if (Mantissa == -1) continue;
    if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
      continue;

    unsigned Entry, Latch;
    if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
      Entry = 0;
      Latch = 1;
    } else {
      Entry = 1;
      Latch = 0;
    }

    ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
    if (!Init) continue;
    Constant *NewInit = ConstantFP::get(DestTy, Init->getZExtValue());

    BinaryOperator *Incr =
      dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
    if (!Incr) continue;
    if (Incr->getOpcode() != Instruction::Add
        && Incr->getOpcode() != Instruction::Sub)
      continue;

    /* Initialize new IV, double d = 0.0 in above example. */
    ConstantInt *C = NULL;
    if (Incr->getOperand(0) == PH)
      C = dyn_cast<ConstantInt>(Incr->getOperand(1));
    else if (Incr->getOperand(1) == PH)
      C = dyn_cast<ConstantInt>(Incr->getOperand(0));
    else
      continue;

    if (!C) continue;

    // Ignore negative constants, as the code below doesn't handle them
    // correctly. TODO: Remove this restriction.
    if (!C->getValue().isStrictlyPositive()) continue;

    /* Add new PHINode. */
    PHINode *NewPH = PHINode::Create(DestTy, "IV.S.", PH);

    /* create new increment. '++d' in above example. */
    Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
    BinaryOperator *NewIncr =
      BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
                               Instruction::FAdd : Instruction::FSub,
                             NewPH, CFP, "IV.S.next.", Incr);

    NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
    NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));

    /* Remove cast operation */
    ShadowUse->replaceAllUsesWith(NewPH);
    ShadowUse->eraseFromParent();
    Changed = true;
    break;
  }
}

/// FindIVUserForCond - If Cond has an operand that is an expression of an IV,
/// set the IV user and stride information and return true, otherwise return
/// false.
bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
  for (IVUsers::iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
    if (UI->getUser() == Cond) {
      // NOTE: we could handle setcc instructions with multiple uses here, but
      // InstCombine does it as well for simple uses, it's not clear that it
      // occurs enough in real life to handle.
      CondUse = UI;
      return true;
    }
  return false;
}

/// OptimizeMax - Rewrite the loop's terminating condition if it uses
/// a max computation.
///
/// This is a narrow solution to a specific, but acute, problem. For loops
/// like this:
///
///   i = 0;
///   do {
///     p[i] = 0.0;
///   } while (++i < n);
///
/// the trip count isn't just 'n', because 'n' might not be positive. And
/// unfortunately this can come up even for loops where the user didn't use
/// a C do-while loop. For example, seemingly well-behaved top-test loops
/// will commonly be lowered like this:
//
///   if (n > 0) {
///     i = 0;
///     do {
///       p[i] = 0.0;
///     } while (++i < n);
///   }
///
/// and then it's possible for subsequent optimization to obscure the if
/// test in such a way that indvars can't find it.
///
/// When indvars can't find the if test in loops like this, it creates a
/// max expression, which allows it to give the loop a canonical
/// induction variable:
///
///   i = 0;
///   max = n < 1 ? 1 : n;
///   do {
///     p[i] = 0.0;
///   } while (++i != max);
///
/// Canonical induction variables are necessary because the loop passes
/// are designed around them. The most obvious example of this is the
/// LoopInfo analysis, which doesn't remember trip count values. It
/// expects to be able to rediscover the trip count each time it is
/// needed, and it does this using a simple analysis that only succeeds if
/// the loop has a canonical induction variable.
///
/// However, when it comes time to generate code, the maximum operation
/// can be quite costly, especially if it's inside of an outer loop.
///
/// This function solves this problem by detecting this type of loop and
/// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
/// the instructions for the maximum computation.
///
ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
  // Check that the loop matches the pattern we're looking for.
  if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
      Cond->getPredicate() != CmpInst::ICMP_NE)
    return Cond;

  SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
  if (!Sel || !Sel->hasOneUse()) return Cond;

  const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
    return Cond;
  const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);

  // Add one to the backedge-taken count to get the trip count.
  const SCEV *IterationCount = SE.getAddExpr(BackedgeTakenCount, One);
  if (IterationCount != SE.getSCEV(Sel)) return Cond;

  // Check for a max calculation that matches the pattern. There's no check
  // for ICMP_ULE here because the comparison would be with zero, which
  // isn't interesting.
  CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
  const SCEVNAryExpr *Max = 0;
  if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
    Pred = ICmpInst::ICMP_SLE;
    Max = S;
  } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
    Pred = ICmpInst::ICMP_SLT;
    Max = S;
  } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
    Pred = ICmpInst::ICMP_ULT;
    Max = U;
  } else {
    // No match; bail.
    return Cond;
  }

  // To handle a max with more than two operands, this optimization would
  // require additional checking and setup.
  if (Max->getNumOperands() != 2)
    return Cond;

  const SCEV *MaxLHS = Max->getOperand(0);
  const SCEV *MaxRHS = Max->getOperand(1);

  // ScalarEvolution canonicalizes constants to the left. For < and >, look
  // for a comparison with 1. For <= and >=, a comparison with zero.
  if (!MaxLHS ||
      (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
    return Cond;

  // Check the relevant induction variable for conformance to
  // the pattern.
  const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
  if (!AR || !AR->isAffine() ||
      AR->getStart() != One ||
      AR->getStepRecurrence(SE) != One)
    return Cond;

  assert(AR->getLoop() == L &&
         "Loop condition operand is an addrec in a different loop!");

  // Check the right operand of the select, and remember it, as it will
  // be used in the new comparison instruction.
  Value *NewRHS = 0;
  if (ICmpInst::isTrueWhenEqual(Pred)) {
    // Look for n+1, and grab n.
    if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
      if (isa<ConstantInt>(BO->getOperand(1)) &&
          cast<ConstantInt>(BO->getOperand(1))->isOne() &&
          SE.getSCEV(BO->getOperand(0)) == MaxRHS)
        NewRHS = BO->getOperand(0);
    if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
      if (isa<ConstantInt>(BO->getOperand(1)) &&
          cast<ConstantInt>(BO->getOperand(1))->isOne() &&
          SE.getSCEV(BO->getOperand(0)) == MaxRHS)
        NewRHS = BO->getOperand(0);
    if (!NewRHS)
      return Cond;
  } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
    NewRHS = Sel->getOperand(1);
  else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
    NewRHS = Sel->getOperand(2);
  else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
    NewRHS = SU->getValue();
  else
    // Max doesn't match expected pattern.
    return Cond;

  // Determine the new comparison opcode. It may be signed or unsigned,
  // and the original comparison may be either equality or inequality.
  if (Cond->getPredicate() == CmpInst::ICMP_EQ)
    Pred = CmpInst::getInversePredicate(Pred);

  // Ok, everything looks ok to change the condition into an SLT or SGE and
  // delete the max calculation.
  ICmpInst *NewCond =
    new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");

  // Delete the max calculation instructions.
  Cond->replaceAllUsesWith(NewCond);
  CondUse->setUser(NewCond);
  Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
  Cond->eraseFromParent();
  Sel->eraseFromParent();
  if (Cmp->use_empty())
    Cmp->eraseFromParent();
  return NewCond;
}

/// OptimizeLoopTermCond - Change loop terminating condition to use the
/// postinc iv when possible.
void
LSRInstance::OptimizeLoopTermCond() {
  SmallPtrSet<Instruction *, 4> PostIncs;

  BasicBlock *LatchBlock = L->getLoopLatch();
  SmallVector<BasicBlock*, 8> ExitingBlocks;
  L->getExitingBlocks(ExitingBlocks);

  for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
    BasicBlock *ExitingBlock = ExitingBlocks[i];

    // Get the terminating condition for the loop if possible.  If we
    // can, we want to change it to use a post-incremented version of its
    // induction variable, to allow coalescing the live ranges for the IV into
    // one register value.

    BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
    if (!TermBr)
      continue;
    // FIXME: Overly conservative, termination condition could be an 'or' etc..
    if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
      continue;

    // Search IVUsesByStride to find Cond's IVUse if there is one.
    IVStrideUse *CondUse = 0;
    ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
    if (!FindIVUserForCond(Cond, CondUse))
      continue;

    // If the trip count is computed in terms of a max (due to ScalarEvolution
    // being unable to find a sufficient guard, for example), change the loop
    // comparison to use SLT or ULT instead of NE.
    // One consequence of doing this now is that it disrupts the count-down
    // optimization. That's not always a bad thing though, because in such
    // cases it may still be worthwhile to avoid a max.
    Cond = OptimizeMax(Cond, CondUse);

    // If this exiting block dominates the latch block, it may also use
    // the post-inc value if it won't be shared with other uses.
    // Check for dominance.
    if (!DT.dominates(ExitingBlock, LatchBlock))
      continue;

    // Conservatively avoid trying to use the post-inc value in non-latch
    // exits if there may be pre-inc users in intervening blocks.
    if (LatchBlock != ExitingBlock)
      for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
        // Test if the use is reachable from the exiting block. This dominator
        // query is a conservative approximation of reachability.
        if (&*UI != CondUse &&
            !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
          // Conservatively assume there may be reuse if the quotient of their
          // strides could be a legal scale.
          const SCEV *A = IU.getStride(*CondUse, L);
          const SCEV *B = IU.getStride(*UI, L);
          if (!A || !B) continue;
          if (SE.getTypeSizeInBits(A->getType()) !=
              SE.getTypeSizeInBits(B->getType())) {
            if (SE.getTypeSizeInBits(A->getType()) >
                SE.getTypeSizeInBits(B->getType()))
              B = SE.getSignExtendExpr(B, A->getType());
            else
              A = SE.getSignExtendExpr(A, B->getType());
          }
          if (const SCEVConstant *D =
                dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
            const ConstantInt *C = D->getValue();
            // Stride of one or negative one can have reuse with non-addresses.
            if (C->isOne() || C->isAllOnesValue())
              goto decline_post_inc;
            // Avoid weird situations.
            if (C->getValue().getMinSignedBits() >= 64 ||
                C->getValue().isMinSignedValue())
              goto decline_post_inc;
            // Without TLI, assume that any stride might be valid, and so any
            // use might be shared.
            if (!TLI)
              goto decline_post_inc;
            // Check for possible scaled-address reuse.
            const Type *AccessTy = getAccessType(UI->getUser());
            TargetLowering::AddrMode AM;
            AM.Scale = C->getSExtValue();
            if (TLI->isLegalAddressingMode(AM, AccessTy))
              goto decline_post_inc;
            AM.Scale = -AM.Scale;
            if (TLI->isLegalAddressingMode(AM, AccessTy))
              goto decline_post_inc;
          }
        }

    DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: "
                 << *Cond << '\n');

    // It's possible for the setcc instruction to be anywhere in the loop, and
    // possible for it to have multiple users.  If it is not immediately before
    // the exiting block branch, move it.
    if (&*++BasicBlock::iterator(Cond) != TermBr) {
      if (Cond->hasOneUse()) {
        Cond->moveBefore(TermBr);
      } else {
        // Clone the terminating condition and insert into the loopend.
        ICmpInst *OldCond = Cond;
        Cond = cast<ICmpInst>(Cond->clone());
        Cond->setName(L->getHeader()->getName() + ".termcond");
        ExitingBlock->getInstList().insert(TermBr, Cond);

        // Clone the IVUse, as the old use still exists!
        CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
        TermBr->replaceUsesOfWith(OldCond, Cond);
      }
    }

    // If we get to here, we know that we can transform the setcc instruction to
    // use the post-incremented version of the IV, allowing us to coalesce the
    // live ranges for the IV correctly.
    CondUse->transformToPostInc(L);
    Changed = true;

    PostIncs.insert(Cond);
  decline_post_inc:;
  }

  // Determine an insertion point for the loop induction variable increment. It
  // must dominate all the post-inc comparisons we just set up, and it must
  // dominate the loop latch edge.
  IVIncInsertPos = L->getLoopLatch()->getTerminator();
  for (SmallPtrSet<Instruction *, 4>::const_iterator I = PostIncs.begin(),
       E = PostIncs.end(); I != E; ++I) {
    BasicBlock *BB =
      DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
                                    (*I)->getParent());
    if (BB == (*I)->getParent())
      IVIncInsertPos = *I;
    else if (BB != IVIncInsertPos->getParent())
      IVIncInsertPos = BB->getTerminator();
  }
}

/// reconcileNewOffset - Determine if the given use can accomodate a fixup
/// at the given offset and other details. If so, update the use and
/// return true.
bool
LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
                                LSRUse::KindType Kind, const Type *AccessTy) {
  int64_t NewMinOffset = LU.MinOffset;
  int64_t NewMaxOffset = LU.MaxOffset;
  const Type *NewAccessTy = AccessTy;

  // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
  // something conservative, however this can pessimize in the case that one of
  // the uses will have all its uses outside the loop, for example.
  if (LU.Kind != Kind)
    return false;
  // Conservatively assume HasBaseReg is true for now.
  if (NewOffset < LU.MinOffset) {
    if (!isAlwaysFoldable(LU.MaxOffset - NewOffset, 0, HasBaseReg,
                          Kind, AccessTy, TLI))
      return false;
    NewMinOffset = NewOffset;
  } else if (NewOffset > LU.MaxOffset) {
    if (!isAlwaysFoldable(NewOffset - LU.MinOffset, 0, HasBaseReg,
                          Kind, AccessTy, TLI))
      return false;
    NewMaxOffset = NewOffset;
  }
  // Check for a mismatched access type, and fall back conservatively as needed.
  // TODO: Be less conservative when the type is similar and can use the same
  // addressing modes.
  if (Kind == LSRUse::Address && AccessTy != LU.AccessTy)
    NewAccessTy = Type::getVoidTy(AccessTy->getContext());

  // Update the use.
  LU.MinOffset = NewMinOffset;
  LU.MaxOffset = NewMaxOffset;
  LU.AccessTy = NewAccessTy;
  if (NewOffset != LU.Offsets.back())
    LU.Offsets.push_back(NewOffset);
  return true;
}

/// getUse - Return an LSRUse index and an offset value for a fixup which
/// needs the given expression, with the given kind and optional access type.
/// Either reuse an existing use or create a new one, as needed.
std::pair<size_t, int64_t>
LSRInstance::getUse(const SCEV *&Expr,
                    LSRUse::KindType Kind, const Type *AccessTy) {
  const SCEV *Copy = Expr;
  int64_t Offset = ExtractImmediate(Expr, SE);

  // Basic uses can't accept any offset, for example.
  if (!isAlwaysFoldable(Offset, 0, /*HasBaseReg=*/true, Kind, AccessTy, TLI)) {
    Expr = Copy;
    Offset = 0;
  }

  std::pair<UseMapTy::iterator, bool> P =
    UseMap.insert(std::make_pair(std::make_pair(Expr, Kind), 0));
  if (!P.second) {
    // A use already existed with this base.
    size_t LUIdx = P.first->second;
    LSRUse &LU = Uses[LUIdx];
    if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
      // Reuse this use.
      return std::make_pair(LUIdx, Offset);
  }

  // Create a new use.
  size_t LUIdx = Uses.size();
  P.first->second = LUIdx;
  Uses.push_back(LSRUse(Kind, AccessTy));
  LSRUse &LU = Uses[LUIdx];

  // We don't need to track redundant offsets, but we don't need to go out
  // of our way here to avoid them.
  if (LU.Offsets.empty() || Offset != LU.Offsets.back())
    LU.Offsets.push_back(Offset);

  LU.MinOffset = Offset;
  LU.MaxOffset = Offset;
  return std::make_pair(LUIdx, Offset);
}

/// DeleteUse - Delete the given use from the Uses list.
void LSRInstance::DeleteUse(LSRUse &LU) {
  if (&LU != &Uses.back())
    std::swap(LU, Uses.back());
  Uses.pop_back();
}

/// FindUseWithFormula - Look for a use distinct from OrigLU which is has
/// a formula that has the same registers as the given formula.
LSRUse *
LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
                                       const LSRUse &OrigLU) {
  // Search all uses for the formula. This could be more clever. Ignore
  // ICmpZero uses because they may contain formulae generated by
  // GenerateICmpZeroScales, in which case adding fixup offsets may
  // be invalid.
  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
    LSRUse &LU = Uses[LUIdx];
    if (&LU != &OrigLU &&
        LU.Kind != LSRUse::ICmpZero &&
        LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
        LU.WidestFixupType == OrigLU.WidestFixupType &&
        LU.HasFormulaWithSameRegs(OrigF)) {
      for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
           E = LU.Formulae.end(); I != E; ++I) {
        const Formula &F = *I;
        if (F.BaseRegs == OrigF.BaseRegs &&
            F.ScaledReg == OrigF.ScaledReg &&
            F.AM.BaseGV == OrigF.AM.BaseGV &&
            F.AM.Scale == OrigF.AM.Scale &&
            LU.Kind) {
          if (F.AM.BaseOffs == 0)
            return &LU;
          break;
        }
      }
    }
  }

  return 0;
}

void LSRInstance::CollectInterestingTypesAndFactors() {
  SmallSetVector<const SCEV *, 4> Strides;

  // Collect interesting types and strides.
  SmallVector<const SCEV *, 4> Worklist;
  for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
    const SCEV *Expr = IU.getExpr(*UI);

    // Collect interesting types.
    Types.insert(SE.getEffectiveSCEVType(Expr->getType()));

    // Add strides for mentioned loops.
    Worklist.push_back(Expr);
    do {
      const SCEV *S = Worklist.pop_back_val();
      if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
        Strides.insert(AR->getStepRecurrence(SE));
        Worklist.push_back(AR->getStart());
      } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
        Worklist.append(Add->op_begin(), Add->op_end());
      }
    } while (!Worklist.empty());
  }

  // Compute interesting factors from the set of interesting strides.
  for (SmallSetVector<const SCEV *, 4>::const_iterator
       I = Strides.begin(), E = Strides.end(); I != E; ++I)
    for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
         llvm::next(I); NewStrideIter != E; ++NewStrideIter) {
      const SCEV *OldStride = *I;
      const SCEV *NewStride = *NewStrideIter;

      if (SE.getTypeSizeInBits(OldStride->getType()) !=
          SE.getTypeSizeInBits(NewStride->getType())) {
        if (SE.getTypeSizeInBits(OldStride->getType()) >
            SE.getTypeSizeInBits(NewStride->getType()))
          NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
        else
          OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
      }
      if (const SCEVConstant *Factor =
            dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
                                                        SE, true))) {
        if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
          Factors.insert(Factor->getValue()->getValue().getSExtValue());
      } else if (const SCEVConstant *Factor =
                   dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
                                                               NewStride,
                                                               SE, true))) {
        if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
          Factors.insert(Factor->getValue()->getValue().getSExtValue());
      }
    }

  // If all uses use the same type, don't bother looking for truncation-based
  // reuse.
  if (Types.size() == 1)
    Types.clear();

  DEBUG(print_factors_and_types(dbgs()));
}

void LSRInstance::CollectFixupsAndInitialFormulae() {
  for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
    // Record the uses.
    LSRFixup &LF = getNewFixup();
    LF.UserInst = UI->getUser();
    LF.OperandValToReplace = UI->getOperandValToReplace();
    LF.PostIncLoops = UI->getPostIncLoops();

    LSRUse::KindType Kind = LSRUse::Basic;
    const Type *AccessTy = 0;
    if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) {
      Kind = LSRUse::Address;
      AccessTy = getAccessType(LF.UserInst);
    }

    const SCEV *S = IU.getExpr(*UI);

    // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
    // (N - i == 0), and this allows (N - i) to be the expression that we work
    // with rather than just N or i, so we can consider the register
    // requirements for both N and i at the same time. Limiting this code to
    // equality icmps is not a problem because all interesting loops use
    // equality icmps, thanks to IndVarSimplify.
    if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst))
      if (CI->isEquality()) {
        // Swap the operands if needed to put the OperandValToReplace on the
        // left, for consistency.
        Value *NV = CI->getOperand(1);
        if (NV == LF.OperandValToReplace) {
          CI->setOperand(1, CI->getOperand(0));
          CI->setOperand(0, NV);
          NV = CI->getOperand(1);
          Changed = true;
        }

        // x == y  -->  x - y == 0
        const SCEV *N = SE.getSCEV(NV);
        if (N->isLoopInvariant(L)) {
          Kind = LSRUse::ICmpZero;
          S = SE.getMinusSCEV(N, S);
        }

        // -1 and the negations of all interesting strides (except the negation
        // of -1) are now also interesting.
        for (size_t i = 0, e = Factors.size(); i != e; ++i)
          if (Factors[i] != -1)
            Factors.insert(-(uint64_t)Factors[i]);
        Factors.insert(-1);
      }

    // Set up the initial formula for this use.
    std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
    LF.LUIdx = P.first;
    LF.Offset = P.second;
    LSRUse &LU = Uses[LF.LUIdx];
    LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
    if (!LU.WidestFixupType ||
        SE.getTypeSizeInBits(LU.WidestFixupType) <
        SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
      LU.WidestFixupType = LF.OperandValToReplace->getType();

    // If this is the first use of this LSRUse, give it a formula.
    if (LU.Formulae.empty()) {
      InsertInitialFormula(S, LU, LF.LUIdx);
      CountRegisters(LU.Formulae.back(), LF.LUIdx);
    }
  }

  DEBUG(print_fixups(dbgs()));
}

/// InsertInitialFormula - Insert a formula for the given expression into
/// the given use, separating out loop-variant portions from loop-invariant
/// and loop-computable portions.
void
LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
  Formula F;
  F.InitialMatch(S, L, SE, DT);
  bool Inserted = InsertFormula(LU, LUIdx, F);
  assert(Inserted && "Initial formula already exists!"); (void)Inserted;
}

/// InsertSupplementalFormula - Insert a simple single-register formula for
/// the given expression into the given use.
void
LSRInstance::InsertSupplementalFormula(const SCEV *S,
                                       LSRUse &LU, size_t LUIdx) {
  Formula F;
  F.BaseRegs.push_back(S);
  F.AM.HasBaseReg = true;
  bool Inserted = InsertFormula(LU, LUIdx, F);
  assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
}

/// CountRegisters - Note which registers are used by the given formula,
/// updating RegUses.
void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
  if (F.ScaledReg)
    RegUses.CountRegister(F.ScaledReg, LUIdx);
  for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
       E = F.BaseRegs.end(); I != E; ++I)
    RegUses.CountRegister(*I, LUIdx);
}

/// InsertFormula - If the given formula has not yet been inserted, add it to
/// the list, and return true. Return false otherwise.
bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
  if (!LU.InsertFormula(F))
    return false;

  CountRegisters(F, LUIdx);
  return true;
}

/// CollectLoopInvariantFixupsAndFormulae - Check for other uses of
/// loop-invariant values which we're tracking. These other uses will pin these
/// values in registers, making them less profitable for elimination.
/// TODO: This currently misses non-constant addrec step registers.
/// TODO: Should this give more weight to users inside the loop?
void
LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
  SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
  SmallPtrSet<const SCEV *, 8> Inserted;

  while (!Worklist.empty()) {
    const SCEV *S = Worklist.pop_back_val();

    if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
      Worklist.append(N->op_begin(), N->op_end());
    else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
      Worklist.push_back(C->getOperand());
    else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
      Worklist.push_back(D->getLHS());
      Worklist.push_back(D->getRHS());
    } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
      if (!Inserted.insert(U)) continue;
      const Value *V = U->getValue();
      if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
        // Look for instructions defined outside the loop.
        if (L->contains(Inst)) continue;
      } else if (isa<UndefValue>(V))
        // Undef doesn't have a live range, so it doesn't matter.
        continue;
      for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end();
           UI != UE; ++UI) {
        const Instruction *UserInst = dyn_cast<Instruction>(*UI);
        // Ignore non-instructions.
        if (!UserInst)
          continue;
        // Ignore instructions in other functions (as can happen with
        // Constants).
        if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
          continue;
        // Ignore instructions not dominated by the loop.
        const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
          UserInst->getParent() :
          cast<PHINode>(UserInst)->getIncomingBlock(
            PHINode::getIncomingValueNumForOperand(UI.getOperandNo()));
        if (!DT.dominates(L->getHeader(), UseBB))
          continue;
        // Ignore uses which are part of other SCEV expressions, to avoid
        // analyzing them multiple times.
        if (SE.isSCEVable(UserInst->getType())) {
          const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
          // If the user is a no-op, look through to its uses.
          if (!isa<SCEVUnknown>(UserS))
            continue;
          if (UserS == U) {
            Worklist.push_back(
              SE.getUnknown(const_cast<Instruction *>(UserInst)));
            continue;
          }
        }
        // Ignore icmp instructions which are already being analyzed.
        if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
          unsigned OtherIdx = !UI.getOperandNo();
          Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
          if (SE.getSCEV(OtherOp)->hasComputableLoopEvolution(L))
            continue;
        }

        LSRFixup &LF = getNewFixup();
        LF.UserInst = const_cast<Instruction *>(UserInst);
        LF.OperandValToReplace = UI.getUse();
        std::pair<size_t, int64_t> P = getUse(S, LSRUse::Basic, 0);
        LF.LUIdx = P.first;
        LF.Offset = P.second;
        LSRUse &LU = Uses[LF.LUIdx];
        LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
        if (!LU.WidestFixupType ||
            SE.getTypeSizeInBits(LU.WidestFixupType) <
            SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
          LU.WidestFixupType = LF.OperandValToReplace->getType();
        InsertSupplementalFormula(U, LU, LF.LUIdx);
        CountRegisters(LU.Formulae.back(), Uses.size() - 1);
        break;
      }
    }
  }
}

/// CollectSubexprs - Split S into subexpressions which can be pulled out into
/// separate registers. If C is non-null, multiply each subexpression by C.
static void CollectSubexprs(const SCEV *S, const SCEVConstant *C,
                            SmallVectorImpl<const SCEV *> &Ops,
                            SmallVectorImpl<const SCEV *> &UninterestingOps,
                            const Loop *L,
                            ScalarEvolution &SE) {
  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
    // Break out add operands.
    for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
         I != E; ++I)
      CollectSubexprs(*I, C, Ops, UninterestingOps, L, SE);
    return;
  } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
    // Split a non-zero base out of an addrec.
    if (!AR->getStart()->isZero()) {
      CollectSubexprs(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
                                       AR->getStepRecurrence(SE),
                                       AR->getLoop()),
                      C, Ops, UninterestingOps, L, SE);
      CollectSubexprs(AR->getStart(), C, Ops, UninterestingOps, L, SE);
      return;
    }
  } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
    // Break (C * (a + b + c)) into C*a + C*b + C*c.
    if (Mul->getNumOperands() == 2)
      if (const SCEVConstant *Op0 =
            dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
        CollectSubexprs(Mul->getOperand(1),
                        C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0,
                        Ops, UninterestingOps, L, SE);
        return;
      }
  }

  // Otherwise use the value itself. Loop-variant "unknown" values are
  // uninteresting; we won't be able to do anything meaningful with them.
  if (!C && isa<SCEVUnknown>(S) && !S->isLoopInvariant(L))
    UninterestingOps.push_back(S);
  else
    Ops.push_back(C ? SE.getMulExpr(C, S) : S);
}

/// GenerateReassociations - Split out subexpressions from adds and the bases of
/// addrecs.
void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
                                         Formula Base,
                                         unsigned Depth) {
  // Arbitrarily cap recursion to protect compile time.
  if (Depth >= 3) return;

  for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
    const SCEV *BaseReg = Base.BaseRegs[i];

    SmallVector<const SCEV *, 8> AddOps, UninterestingAddOps;
    CollectSubexprs(BaseReg, 0, AddOps, UninterestingAddOps, L, SE);

    // Add any uninteresting values as one register, as we won't be able to
    // form any interesting reassociation opportunities with them. They'll
    // just have to be added inside the loop no matter what we do.
    if (!UninterestingAddOps.empty())
      AddOps.push_back(SE.getAddExpr(UninterestingAddOps));

    if (AddOps.size() == 1) continue;

    for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
         JE = AddOps.end(); J != JE; ++J) {
      // Don't pull a constant into a register if the constant could be folded
      // into an immediate field.
      if (isAlwaysFoldable(*J, LU.MinOffset, LU.MaxOffset,
                           Base.getNumRegs() > 1,
                           LU.Kind, LU.AccessTy, TLI, SE))
        continue;

      // Collect all operands except *J.
      SmallVector<const SCEV *, 8> InnerAddOps
        (((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
      InnerAddOps.append
        (llvm::next(J), ((const SmallVector<const SCEV *, 8> &)AddOps).end());

      // Don't leave just a constant behind in a register if the constant could
      // be folded into an immediate field.
      if (InnerAddOps.size() == 1 &&
          isAlwaysFoldable(InnerAddOps[0], LU.MinOffset, LU.MaxOffset,
                           Base.getNumRegs() > 1,
                           LU.Kind, LU.AccessTy, TLI, SE))
        continue;

      const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
      if (InnerSum->isZero())
        continue;
      Formula F = Base;
      F.BaseRegs[i] = InnerSum;
      F.BaseRegs.push_back(*J);
      if (InsertFormula(LU, LUIdx, F))
        // If that formula hadn't been seen before, recurse to find more like
        // it.
        GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth+1);
    }
  }
}

/// GenerateCombinations - Generate a formula consisting of all of the
/// loop-dominating registers added into a single register.
void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
                                       Formula Base) {
  // This method is only interesting on a plurality of registers.
  if (Base.BaseRegs.size() <= 1) return;

  Formula F = Base;
  F.BaseRegs.clear();
  SmallVector<const SCEV *, 4> Ops;
  for (SmallVectorImpl<const SCEV *>::const_iterator
       I = Base.BaseRegs.begin(), E = Base.BaseRegs.end(); I != E; ++I) {
    const SCEV *BaseReg = *I;
    if (BaseReg->properlyDominates(L->getHeader(), &DT) &&
        !BaseReg->hasComputableLoopEvolution(L))
      Ops.push_back(BaseReg);
    else
      F.BaseRegs.push_back(BaseReg);
  }
  if (Ops.size() > 1) {
    const SCEV *Sum = SE.getAddExpr(Ops);
    // TODO: If Sum is zero, it probably means ScalarEvolution missed an
    // opportunity to fold something. For now, just ignore such cases
    // rather than proceed with zero in a register.
    if (!Sum->isZero()) {
      F.BaseRegs.push_back(Sum);
      (void)InsertFormula(LU, LUIdx, F);
    }
  }
}

/// GenerateSymbolicOffsets - Generate reuse formulae using symbolic offsets.
void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
                                          Formula Base) {
  // We can't add a symbolic offset if the address already contains one.
  if (Base.AM.BaseGV) return;

  for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
    const SCEV *G = Base.BaseRegs[i];
    GlobalValue *GV = ExtractSymbol(G, SE);
    if (G->isZero() || !GV)
      continue;
    Formula F = Base;
    F.AM.BaseGV = GV;
    if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
                    LU.Kind, LU.AccessTy, TLI))
      continue;
    F.BaseRegs[i] = G;
    (void)InsertFormula(LU, LUIdx, F);
  }
}

/// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
                                          Formula Base) {
  // TODO: For now, just add the min and max offset, because it usually isn't
  // worthwhile looking at everything inbetween.
  SmallVector<int64_t, 2> Worklist;
  Worklist.push_back(LU.MinOffset);
  if (LU.MaxOffset != LU.MinOffset)
    Worklist.push_back(LU.MaxOffset);

  for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
    const SCEV *G = Base.BaseRegs[i];

    for (SmallVectorImpl<int64_t>::const_iterator I = Worklist.begin(),
         E = Worklist.end(); I != E; ++I) {
      Formula F = Base;
      F.AM.BaseOffs = (uint64_t)Base.AM.BaseOffs - *I;
      if (isLegalUse(F.AM, LU.MinOffset - *I, LU.MaxOffset - *I,
                     LU.Kind, LU.AccessTy, TLI)) {
        // Add the offset to the base register.
        const SCEV *NewG = SE.getAddExpr(G, SE.getConstant(G->getType(), *I));
        // If it cancelled out, drop the base register, otherwise update it.
        if (NewG->isZero()) {
          std::swap(F.BaseRegs[i], F.BaseRegs.back());
          F.BaseRegs.pop_back();
        } else
          F.BaseRegs[i] = NewG;

        (void)InsertFormula(LU, LUIdx, F);
      }
    }

    int64_t Imm = ExtractImmediate(G, SE);
    if (G->isZero() || Imm == 0)
      continue;
    Formula F = Base;
    F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Imm;
    if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
                    LU.Kind, LU.AccessTy, TLI))
      continue;
    F.BaseRegs[i] = G;
    (void)InsertFormula(LU, LUIdx, F);
  }
}

/// GenerateICmpZeroScales - For ICmpZero, check to see if we can scale up
/// the comparison. For example, x == y -> x*c == y*c.
void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
                                         Formula Base) {
  if (LU.Kind != LSRUse::ICmpZero) return;

  // Determine the integer type for the base formula.
  const Type *IntTy = Base.getType();
  if (!IntTy) return;
  if (SE.getTypeSizeInBits(IntTy) > 64) return;

  // Don't do this if there is more than one offset.
  if (LU.MinOffset != LU.MaxOffset) return;

  assert(!Base.AM.BaseGV && "ICmpZero use is not legal!");

  // Check each interesting stride.
  for (SmallSetVector<int64_t, 8>::const_iterator
       I = Factors.begin(), E = Factors.end(); I != E; ++I) {
    int64_t Factor = *I;

    // Check that the multiplication doesn't overflow.
    if (Base.AM.BaseOffs == INT64_MIN && Factor == -1)
      continue;
    int64_t NewBaseOffs = (uint64_t)Base.AM.BaseOffs * Factor;
    if (NewBaseOffs / Factor != Base.AM.BaseOffs)
      continue;

    // Check that multiplying with the use offset doesn't overflow.
    int64_t Offset = LU.MinOffset;
    if (Offset == INT64_MIN && Factor == -1)
      continue;
    Offset = (uint64_t)Offset * Factor;
    if (Offset / Factor != LU.MinOffset)
      continue;

    Formula F = Base;
    F.AM.BaseOffs = NewBaseOffs;

    // Check that this scale is legal.
    if (!isLegalUse(F.AM, Offset, Offset, LU.Kind, LU.AccessTy, TLI))
      continue;

    // Compensate for the use having MinOffset built into it.
    F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Offset - LU.MinOffset;

    const SCEV *FactorS = SE.getConstant(IntTy, Factor);

    // Check that multiplying with each base register doesn't overflow.
    for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
      F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
      if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
        goto next;
    }

    // Check that multiplying with the scaled register doesn't overflow.
    if (F.ScaledReg) {
      F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
      if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
        continue;
    }

    // If we make it here and it's legal, add it.
    (void)InsertFormula(LU, LUIdx, F);
  next:;
  }
}

/// GenerateScales - Generate stride factor reuse formulae by making use of
/// scaled-offset address modes, for example.
void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
  // Determine the integer type for the base formula.
  const Type *IntTy = Base.getType();
  if (!IntTy) return;

  // If this Formula already has a scaled register, we can't add another one.
  if (Base.AM.Scale != 0) return;

  // Check each interesting stride.
  for (SmallSetVector<int64_t, 8>::const_iterator
       I = Factors.begin(), E = Factors.end(); I != E; ++I) {
    int64_t Factor = *I;

    Base.AM.Scale = Factor;
    Base.AM.HasBaseReg = Base.BaseRegs.size() > 1;
    // Check whether this scale is going to be legal.
    if (!isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
                    LU.Kind, LU.AccessTy, TLI)) {
      // As a special-case, handle special out-of-loop Basic users specially.
      // TODO: Reconsider this special case.
      if (LU.Kind == LSRUse::Basic &&
          isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
                     LSRUse::Special, LU.AccessTy, TLI) &&
          LU.AllFixupsOutsideLoop)
        LU.Kind = LSRUse::Special;
      else
        continue;
    }
    // For an ICmpZero, negating a solitary base register won't lead to
    // new solutions.
    if (LU.Kind == LSRUse::ICmpZero &&
        !Base.AM.HasBaseReg && Base.AM.BaseOffs == 0 && !Base.AM.BaseGV)
      continue;
    // For each addrec base reg, apply the scale, if possible.
    for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
      if (const SCEVAddRecExpr *AR =
            dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) {
        const SCEV *FactorS = SE.getConstant(IntTy, Factor);
        if (FactorS->isZero())
          continue;
        // Divide out the factor, ignoring high bits, since we'll be
        // scaling the value back up in the end.
        if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
          // TODO: This could be optimized to avoid all the copying.
          Formula F = Base;
          F.ScaledReg = Quotient;
          F.DeleteBaseReg(F.BaseRegs[i]);
          (void)InsertFormula(LU, LUIdx, F);
        }
      }
  }
}

/// GenerateTruncates - Generate reuse formulae from different IV types.
void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
  // This requires TargetLowering to tell us which truncates are free.
  if (!TLI) return;

  // Don't bother truncating symbolic values.
  if (Base.AM.BaseGV) return;

  // Determine the integer type for the base formula.
  const Type *DstTy = Base.getType();
  if (!DstTy) return;
  DstTy = SE.getEffectiveSCEVType(DstTy);

  for (SmallSetVector<const Type *, 4>::const_iterator
       I = Types.begin(), E = Types.end(); I != E; ++I) {
    const Type *SrcTy = *I;
    if (SrcTy != DstTy && TLI->isTruncateFree(SrcTy, DstTy)) {
      Formula F = Base;

      if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, *I);
      for (SmallVectorImpl<const SCEV *>::iterator J = F.BaseRegs.begin(),
           JE = F.BaseRegs.end(); J != JE; ++J)
        *J = SE.getAnyExtendExpr(*J, SrcTy);

      // TODO: This assumes we've done basic processing on all uses and
      // have an idea what the register usage is.
      if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
        continue;

      (void)InsertFormula(LU, LUIdx, F);
    }
  }
}

namespace {

/// WorkItem - Helper class for GenerateCrossUseConstantOffsets. It's used to
/// defer modifications so that the search phase doesn't have to worry about
/// the data structures moving underneath it.
struct WorkItem {
  size_t LUIdx;
  int64_t Imm;
  const SCEV *OrigReg;

  WorkItem(size_t LI, int64_t I, const SCEV *R)
    : LUIdx(LI), Imm(I), OrigReg(R) {}

  void print(raw_ostream &OS) const;
  void dump() const;
};

}

void WorkItem::print(raw_ostream &OS) const {
  OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
     << " , add offset " << Imm;
}

void WorkItem::dump() const {
  print(errs()); errs() << '\n';
}

/// GenerateCrossUseConstantOffsets - Look for registers which are a constant
/// distance apart and try to form reuse opportunities between them.
void LSRInstance::GenerateCrossUseConstantOffsets() {
  // Group the registers by their value without any added constant offset.
  typedef std::map<int64_t, const SCEV *> ImmMapTy;
  typedef DenseMap<const SCEV *, ImmMapTy> RegMapTy;
  RegMapTy Map;
  DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
  SmallVector<const SCEV *, 8> Sequence;
  for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
       I != E; ++I) {
    const SCEV *Reg = *I;
    int64_t Imm = ExtractImmediate(Reg, SE);
    std::pair<RegMapTy::iterator, bool> Pair =
      Map.insert(std::make_pair(Reg, ImmMapTy()));
    if (Pair.second)
      Sequence.push_back(Reg);
    Pair.first->second.insert(std::make_pair(Imm, *I));
    UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(*I);
  }

  // Now examine each set of registers with the same base value. Build up
  // a list of work to do and do the work in a separate step so that we're
  // not adding formulae and register counts while we're searching.
  SmallVector<WorkItem, 32> WorkItems;
  SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
  for (SmallVectorImpl<const SCEV *>::const_iterator I = Sequence.begin(),
       E = Sequence.end(); I != E; ++I) {
    const SCEV *Reg = *I;
    const ImmMapTy &Imms = Map.find(Reg)->second;

    // It's not worthwhile looking for reuse if there's only one offset.
    if (Imms.size() == 1)
      continue;

    DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
          for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
               J != JE; ++J)
            dbgs() << ' ' << J->first;
          dbgs() << '\n');

    // Examine each offset.
    for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
         J != JE; ++J) {
      const SCEV *OrigReg = J->second;

      int64_t JImm = J->first;
      const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);

      if (!isa<SCEVConstant>(OrigReg) &&
          UsedByIndicesMap[Reg].count() == 1) {
        DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n');
        continue;
      }

      // Conservatively examine offsets between this orig reg a few selected
      // other orig regs.
      ImmMapTy::const_iterator OtherImms[] = {
        Imms.begin(), prior(Imms.end()),
        Imms.upper_bound((Imms.begin()->first + prior(Imms.end())->first) / 2)
      };
      for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
        ImmMapTy::const_iterator M = OtherImms[i];
        if (M == J || M == JE) continue;

        // Compute the difference between the two.
        int64_t Imm = (uint64_t)JImm - M->first;
        for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1;
             LUIdx = UsedByIndices.find_next(LUIdx))
          // Make a memo of this use, offset, and register tuple.
          if (UniqueItems.insert(std::make_pair(LUIdx, Imm)))
            WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
      }
    }
  }

  Map.clear();
  Sequence.clear();
  UsedByIndicesMap.clear();
  UniqueItems.clear();

  // Now iterate through the worklist and add new formulae.
  for (SmallVectorImpl<WorkItem>::const_iterator I = WorkItems.begin(),
       E = WorkItems.end(); I != E; ++I) {
    const WorkItem &WI = *I;
    size_t LUIdx = WI.LUIdx;
    LSRUse &LU = Uses[LUIdx];
    int64_t Imm = WI.Imm;
    const SCEV *OrigReg = WI.OrigReg;

    const Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
    const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
    unsigned BitWidth = SE.getTypeSizeInBits(IntTy);

    // TODO: Use a more targeted data structure.
    for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
      const Formula &F = LU.Formulae[L];
      // Use the immediate in the scaled register.
      if (F.ScaledReg == OrigReg) {
        int64_t Offs = (uint64_t)F.AM.BaseOffs +
                       Imm * (uint64_t)F.AM.Scale;
        // Don't create 50 + reg(-50).
        if (F.referencesReg(SE.getSCEV(
                   ConstantInt::get(IntTy, -(uint64_t)Offs))))
          continue;
        Formula NewF = F;
        NewF.AM.BaseOffs = Offs;
        if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
                        LU.Kind, LU.AccessTy, TLI))
          continue;
        NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);

        // If the new scale is a constant in a register, and adding the constant
        // value to the immediate would produce a value closer to zero than the
        // immediate itself, then the formula isn't worthwhile.
        if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
          if (C->getValue()->getValue().isNegative() !=
                (NewF.AM.BaseOffs < 0) &&
              (C->getValue()->getValue().abs() * APInt(BitWidth, F.AM.Scale))
                .ule(abs64(NewF.AM.BaseOffs)))
            continue;

        // OK, looks good.
        (void)InsertFormula(LU, LUIdx, NewF);
      } else {
        // Use the immediate in a base register.
        for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
          const SCEV *BaseReg = F.BaseRegs[N];
          if (BaseReg != OrigReg)
            continue;
          Formula NewF = F;
          NewF.AM.BaseOffs = (uint64_t)NewF.AM.BaseOffs + Imm;
          if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
                          LU.Kind, LU.AccessTy, TLI))
            continue;
          NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);

          // If the new formula has a constant in a register, and adding the
          // constant value to the immediate would produce a value closer to
          // zero than the immediate itself, then the formula isn't worthwhile.
          for (SmallVectorImpl<const SCEV *>::const_iterator
               J = NewF.BaseRegs.begin(), JE = NewF.BaseRegs.end();
               J != JE; ++J)
            if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*J))
              if ((C->getValue()->getValue() + NewF.AM.BaseOffs).abs().slt(
                   abs64(NewF.AM.BaseOffs)) &&
                  (C->getValue()->getValue() +
                   NewF.AM.BaseOffs).countTrailingZeros() >=
                   CountTrailingZeros_64(NewF.AM.BaseOffs))
                goto skip_formula;

          // Ok, looks good.
          (void)InsertFormula(LU, LUIdx, NewF);
          break;
        skip_formula:;
        }
      }
    }
  }
}

/// GenerateAllReuseFormulae - Generate formulae for each use.
void
LSRInstance::GenerateAllReuseFormulae() {
  // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
  // queries are more precise.
  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
    LSRUse &LU = Uses[LUIdx];
    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
      GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
      GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
  }
  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
    LSRUse &LU = Uses[LUIdx];
    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
      GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
      GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
      GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
      GenerateScales(LU, LUIdx, LU.Formulae[i]);
  }
  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
    LSRUse &LU = Uses[LUIdx];
    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
      GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
  }

  GenerateCrossUseConstantOffsets();
}

/// If their are multiple formulae with the same set of registers used
/// by other uses, pick the best one and delete the others.
void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
#ifndef NDEBUG
  bool ChangedFormulae = false;
#endif

  // Collect the best formula for each unique set of shared registers. This
  // is reset for each use.
  typedef DenseMap<SmallVector<const SCEV *, 2>, size_t, UniquifierDenseMapInfo>
    BestFormulaeTy;
  BestFormulaeTy BestFormulae;

  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
    LSRUse &LU = Uses[LUIdx];
    FormulaSorter Sorter(L, LU, SE, DT);
    DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n');

    bool Any = false;
    for (size_t FIdx = 0, NumForms = LU.Formulae.size();
         FIdx != NumForms; ++FIdx) {
      Formula &F = LU.Formulae[FIdx];

      SmallVector<const SCEV *, 2> Key;
      for (SmallVectorImpl<const SCEV *>::const_iterator J = F.BaseRegs.begin(),
           JE = F.BaseRegs.end(); J != JE; ++J) {
        const SCEV *Reg = *J;
        if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
          Key.push_back(Reg);
      }
      if (F.ScaledReg &&
          RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
        Key.push_back(F.ScaledReg);
      // Unstable sort by host order ok, because this is only used for
      // uniquifying.
      std::sort(Key.begin(), Key.end());

      std::pair<BestFormulaeTy::const_iterator, bool> P =
        BestFormulae.insert(std::make_pair(Key, FIdx));
      if (!P.second) {
        Formula &Best = LU.Formulae[P.first->second];
        if (Sorter.operator()(F, Best))
          std::swap(F, Best);
        DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
              dbgs() << "\n"
                        "    in favor of formula "; Best.print(dbgs());
              dbgs() << '\n');
#ifndef NDEBUG
        ChangedFormulae = true;
#endif
        LU.DeleteFormula(F);
        --FIdx;
        --NumForms;
        Any = true;
        continue;
      }
    }

    // Now that we've filtered out some formulae, recompute the Regs set.
    if (Any)
      LU.RecomputeRegs(LUIdx, RegUses);

    // Reset this to prepare for the next use.
    BestFormulae.clear();
  }

  DEBUG(if (ChangedFormulae) {
          dbgs() << "\n"
                    "After filtering out undesirable candidates:\n";
          print_uses(dbgs());
        });
}

// This is a rough guess that seems to work fairly well.
static const size_t ComplexityLimit = UINT16_MAX;

/// EstimateSearchSpaceComplexity - Estimate the worst-case number of
/// solutions the solver might have to consider. It almost never considers
/// this many solutions because it prune the search space, but the pruning
/// isn't always sufficient.
size_t LSRInstance::EstimateSearchSpaceComplexity() const {
  uint32_t Power = 1;
  for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
       E = Uses.end(); I != E; ++I) {
    size_t FSize = I->Formulae.size();
    if (FSize >= ComplexityLimit) {
      Power = ComplexityLimit;
      break;
    }
    Power *= FSize;
    if (Power >= ComplexityLimit)
      break;
  }
  return Power;
}

/// NarrowSearchSpaceUsingHeuristics - If there are an extraordinary number of
/// formulae to choose from, use some rough heuristics to prune down the number
/// of formulae. This keeps the main solver from taking an extraordinary amount
/// of time in some worst-case scenarios.
void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
  if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
    DEBUG(dbgs() << "The search space is too complex.\n");

    DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
                    "which use a superset of registers used by other "
                    "formulae.\n");

    for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
      LSRUse &LU = Uses[LUIdx];
      bool Any = false;
      for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
        Formula &F = LU.Formulae[i];
        // Look for a formula with a constant or GV in a register. If the use
        // also has a formula with that same value in an immediate field,
        // delete the one that uses a register.
        for (SmallVectorImpl<const SCEV *>::const_iterator
             I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
          if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
            Formula NewF = F;
            NewF.AM.BaseOffs += C->getValue()->getSExtValue();
            NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
                                (I - F.BaseRegs.begin()));
            if (LU.HasFormulaWithSameRegs(NewF)) {
              DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
              LU.DeleteFormula(F);
              --i;
              --e;
              Any = true;
              break;
            }
          } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
            if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
              if (!F.AM.BaseGV) {
                Formula NewF = F;
                NewF.AM.BaseGV = GV;
                NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
                                    (I - F.BaseRegs.begin()));
                if (LU.HasFormulaWithSameRegs(NewF)) {
                  DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
                        dbgs() << '\n');
                  LU.DeleteFormula(F);
                  --i;
                  --e;
                  Any = true;
                  break;
                }
              }
          }
        }
      }
      if (Any)
        LU.RecomputeRegs(LUIdx, RegUses);
    }

    DEBUG(dbgs() << "After pre-selection:\n";
          print_uses(dbgs()));
  }

  if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
    DEBUG(dbgs() << "The search space is too complex.\n");

    DEBUG(dbgs() << "Narrowing the search space by assuming that uses "
                    "separated by a constant offset will use the same "
                    "registers.\n");

    // This is especially useful for unrolled loops.

    for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
      LSRUse &LU = Uses[LUIdx];
      for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
           E = LU.Formulae.end(); I != E; ++I) {
        const Formula &F = *I;
        if (F.AM.BaseOffs != 0 && F.AM.Scale == 0) {
          if (LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU)) {
            if (reconcileNewOffset(*LUThatHas, F.AM.BaseOffs,
                                   /*HasBaseReg=*/false,
                                   LU.Kind, LU.AccessTy)) {
              DEBUG(dbgs() << "  Deleting use "; LU.print(dbgs());
                    dbgs() << '\n');

              LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;

              // Delete formulae from the new use which are no longer legal.
              bool Any = false;
              for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
                Formula &F = LUThatHas->Formulae[i];
                if (!isLegalUse(F.AM,
                                LUThatHas->MinOffset, LUThatHas->MaxOffset,
                                LUThatHas->Kind, LUThatHas->AccessTy, TLI)) {
                  DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
                        dbgs() << '\n');
                  LUThatHas->DeleteFormula(F);
                  --i;
                  --e;
                  Any = true;
                }
              }
              if (Any)
                LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);

              // Update the relocs to reference the new use.
              for (SmallVectorImpl<LSRFixup>::iterator I = Fixups.begin(),
                   E = Fixups.end(); I != E; ++I) {
                LSRFixup &Fixup = *I;
                if (Fixup.LUIdx == LUIdx) {
                  Fixup.LUIdx = LUThatHas - &Uses.front();
                  Fixup.Offset += F.AM.BaseOffs;
                  DEBUG(dbgs() << "New fixup has offset "
                               << Fixup.Offset << '\n');
                }
                if (Fixup.LUIdx == NumUses-1)
                  Fixup.LUIdx = LUIdx;
              }

              // Delete the old use.
              DeleteUse(LU);
              --LUIdx;
              --NumUses;
              break;
            }
          }
        }
      }
    }

    DEBUG(dbgs() << "After pre-selection:\n";
          print_uses(dbgs()));
  }

  // With all other options exhausted, loop until the system is simple
  // enough to handle.
  SmallPtrSet<const SCEV *, 4> Taken;
  while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
    // Ok, we have too many of formulae on our hands to conveniently handle.
    // Use a rough heuristic to thin out the list.
    DEBUG(dbgs() << "The search space is too complex.\n");

    // Pick the register which is used by the most LSRUses, which is likely
    // to be a good reuse register candidate.
    const SCEV *Best = 0;
    unsigned BestNum = 0;
    for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
         I != E; ++I) {
      const SCEV *Reg = *I;
      if (Taken.count(Reg))
        continue;
      if (!Best)
        Best = Reg;
      else {
        unsigned Count = RegUses.getUsedByIndices(Reg).count();
        if (Count > BestNum) {
          Best = Reg;
          BestNum = Count;
        }
      }
    }

    DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
                 << " will yield profitable reuse.\n");
    Taken.insert(Best);

    // In any use with formulae which references this register, delete formulae
    // which don't reference it.
    for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
      LSRUse &LU = Uses[LUIdx];
      if (!LU.Regs.count(Best)) continue;

      bool Any = false;
      for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
        Formula &F = LU.Formulae[i];
        if (!F.referencesReg(Best)) {
          DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
          LU.DeleteFormula(F);
          --e;
          --i;
          Any = true;
          assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
          continue;
        }
      }

      if (Any)
        LU.RecomputeRegs(LUIdx, RegUses);
    }

    DEBUG(dbgs() << "After pre-selection:\n";
          print_uses(dbgs()));
  }
}

/// SolveRecurse - This is the recursive solver.
void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
                               Cost &SolutionCost,
                               SmallVectorImpl<const Formula *> &Workspace,
                               const Cost &CurCost,
                               const SmallPtrSet<const SCEV *, 16> &CurRegs,
                               DenseSet<const SCEV *> &VisitedRegs) const {
  // Some ideas:
  //  - prune more:
  //    - use more aggressive filtering
  //    - sort the formula so that the most profitable solutions are found first
  //    - sort the uses too
  //  - search faster:
  //    - don't compute a cost, and then compare. compare while computing a cost
  //      and bail early.
  //    - track register sets with SmallBitVector

  const LSRUse &LU = Uses[Workspace.size()];

  // If this use references any register that's already a part of the
  // in-progress solution, consider it a requirement that a formula must
  // reference that register in order to be considered. This prunes out
  // unprofitable searching.
  SmallSetVector<const SCEV *, 4> ReqRegs;
  for (SmallPtrSet<const SCEV *, 16>::const_iterator I = CurRegs.begin(),
       E = CurRegs.end(); I != E; ++I)
    if (LU.Regs.count(*I))
      ReqRegs.insert(*I);

  bool AnySatisfiedReqRegs = false;
  SmallPtrSet<const SCEV *, 16> NewRegs;
  Cost NewCost;
retry:
  for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
       E = LU.Formulae.end(); I != E; ++I) {
    const Formula &F = *I;

    // Ignore formulae which do not use any of the required registers.
    for (SmallSetVector<const SCEV *, 4>::const_iterator J = ReqRegs.begin(),
         JE = ReqRegs.end(); J != JE; ++J) {
      const SCEV *Reg = *J;
      if ((!F.ScaledReg || F.ScaledReg != Reg) &&
          std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) ==
          F.BaseRegs.end())
        goto skip;
    }
    AnySatisfiedReqRegs = true;

    // Evaluate the cost of the current formula. If it's already worse than
    // the current best, prune the search at that point.
    NewCost = CurCost;
    NewRegs = CurRegs;
    NewCost.RateFormula(F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT);
    if (NewCost < SolutionCost) {
      Workspace.push_back(&F);
      if (Workspace.size() != Uses.size()) {
        SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
                     NewRegs, VisitedRegs);
        if (F.getNumRegs() == 1 && Workspace.size() == 1)
          VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
      } else {
        DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
              dbgs() << ". Regs:";
              for (SmallPtrSet<const SCEV *, 16>::const_iterator
                   I = NewRegs.begin(), E = NewRegs.end(); I != E; ++I)
                dbgs() << ' ' << **I;
              dbgs() << '\n');

        SolutionCost = NewCost;
        Solution = Workspace;
      }
      Workspace.pop_back();
    }
  skip:;
  }

  // If none of the formulae had all of the required registers, relax the
  // constraint so that we don't exclude all formulae.
  if (!AnySatisfiedReqRegs) {
    assert(!ReqRegs.empty() && "Solver failed even without required registers");
    ReqRegs.clear();
    goto retry;
  }
}

/// Solve - Choose one formula from each use. Return the results in the given
/// Solution vector.
void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
  SmallVector<const Formula *, 8> Workspace;
  Cost SolutionCost;
  SolutionCost.Loose();
  Cost CurCost;
  SmallPtrSet<const SCEV *, 16> CurRegs;
  DenseSet<const SCEV *> VisitedRegs;
  Workspace.reserve(Uses.size());

  // SolveRecurse does all the work.
  SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
               CurRegs, VisitedRegs);

  // Ok, we've now made all our decisions.
  DEBUG(dbgs() << "\n"
                  "The chosen solution requires "; SolutionCost.print(dbgs());
        dbgs() << ":\n";
        for (size_t i = 0, e = Uses.size(); i != e; ++i) {
          dbgs() << "  ";
          Uses[i].print(dbgs());
          dbgs() << "\n"
                    "    ";
          Solution[i]->print(dbgs());
          dbgs() << '\n';
        });

  assert(Solution.size() == Uses.size() && "Malformed solution!");
}

/// HoistInsertPosition - Helper for AdjustInsertPositionForExpand. Climb up
/// the dominator tree far as we can go while still being dominated by the
/// input positions. This helps canonicalize the insert position, which
/// encourages sharing.
BasicBlock::iterator
LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
                                 const SmallVectorImpl<Instruction *> &Inputs)
                                                                         const {
  for (;;) {
    const Loop *IPLoop = LI.getLoopFor(IP->getParent());
    unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;

    BasicBlock *IDom;
    for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
      if (!Rung) return IP;
      Rung = Rung->getIDom();
      if (!Rung) return IP;
      IDom = Rung->getBlock();

      // Don't climb into a loop though.
      const Loop *IDomLoop = LI.getLoopFor(IDom);
      unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
      if (IDomDepth <= IPLoopDepth &&
          (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
        break;
    }

    bool AllDominate = true;
    Instruction *BetterPos = 0;
    Instruction *Tentative = IDom->getTerminator();
    for (SmallVectorImpl<Instruction *>::const_iterator I = Inputs.begin(),
         E = Inputs.end(); I != E; ++I) {
      Instruction *Inst = *I;
      if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
        AllDominate = false;
        break;
      }
      // Attempt to find an insert position in the middle of the block,
      // instead of at the end, so that it can be used for other expansions.
      if (IDom == Inst->getParent() &&
          (!BetterPos || DT.dominates(BetterPos, Inst)))
        BetterPos = llvm::next(BasicBlock::iterator(Inst));
    }
    if (!AllDominate)
      break;
    if (BetterPos)
      IP = BetterPos;
    else
      IP = Tentative;
  }

  return IP;
}

/// AdjustInsertPositionForExpand - Determine an input position which will be
/// dominated by the operands and which will dominate the result.
BasicBlock::iterator
LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator IP,
                                           const LSRFixup &LF,
                                           const LSRUse &LU) const {
  // Collect some instructions which must be dominated by the
  // expanding replacement. These must be dominated by any operands that
  // will be required in the expansion.
  SmallVector<Instruction *, 4> Inputs;
  if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
    Inputs.push_back(I);
  if (LU.Kind == LSRUse::ICmpZero)
    if (Instruction *I =
          dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
      Inputs.push_back(I);
  if (LF.PostIncLoops.count(L)) {
    if (LF.isUseFullyOutsideLoop(L))
      Inputs.push_back(L->getLoopLatch()->getTerminator());
    else
      Inputs.push_back(IVIncInsertPos);
  }
  // The expansion must also be dominated by the increment positions of any
  // loops it for which it is using post-inc mode.
  for (PostIncLoopSet::const_iterator I = LF.PostIncLoops.begin(),
       E = LF.PostIncLoops.end(); I != E; ++I) {
    const Loop *PIL = *I;
    if (PIL == L) continue;

    // Be dominated by the loop exit.
    SmallVector<BasicBlock *, 4> ExitingBlocks;
    PIL->getExitingBlocks(ExitingBlocks);
    if (!ExitingBlocks.empty()) {
      BasicBlock *BB = ExitingBlocks[0];
      for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
        BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
      Inputs.push_back(BB->getTerminator());
    }
  }

  // Then, climb up the immediate dominator tree as far as we can go while
  // still being dominated by the input positions.
  IP = HoistInsertPosition(IP, Inputs);

  // Don't insert instructions before PHI nodes.
  while (isa<PHINode>(IP)) ++IP;

  // Ignore debug intrinsics.
  while (isa<DbgInfoIntrinsic>(IP)) ++IP;

  return IP;
}

/// Expand - Emit instructions for the leading candidate expression for this
/// LSRUse (this is called "expanding").
Value *LSRInstance::Expand(const LSRFixup &LF,
                           const Formula &F,
                           BasicBlock::iterator IP,
                           SCEVExpander &Rewriter,
                           SmallVectorImpl<WeakVH> &DeadInsts) const {
  const LSRUse &LU = Uses[LF.LUIdx];

  // Determine an input position which will be dominated by the operands and
  // which will dominate the result.
  IP = AdjustInsertPositionForExpand(IP, LF, LU);

  // Inform the Rewriter if we have a post-increment use, so that it can
  // perform an advantageous expansion.
  Rewriter.setPostInc(LF.PostIncLoops);

  // This is the type that the user actually needs.
  const Type *OpTy = LF.OperandValToReplace->getType();
  // This will be the type that we'll initially expand to.
  const Type *Ty = F.getType();
  if (!Ty)
    // No type known; just expand directly to the ultimate type.
    Ty = OpTy;
  else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
    // Expand directly to the ultimate type if it's the right size.
    Ty = OpTy;
  // This is the type to do integer arithmetic in.
  const Type *IntTy = SE.getEffectiveSCEVType(Ty);

  // Build up a list of operands to add together to form the full base.
  SmallVector<const SCEV *, 8> Ops;

  // Expand the BaseRegs portion.
  for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
       E = F.BaseRegs.end(); I != E; ++I) {
    const SCEV *Reg = *I;
    assert(!Reg->isZero() && "Zero allocated in a base register!");

    // If we're expanding for a post-inc user, make the post-inc adjustment.
    PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
    Reg = TransformForPostIncUse(Denormalize, Reg,
                                 LF.UserInst, LF.OperandValToReplace,
                                 Loops, SE, DT);

    Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, 0, IP)));
  }

  // Flush the operand list to suppress SCEVExpander hoisting.
  if (!Ops.empty()) {
    Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
    Ops.clear();
    Ops.push_back(SE.getUnknown(FullV));
  }

  // Expand the ScaledReg portion.
  Value *ICmpScaledV = 0;
  if (F.AM.Scale != 0) {
    const SCEV *ScaledS = F.ScaledReg;

    // If we're expanding for a post-inc user, make the post-inc adjustment.
    PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
    ScaledS = TransformForPostIncUse(Denormalize, ScaledS,
                                     LF.UserInst, LF.OperandValToReplace,
                                     Loops, SE, DT);

    if (LU.Kind == LSRUse::ICmpZero) {
      // An interesting way of "folding" with an icmp is to use a negated
      // scale, which we'll implement by inserting it into the other operand
      // of the icmp.
      assert(F.AM.Scale == -1 &&
             "The only scale supported by ICmpZero uses is -1!");
      ICmpScaledV = Rewriter.expandCodeFor(ScaledS, 0, IP);
    } else {
      // Otherwise just expand the scaled register and an explicit scale,
      // which is expected to be matched as part of the address.
      ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, 0, IP));
      ScaledS = SE.getMulExpr(ScaledS,
                              SE.getConstant(ScaledS->getType(), F.AM.Scale));
      Ops.push_back(ScaledS);

      // Flush the operand list to suppress SCEVExpander hoisting.
      Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
      Ops.clear();
      Ops.push_back(SE.getUnknown(FullV));
    }
  }

  // Expand the GV portion.
  if (F.AM.BaseGV) {
    Ops.push_back(SE.getUnknown(F.AM.BaseGV));

    // Flush the operand list to suppress SCEVExpander hoisting.
    Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
    Ops.clear();
    Ops.push_back(SE.getUnknown(FullV));
  }

  // Expand the immediate portion.
  int64_t Offset = (uint64_t)F.AM.BaseOffs + LF.Offset;
  if (Offset != 0) {
    if (LU.Kind == LSRUse::ICmpZero) {
      // The other interesting way of "folding" with an ICmpZero is to use a
      // negated immediate.
      if (!ICmpScaledV)
        ICmpScaledV = ConstantInt::get(IntTy, -Offset);
      else {
        Ops.push_back(SE.getUnknown(ICmpScaledV));
        ICmpScaledV = ConstantInt::get(IntTy, Offset);
      }
    } else {
      // Just add the immediate values. These again are expected to be matched
      // as part of the address.
      Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
    }
  }

  // Emit instructions summing all the operands.
  const SCEV *FullS = Ops.empty() ?
                      SE.getConstant(IntTy, 0) :
                      SE.getAddExpr(Ops);
  Value *FullV = Rewriter.expandCodeFor(FullS, Ty, IP);

  // We're done expanding now, so reset the rewriter.
  Rewriter.clearPostInc();

  // An ICmpZero Formula represents an ICmp which we're handling as a
  // comparison against zero. Now that we've expanded an expression for that
  // form, update the ICmp's other operand.
  if (LU.Kind == LSRUse::ICmpZero) {
    ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
    DeadInsts.push_back(CI->getOperand(1));
    assert(!F.AM.BaseGV && "ICmp does not support folding a global value and "
                           "a scale at the same time!");
    if (F.AM.Scale == -1) {
      if (ICmpScaledV->getType() != OpTy) {
        Instruction *Cast =
          CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
                                                   OpTy, false),
                           ICmpScaledV, OpTy, "tmp", CI);
        ICmpScaledV = Cast;
      }
      CI->setOperand(1, ICmpScaledV);
    } else {
      assert(F.AM.Scale == 0 &&
             "ICmp does not support folding a global value and "
             "a scale at the same time!");
      Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
                                           -(uint64_t)Offset);
      if (C->getType() != OpTy)
        C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
                                                          OpTy, false),
                                  C, OpTy);

      CI->setOperand(1, C);
    }
  }

  return FullV;
}

/// RewriteForPHI - Helper for Rewrite. PHI nodes are special because the use
/// of their operands effectively happens in their predecessor blocks, so the
/// expression may need to be expanded in multiple places.
void LSRInstance::RewriteForPHI(PHINode *PN,
                                const LSRFixup &LF,
                                const Formula &F,
                                SCEVExpander &Rewriter,
                                SmallVectorImpl<WeakVH> &DeadInsts,
                                Pass *P) const {
  DenseMap<BasicBlock *, Value *> Inserted;
  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
    if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
      BasicBlock *BB = PN->getIncomingBlock(i);

      // If this is a critical edge, split the edge so that we do not insert
      // the code on all predecessor/successor paths.  We do this unless this
      // is the canonical backedge for this loop, which complicates post-inc
      // users.
      if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
          !isa<IndirectBrInst>(BB->getTerminator()) &&
          (PN->getParent() != L->getHeader() || !L->contains(BB))) {
        // Split the critical edge.
        BasicBlock *NewBB = SplitCriticalEdge(BB, PN->getParent(), P);

        // If PN is outside of the loop and BB is in the loop, we want to
        // move the block to be immediately before the PHI block, not
        // immediately after BB.
        if (L->contains(BB) && !L->contains(PN))
          NewBB->moveBefore(PN->getParent());

        // Splitting the edge can reduce the number of PHI entries we have.
        e = PN->getNumIncomingValues();
        BB = NewBB;
        i = PN->getBasicBlockIndex(BB);
      }

      std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
        Inserted.insert(std::make_pair(BB, static_cast<Value *>(0)));
      if (!Pair.second)
        PN->setIncomingValue(i, Pair.first->second);
      else {
        Value *FullV = Expand(LF, F, BB->getTerminator(), Rewriter, DeadInsts);

        // If this is reuse-by-noop-cast, insert the noop cast.
        const Type *OpTy = LF.OperandValToReplace->getType();
        if (FullV->getType() != OpTy)
          FullV =
            CastInst::Create(CastInst::getCastOpcode(FullV, false,
                                                     OpTy, false),
                             FullV, LF.OperandValToReplace->getType(),
                             "tmp", BB->getTerminator());

        PN->setIncomingValue(i, FullV);
        Pair.first->second = FullV;
      }
    }
}

/// Rewrite - Emit instructions for the leading candidate expression for this
/// LSRUse (this is called "expanding"), and update the UserInst to reference
/// the newly expanded value.
void LSRInstance::Rewrite(const LSRFixup &LF,
                          const Formula &F,
                          SCEVExpander &Rewriter,
                          SmallVectorImpl<WeakVH> &DeadInsts,
                          Pass *P) const {
  // First, find an insertion point that dominates UserInst. For PHI nodes,
  // find the nearest block which dominates all the relevant uses.
  if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
    RewriteForPHI(PN, LF, F, Rewriter, DeadInsts, P);
  } else {
    Value *FullV = Expand(LF, F, LF.UserInst, Rewriter, DeadInsts);

    // If this is reuse-by-noop-cast, insert the noop cast.
    const Type *OpTy = LF.OperandValToReplace->getType();
    if (FullV->getType() != OpTy) {
      Instruction *Cast =
        CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
                         FullV, OpTy, "tmp", LF.UserInst);
      FullV = Cast;
    }

    // Update the user. ICmpZero is handled specially here (for now) because
    // Expand may have updated one of the operands of the icmp already, and
    // its new value may happen to be equal to LF.OperandValToReplace, in
    // which case doing replaceUsesOfWith leads to replacing both operands
    // with the same value. TODO: Reorganize this.
    if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero)
      LF.UserInst->setOperand(0, FullV);
    else
      LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
  }

  DeadInsts.push_back(LF.OperandValToReplace);
}

/// ImplementSolution - Rewrite all the fixup locations with new values,
/// following the chosen solution.
void
LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
                               Pass *P) {
  // Keep track of instructions we may have made dead, so that
  // we can remove them after we are done working.
  SmallVector<WeakVH, 16> DeadInsts;

  SCEVExpander Rewriter(SE);
  Rewriter.disableCanonicalMode();
  Rewriter.setIVIncInsertPos(L, IVIncInsertPos);

  // Expand the new value definitions and update the users.
  for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
       E = Fixups.end(); I != E; ++I) {
    const LSRFixup &Fixup = *I;

    Rewrite(Fixup, *Solution[Fixup.LUIdx], Rewriter, DeadInsts, P);

    Changed = true;
  }

  // Clean up after ourselves. This must be done before deleting any
  // instructions.
  Rewriter.clear();

  Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
}

LSRInstance::LSRInstance(const TargetLowering *tli, Loop *l, Pass *P)
  : IU(P->getAnalysis<IVUsers>()),
    SE(P->getAnalysis<ScalarEvolution>()),
    DT(P->getAnalysis<DominatorTree>()),
    LI(P->getAnalysis<LoopInfo>()),
    TLI(tli), L(l), Changed(false), IVIncInsertPos(0) {

  // If LoopSimplify form is not available, stay out of trouble.
  if (!L->isLoopSimplifyForm()) return;

  // If there's no interesting work to be done, bail early.
  if (IU.empty()) return;

  DEBUG(dbgs() << "\nLSR on loop ";
        WriteAsOperand(dbgs(), L->getHeader(), /*PrintType=*/false);
        dbgs() << ":\n");

  // First, perform some low-level loop optimizations.
  OptimizeShadowIV();
  OptimizeLoopTermCond();

  // Start collecting data and preparing for the solver.
  CollectInterestingTypesAndFactors();
  CollectFixupsAndInitialFormulae();
  CollectLoopInvariantFixupsAndFormulae();

  DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
        print_uses(dbgs()));

  // Now use the reuse data to generate a bunch of interesting ways
  // to formulate the values needed for the uses.
  GenerateAllReuseFormulae();

  DEBUG(dbgs() << "\n"
                  "After generating reuse formulae:\n";
        print_uses(dbgs()));

  FilterOutUndesirableDedicatedRegisters();
  NarrowSearchSpaceUsingHeuristics();

  SmallVector<const Formula *, 8> Solution;
  Solve(Solution);

  // Release memory that is no longer needed.
  Factors.clear();
  Types.clear();
  RegUses.clear();

#ifndef NDEBUG
  // Formulae should be legal.
  for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
       E = Uses.end(); I != E; ++I) {
     const LSRUse &LU = *I;
     for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
          JE = LU.Formulae.end(); J != JE; ++J)
        assert(isLegalUse(J->AM, LU.MinOffset, LU.MaxOffset,
                          LU.Kind, LU.AccessTy, TLI) &&
               "Illegal formula generated!");
  };
#endif

  // Now that we've decided what we want, make it so.
  ImplementSolution(Solution, P);
}

void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
  if (Factors.empty() && Types.empty()) return;

  OS << "LSR has identified the following interesting factors and types: ";
  bool First = true;

  for (SmallSetVector<int64_t, 8>::const_iterator
       I = Factors.begin(), E = Factors.end(); I != E; ++I) {
    if (!First) OS << ", ";
    First = false;
    OS << '*' << *I;
  }

  for (SmallSetVector<const Type *, 4>::const_iterator
       I = Types.begin(), E = Types.end(); I != E; ++I) {
    if (!First) OS << ", ";
    First = false;
    OS << '(' << **I << ')';
  }
  OS << '\n';
}

void LSRInstance::print_fixups(raw_ostream &OS) const {
  OS << "LSR is examining the following fixup sites:\n";
  for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
       E = Fixups.end(); I != E; ++I) {
    dbgs() << "  ";
    I->print(OS);
    OS << '\n';
  }
}

void LSRInstance::print_uses(raw_ostream &OS) const {
  OS << "LSR is examining the following uses:\n";
  for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
       E = Uses.end(); I != E; ++I) {
    const LSRUse &LU = *I;
    dbgs() << "  ";
    LU.print(OS);
    OS << '\n';
    for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
         JE = LU.Formulae.end(); J != JE; ++J) {
      OS << "    ";
      J->print(OS);
      OS << '\n';
    }
  }
}

void LSRInstance::print(raw_ostream &OS) const {
  print_factors_and_types(OS);
  print_fixups(OS);
  print_uses(OS);
}

void LSRInstance::dump() const {
  print(errs()); errs() << '\n';
}

namespace {

class LoopStrengthReduce : public LoopPass {
  /// TLI - Keep a pointer of a TargetLowering to consult for determining
  /// transformation profitability.
  const TargetLowering *const TLI;

public:
  static char ID; // Pass ID, replacement for typeid
  explicit LoopStrengthReduce(const TargetLowering *tli = 0);

private:
  bool runOnLoop(Loop *L, LPPassManager &LPM);
  void getAnalysisUsage(AnalysisUsage &AU) const;
};

}

char LoopStrengthReduce::ID = 0;
INITIALIZE_PASS(LoopStrengthReduce, "loop-reduce",
                "Loop Strength Reduction", false, false);

Pass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) {
  return new LoopStrengthReduce(TLI);
}

LoopStrengthReduce::LoopStrengthReduce(const TargetLowering *tli)
  : LoopPass(&ID), TLI(tli) {}

void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
  // We split critical edges, so we change the CFG.  However, we do update
  // many analyses if they are around.
  AU.addPreservedID(LoopSimplifyID);
  AU.addPreserved("domfrontier");

  AU.addRequired<LoopInfo>();
  AU.addPreserved<LoopInfo>();
  AU.addRequiredID(LoopSimplifyID);
  AU.addRequired<DominatorTree>();
  AU.addPreserved<DominatorTree>();
  AU.addRequired<ScalarEvolution>();
  AU.addPreserved<ScalarEvolution>();
  AU.addRequired<IVUsers>();
  AU.addPreserved<IVUsers>();
}

bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
  bool Changed = false;

  // Run the main LSR transformation.
  Changed |= LSRInstance(TLI, L, this).getChanged();

  // At this point, it is worth checking to see if any recurrence PHIs are also
  // dead, so that we can remove them as well.
  Changed |= DeleteDeadPHIs(L->getHeader());

  return Changed;
}